2208.08270v4 [cs.LG] 23 Mar 2024

arxXiv

On the Privacy Effect of Data Enhancement
via the Lens of Memorization

Xiao Li, Member, IEEE, Qiongxiu Li, Member, IEEE, Zhanhao Hu, and Xiaolin Hu*, Senior Member, IEEE

Abstract—Machine learning poses severe privacy concerns
as it has been shown that the learned models can reveal
sensitive information about their training data. Many works have
investigated the effect of widely adopted data augmentation and
adversarial training techniques, termed data enhancement in the
paper, on the privacy leakage of machine learning models. Such
privacy effects are often measured by membership inference
attacks (MIAs), which aim to identify whether a particular
example belongs to the training set or not. We propose to
investigate privacy from a new perspective called memorization.
Through the lens of memorization, we find that previously
deployed MIAs produce misleading results as they are less
likely to identify samples with higher privacy risks as members
compared to samples with low privacy risks. To solve this
problem, we deploy a recent attack that can capture individual
samples’ memorization degrees for evaluation. Through extensive
experiments, we unveil several findings about the connections
between three essential properties of machine learning models,
including privacy, generalization gap, and adversarial robustness.
We demonstrate that the generalization gap and privacy leakage
are less correlated than those of the previous results. Moreover,
there is not necessarily a trade-off between adversarial robustness
and privacy as stronger adversarial robustness does not make
the model more susceptible to privacy attacks.

Index Terms—Privacy, Memorization, Data augmentation,
Adpversarial training, Membership inference attack.

I. INTRODUCTION

Due to the availability of ever-increasing datasets and
computing power, we have witnessed a paradigm shift from
traditional data analysis towards machine learning over the
last decades. Rather than making prior assumptions, as is
done in conventional modeling techniques, machine learning
especially deep neural networks (DNNs) enables the system to
directly learn from data. Machine learning has achieved superior
performance and has been deployed in various applications
such as image processing, natural language processing, etc.
As the data used for training machine learning models are
often collected from local devices such as tablets and wearable
devices [1], it contains sensitive personal information such
as speech, images, GPS location, and medical records. It is
thus crucial to protect the training data from being revealed to
others. However, several studies [2, 3, 4, 5] have shown that
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machine learning models especially DNNs raise severe privacy
concerns, as they tend to memorize sensitive information about
the training data.

To quantitatively evaluate the privacy leakage that a machine
learning model reveals about its training data, a basic approach
that has been intensively used is the so-called membership
inference [6]. That is, given access to a target model, the goal
of the adversary is to determine whether a particular data point
was used for training this target model (being a member) or
not (being a non-member). Such membership information can
reveal quite sensitive information about the individuals such
as the health conditions [7] and serve as the basis for stronger
types of privacy attacks [5].

Several studies show that the attack success rates of mem-
bership inference attacks (MIAs) are highly correlated with the
generalization gap, i.e., the difference between training and test
accuracies [6, 8, 9, 10, 11]. Such correlation is also observed
when applying different data enhancement methods including
data augmentation and adversarial training. It has been shown
in Song et al. [9] that applying adversarial training can make
the model more vulnerable to MIAs, and they conclude that the
main reason is that the generalization gap becomes larger after
applying adversarial training than standard training. The data
augmentation methods, on the other hand, are widely believed
to be effective in reducing the privacy leakage [6, 12, 10]
as they are usually helpful in avoiding overfitting. Label
smoothing [13], as a particular data augmentation method,
however, is recognized to increase privacy leakage while
reducing the generalization gap simultaneously [14, 15].

But the results shown in the aforementioned works might
be misleading as the deployed MIAs for measuring the privacy
leakage have the following limitations: 1) It has been criticized
in several works [16, 17, 15] that the previous MIAs often have
quite high false positive rates (FPR), i.e., many non-members
are falsely identified as members. However, a good attack
should obtain meaningful attack rates under low FPR regions,
as it is more realistic for practical applications such as computer
security [18, 19]. As an example shown by Carlini et al. [17],
if an attack with overall 50.05% accuracy can reliably identify
just 0.1% members without any false alarm, i.e., FPR=0, and
judges the remaining samples by random guess with 50%
accuracy, it puts much more risk to the model than another
attack which guesses any sample with a chance of 50.05%
being correct. In this case, the latter has a high FPR. 2) We
find that the previous MIAs are inconsistent with the privacy
risks on individual data points, even though they could have
high overall success rates (see Section IV-B). Specifically, they
have more difficulties in identifying training samples with high



privacy risks as members compared to the samples with low
privacy risks, which is at odds with the intuition that samples
with higher privacy risks should be more easily identified.

We propose to address the above limitations by taking a new
perspective called memorization [20, 21]. A data point is said
to be memorized if the output of the model is quite sensitive
to this individual data point, e.g., the prediction confidence of
the learned model on this particular data point could be quite
low unless it appears in the training set [20]. The concept of
memorization fundamentally captures the privacy risk under
the framework of differential privacy (DP) [22, 23, 20], which
is generally considered to be a strong privacy definition.
Empirically, we find that a recent attack called Likelihood Ratio
Attack (LiRA) [17] is effective in reflecting the memorization
degree, as we show in Section IV-C. LiRA also demonstrates
much better performance under the low FPR regions compared
with other MIAs. Therefore, we adopt LiRA to reinvestigate
the privacy effects of both data augmentation and adversarial
training.

A. Paper contribution

Through extensive investigations, we unveil several non-
trivial findings (see Section VI and Section VII for details),
which urge the community to rethink the relations among three
important properties of machine learning models, including
privacy leakage, generalization gap, and adversarial robustness.
The major findings include:

o Unlike the previous studies [6, 8, 9, 10, 24] showing
that the generalization gap and privacy leakage are
highly correlated, our results demonstrate a much weaker
correlation.

o Applying adversarial training can increase the memoriza-
tion degrees of training samples, thereby resulting in more
privacy leakage compared to models without adversar-
ial training. However, for adversarially trained models,
stronger adversarial robustness does not necessarily come
with the cost of privacy leakage.

To the best of our knowledge, this is the first systematic
evaluation of data augmentation and adversarial training via
the lens of memorization.

B. Outline

The rest of the paper is organized as follows. Section II
and IIT introduce related work and necessary fundamentals,
respectively. Section IV explains the definition of memorization
score and conducts statistical analysis to show the consistencies
between the results of different MIAs and memorization scores.
Section V investigates the privacy effect of applying data
augmentation and adversarial training on machine learning
models via extensive experiments. Section VI and VII ana-
lyze the relationship between privacy and generalization gap,
and between privacy and adversarial robustness, respectively.
Conclusions are given in Section IX.

II. RELATED WORK

This section reviews existing works on investigating the
influence on privacy by applying data augmentation and
adversarial training.

A. Data Augmentation and Privacy

Due to the fact that the attack success rate of many MIAs is
highly correlated with the degree of overfitting, investigating
how data augmentation affects privacy leakage has received
attention [6, 12, 25, 14]. As a common practice to avoid
overfitting, typical data augmentation methods such as flipping
and cropping are shown to be effective in mitigating MIAs [12].
Kaya and Dumitras [14] further conduct a systematic investi-
gation by applying seven data augmentation techniques such
as label smoothing, random cropping, and mixup. The results
show that it is difficult to use data augmentation to achieve
substantial mitigation effects against MIAs while achieving
better generalization gaps. In addition, label smoothing is shown
to be able to increase both the privacy leakage and the test
accuracy simultaneously [14, 15].

B. Augmented Information Improves Privacy Attack

It has been shown in several studies [26, 27, 25] that
exploiting the information of augmented data would help to
improve the attack success rate. MIAs can be classified into two
types: augmentation-unaware and augmentation-aware attacks.
The former assumes that the adversary does not have knowledge
of the augmented data but simply uses random augmentation
to probe the model. It has been shown that, by querying
the model multiple times, using the random augmented data
generated with Gaussian noise, the attack success rate can be
improved [26]. The latter assumes a stronger scenario where
the particular augmented data used in training is known to
the adversary. Choquette-Choo et al. [27] show that the attack
success rate can be significantly improved with the knowledge
of the augmented data. Moreover, Yu et al. [25] showed that
the augmentation-aware attack can obtain a higher success rate
on models trained with some data augmentation than the ones
without augmentation.

C. Adversarial training and privacy

Adversarial training is recognized to be one of the most
effective ways to improve the adversarial robustness of DNNs
[28, 29, 30, 31, 32], which is crucial in the security community.
Compared to data augmentation, the relationship between
adversarial training and privacy is relatively under-explored.
It is shown in Song et al. [9] that the adversarially trained
models, compared with the non-adversarially (standardly)
trained models, are more susceptible to MIAs. They show
that the privacy effect of adversarial training is related to
several parameters including generalization gap, adversarial
perturbation intensity, and model capacity. However, the MIAs
used in the above-discussed studies are limited in reflecting
the privacy risks of individual samples from the memorization
perspective (as shown in Section IV-B). In addition, they all
do not report results by the metric under low FPR regions.

III. PRELIMINARIES

In this section, we introduce the necessary fundamentals for
understanding the rest of the paper.



A. Deep neural network

We consider feed-forward DNNs for classification tasks
under the usual supervised setting. Suppose we have a training
set Dy, = {(z,y)|(x,y) € X x Y}, where x is the feature
vector (e.g., image) and y is the corresponding label. We denote
the DNN model with parameter 6 as fy : X — ). During
training, the data augmentation 7" : X x ) — P is applied to
the training data to improve its diversity, where P is the set of
all the probability measures defined on the power set 2% *Y.
Together, the optimal parameter 6* of the model is fitted by:

0* = arg min g E(z,5)~7 () [L(fo(Z), )],
6
(z,y)€Dyr

D

where L(-,-) is the loss function.

B. Data Enhancement

Since both data augmentation and adversarial training involve
the process of adding certain examples into the training set to
enhance the performances, they are known as data enhancement
techniques. In this paper, we investigate eight popular data
augmentation methods and four adversarial training methods,
as described below.

Data augmentation methods:

1) Random Cropping and Flipping: sample new features
by randomly cropping and horizontally flipping patches
from the original feature in the training set.

2) Label smoothing [13]: replace the hard labels with the
soft continuous labels by uniformly assigning probabil-
ities to other classes. Therefore, the probability of the
augmented label is p; = 1 — (=D for § = y and it is
pi = < for i # y, where € € (0,1) and n denotes the
number of the classes.

3) Disturblabel [33]: change a portion of ground-truth (GT)
labels to incorrect labels, namely, § = ey + (1 — €)yy,
where € is randomly sampled from {0,1} and y; €
{1,2,...,n} \ {y} denotes the incorrect label.

4) Gaussian Noise [34]: add Gaussian noise to each feature.
The new feature & = z + €, where € ~ N(0,0%1).

5) Cutout [35]: mask out a random square area of size
M x M from each feature.

6) Mixup [36]: blend two features z, x; by a random ratio
v and creates a new feature & = yxg + (1 — v)x1. The
corresponding label is § = yyo + (1 — 7)y1.

7) Jitter [37]: randomly change the brightness, contrast,
saturation, and hue of each image.

8) Distillation [38]: train an auxiliary DNN f with the
original training set and use the auxiliary DNN’s soft
outputs and temperature 7" as GT labels of the training
features when training the target DNN. The temperature
T determines the flatness of the soft labels.

Adversarial training techniques:

1) PGD-AT [39]: use PGD attack to generate adversarial
examples x,q, based on original features and replaces
the original feature with the adversarial examples at each
iteration of the training, i.e., £ = Xady-

2) TRADES [40]: use PGD attack to generate adversarial
examples z,qy, too. It differs from PGD-AT in that its

loss function consists of two components: L(fp(x),y) +
L(fo(x), fo(xaay))/A. The first component is the same
as the loss of the standard training while the second
component encourages the model to treat x and Zaqv
equally. The two components are weighted by A. In the
framework of Eq. (1), the discrete distribution of the
transformation T'(z,y) can be represented as Pr(x,y) =
57 and Pr(z, fo(2aav)) = 537, where Pr(-) indicates
the probability.

3) AWP [41]: use regularization to explicitly flatten
the weight loss landscape of PGD-AT by a double-
perturbation mechanism.

4) TRADES-AWP [41]: incorporate the regularization mech-
anism of AWP into the TRADES method.

C. Membership Inference Attack

The goal of MIA is to identify whether a specific data sample
was used in training a particular model or not. MIA has become
one of the most widely investigated privacy attacks due to its
simplicity. Many existing MIA approaches [6, 8, 10, 42, 43]
can achieve high attack accuracy by exploiting the fact that
machine learning models often behave differently to the data
used or not used for training. For example, the model is
often more confident about the training data than the test
data. Thus, by setting a threshold to certain features such as
the loss, confidence score, entropy, etc, the attack can achieve
high accuracy in distinguishing members from non-members.
Such kinds of approaches are referred to as metric-based
approaches as they simply deploy a preset threshold to decide
the membership. Another type of MIA approach is the classifier-
based approach, which involves training a binary classifier to
distinguish members and non-members. An effective technique
to train such classifiers is known as shadow training [6]. The
main idea of shadow training is to train several so-called
shadow models, which are trained similarly to the target model
to mimic its behavior. The classifier-based approaches tend
to be more computationally complex compared to the metric-
based methods.

IV. CONSISTENCY OF MIAS AND MEMORIZATION

In this section, our objective is to explain why existing
research might yield misleading outcomes owing to two primary
limitations and to demonstrate how adopting a memorization
perspective can address these issues. To achieve this, we start by
introducing the concept and definition of memorization scores.
We then investigate the consistency between results obtained
from different MIAs and the memorization scores. At last, we
emphasize the need to reevaluate the privacy risks associated
with data enhancements, using the lens of memorization scores
to gain a more accurate understanding.

A. Memorization

A data point is said to be memorized by the model if it has a
high impact on the model’s behavior. To ensure that such impact
is solely caused by this particular sample, one often needs to
use the leave-one-out setting. Namely, except for this particular
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Fig. 1: Feature score (top) and TPR (bottom) of each bin in terms of memorization score for a target model trained on
CIFAR-100 using (a) MaxPreCA [8], (b) Loss attack [10], (c) Modified entropy attack [44], (d) Binary classifier [6], (¢) Bayes
calibrated loss [12], (f) Difficulty calibrated loss [45], and (g) LiRA [17].

sample all other settings are the same. As an example, Feldman
[20] defines a memorization score which measures how much
information about the label of an individual data sample is
being memorized by the model. Specifically, given the training
set Dy, and the learning algorithm A, for an arbitrary sample
(z,y) € Dy, its (label) memorization score is defined as:

mem(A, Dtra (5177 y))

[fa(a) = y] - [fo(z) =y], P

Pr

forv A(Dexr\(z,y))
where Dy, \ (x,y) denotes the dataset D, with the sample
(z,y) being removed. This definition is shown effective as it can
assign atypical examples or outliers with high memorization
scores and typical or easy samples with low memorization
scores on various datasets including the CIFAR-100 [46] and
ImageNet [37] datasets [21]. This complies perfectly with the
intuition that an atypical example or outlier is often at a higher
privacy risk, as the model will behave quite differently on it
when it is in or out of the training set.

We now proceed to investigate whether the results produced
by existing MIAs are consistent with memorization scores.
Given that the memorization scores of the CIFAR-100 dataset
have been pre-computed by Feldman and Zhang [21], where
4000 models were trained in total, we deploy it as the
ground truth memorization scores for the following evaluations.
Without loss of generality, we select representative approaches
including both metric-based and classifier-based MIAs. Here

= Pr
for~A(Dsr)

we trained 128 ResNet-18 [47] models with half of the data
points randomly selected from 60,000 data points from CIFAR-
100 (see the Hyper-Parameters paragraph in Section V-A for
detailed training configurations). For each model, the other half
was used as the non-member set for conducting MIA. Then we
randomly chose ten trained models as the target model. The
remaining 127 models were recognized as shadow models for
each respective target model (if the MIA used shadow models).
For each MIA, we used the optimum threshold that maximized
the overall balanced accuracy, i.e., the proportion of correctly
identified samples (both members and non-members) out of
the total number of samples in the dataset'. The final attack
results were averaged over the ten target models. Below we
present the results of consistency check, evaluating whether
the attack results are consistent with memorization scores.

B. Example MIAs Obtaining Low Consistency with Memoriza-
tion Scores

Many MIAs exploit the fact that models are overconfident
about the training data [48]. Such confidences may be captured
by different features, e.g., the prediction confidence [6, 8], loss
[10], and so-called modified entropy [44]. That is, compared
to the test data, the model usually has a higher confidence

1'Unless otherwise specified, all MIA thresholds mentioned in this work
when evaluating balanced accuracy follow this setting.



score, smaller loss, and lower entropy (uncertainty) on the
training data. For example, the main idea of the widely-
adopted maximum predication confidence-based attack [8]
(called MaxPreCA in this paper) is to classify samples with the
maximum prediction confidence higher than a given threshold
as members, otherwise as non-members:

Meont(z,y) = ]l{mcax [fo(x)e] > 7} 3)
where 1 denotes the indicator function, fy(z). denotes the
model’s confidence to be category ¢, and M. ons (z,y) denotes
the adversary’s decision on the membership. Similarly, the
decisions of popular loss attack [10] is given by:

Mloss(xvy) = 1{—L(f9(l‘),y) > 7-}7 “4)
and the modified entropy attack [44] is given by:
Munens(2,y) = L{[1 — fo(2),]log[fo(z),]
+Z fo(z)clog[l — fo(z)c] = 7}, ®)

c#y

note that fp(x), denotes the model’s confidence of x on the
correct label y. Here we also investigate the classifier-based
MIA, using the shadow training method proposed in Shokri
et al. [6]. More specifically, for each target model, we used ten
shadow models and the logits of these models and sample labels
as features to train a multi-layer perceptron (MLP) classifier for
binary membership classification. We denote this as a “binary
classifier” approach.

To investigate if these attacks can capture the privacy risk
of individual data points, in Fig. 1(a-d) we demonstrate their
feature scores, i.e., the maximum prediction confidence, the
loss, the modified entropy and the prediction score of binary-
classifier (top panel), and the True Positive Rate (TPR) (bottom
panel) versus the memorization score [21]. We first divide
all the samples into 20 bins according to their memorization
score. The top panel shows the averaged feature scores (the
solid blue line) of the samples in different bins along with
their standard deviation (purple shadow). For visualization, the
feature scores of the top panels in Fig. 1(b-c) are transformed
using exponential scaling (monotonic function), ensuring that
they are on a similar scale as the other panels. The bottom
panel shows the TPR of each bin for each MIA. It is obvious
that the higher the memorization score is, the less probable it
gets identified as members correctly. Therefore, the results of
these attacks have a low consistency with memorization scores.

C. Example MIAs Obtaining High Consistency with Memo-
rization Scores

Based on the definition in Eq. (2), MIAs that exhibit a
high degree of consistency with memorization scores should
effectively capture how a model’s behavior varies when a
specific sample is included or excluded from the training set.
In this context, we highlight three example MIAs that leverage
such behavioral differences: the Bayes calibrated loss approach
[12], the difficulty calibrated loss approach [45], and LiRA
[17]. Given that LiRA is essentially an evolved form of the

Method Balanced Acc|TPR @ 0.1% FPR
MaxPreCA [8] 75.62 0.08
Loss [10] 75.48 0.14
Modified entropy [44] 75.66 0.21
Binary classifier [6] 76.50 0.32
Bayes calibrated loss [12] 79.75 4.95
Difficulty calibrated loss [45] 76.42 19.09
LiRA [17] 80.31 25.71

TABLE I: The attack success rate of different MIAs on CIFAR-
100.

earlier two methods, our discussion will begin with an in-
depth explanation of LiRA, and then we will provide a brief
description of other approaches.

LiRA considers the distribution of the model’s prediction
on an individual data point when it is in or out of the training
set. It requires training a number of shadow models such that
for each sample (z,y), half models include it in the training
set and the other half models do not, denoted as IN and OUT
models, respectively. Denote the sets of scaled confidences of
sample (z,y) computed using IN and OUT models as Q;, and
Qout, respectively:

Qin - {Qb(fe(l)y) : (fE,y) S Dtr}

Quut = {6(fo(x)y) : (2,9) ¢ Duc}. ©

where ¢(p) = log (ﬁ). Qin and Q¢ are used to fit two

Gaussian distributions, denoted as IN distribution A" (g, 02,
and OUT distribution N (iout, 02, ), respectively. Given an
arbitrary sample, a standard likelihood-ratio test is performed
to determine which distribution it more likely belongs to, where
the likelihood ratio A is defined as:

Pr (¢(fo(x)y) | N (pin, 03 )
Pr(¢(fo(x)y) [ N (Hout, Tau )

A sample will be classified as a member if A is higher than a
threshold when evaluating balanced accuracy.

The Bayes calibrated loss method [12] is similar to LiRA
except that it does not fit the output of shadow models using
Gaussian. Instead, it directly uses the average output from the
IN and OUT models for calibrating the sample loss. More
precisely, the calibrated loss attack is given by?:

Mb(;(l',y) = ]]-{fQ(:L')y - ,u(x,y) > T}

where M($, y) = (Min (!)37 y) + Hout (337 y))/2 and Min and Hout
are the means computed like those in LiRA.

The difficulty calibrated loss approach [45] can be seen as
an offline version of the above Bayes calibrated loss approach,
which uses the difficulty of samples, measured by OUT models,
to calibrate the loss, i.e., u(x,y) = pout (z,y). In Fig. 1(e-g),
we present the Bayes calibrated loss, the difficulty calibrated
loss, and the likelihood ratio A in Eq. (7) (top panel), along
with the TPR (bottom panel), against the memorization scores.
The results clearly show that samples with higher memorization
scores are more likely to be accurately identified as members.

A= @)

®)

2Note that since we assume the output is confidence, thus in this work we
use the confidence score instead of loss.



D. Consistency Results and Low FPR Metrics

As mentioned in the introduction and several previous
studies [16, 17, 15], a prevalent limitation of many MIAs
is their tendency to exhibit high FPRs. This issue becomes
apparent when examining the consistency of these attack
results with memorization scores. By inspecting Fig. 1(a-d), we
identify two key observations. First, these attacks only achieve
exceptionally high TPRs (e.g., above 0.95) within a narrow
range of memorization scores. This implies that aiming for
an overall low FPR will reduce the overall TPR across all
regions significantly. Second, the highest TPRs are typically
found in regions with very low memorization scores. This
implies that aiming for an overall low FPR tends to exclude
those members that present a higher privacy risk, which is
also counter-intuitive. This phenomenon can be related to the
fact that samples with high memorization scores are often
more complex or atypical, making them more challenging for
the model to fit [21]. Consequently, these samples tend to
exhibit lower confidence compared to simpler, typical (test)
samples. Therefore, implementing a stricter threshold to reduce
the FPR, i.e., to prevent false identification of non-member
test samples, will inadvertently exclude training samples with
high memorization scores.

In contrast, MIAs with high consistency in memorization
scores, as shown in Fig. 1(e-g), maintain very high TPRs
across most regions, especially for those regions with high
memorization scores. As a result, these MIAs can sustain
high overall TPRs even in seeking low FPR scenarios, with
the identified members being those with high memorization
scores, which is a logical and expected outcome. To support
these findings, Table I presents the performance of these MIAs,
evaluating both the balanced accuracy and TPR at a low FPR.
It is evident that MIAs with low consistency in memorization
scores exhibit poor performance in low FPR regions, while
those with high consistency show markedly better results.

Among the MIAs with high consistency with memorization
scores, as shown in Fig. 1(e-g), we note that LiRA outperforms
the other methods, especially in accurately classifying samples
with low memorization scores. This superiority is attributed to
LiRA’s utilization of second-order statistics through Gaussian
fitting, rather than solely relying on mean information like
the other methods. Consequently, LiRA not only achieves the
highest consistency with memorization scores but also the most
effective attack success rate.

E. Discussion on Previous Evaluations of Data Enhancements

The findings discussed above raise significant concerns
because many studies examining the privacy risks associated
with data enhancements have relied on MIAs that show low
consistency with memorization scores. For example, Salem
et al. [8], Yeom et al. [10], Kaya and Dumitras [14], Yu
et al. [25] utilize either confidence or loss-based MIAs to
assess the privacy impact of data augmentation. Similarly, Song
et al. [9] employs the confidence-based MIA to evaluate the
risks associated with adversarial training. We suspect that the
conclusions of these studies might be misleading. Therefore, it
is important to reinvestigate the privacy risks associated with

data augmentation and adversarial training, employing MIAs
that have high consistency with memorization scores for a
more accurate evaluation.

Given the superior performance of LiRA in obtaining the
highest consistency with memorization scores among the MIAs
we examined, we will deploy LiRA as the primary tool to
investigate how various data augmentation and adversarial
training techniques impact privacy in subsequent discussions.

V. EVALUATING PRIVACY EFFECTS OF DATA
ENHANCEMENT

We now proceed to evaluate the privacy effects of both data
augmentation and adversarial training. Through the experiments,
we aim to investigate the relations of privacy, adversarial
robustness, and generalization gap, as they are all crucial
properties for a machine learning model.

A. Experimental Settings

We used 32 NVIDIA 3080 GPUs to perform the experiments.
The code for the experiments is implemented by Pyt orch and
is available at https://github.com/LixiaocTHU/privacy_and_aug.

Dataset. Following previous work [17, 49, 14], we used
the CIFAR-10 [46] and CIFAR-100 [46] datasets for MIA
evaluations. We additionally used the SVHN [50] dataset for
a comprehensive evaluation. Both CIFAR-10 and CIFAR-100
contain 60,000 natural images with a resolution of 32 x 32 from
10 and 100 categories, respectively. SVHN contains 73,257
color images of numbers for training, with the resolution of
32 x 32, and the first 60,000 training images from SVHN are
used in this work.

MIA Settings. In this work, we assume a black-box setting
where the adversary only has query access to the outputs of
the target model on given samples. Without loss of generality,
here we assume the output is the prediction confidence and the
shadow models are trained using the same data enhancement
method as the target model. We used LiRA to measure the
privacy leakage of different data augmentation and adversarial
training methods. We trained 128 models for each data
enhancement method. Each model of the 128 models used
roughly 30,000 data points as the training samples (members)
and the remaining roughly 30,000 data points as the test samples
(non-members). For each data point, we guaranteed that 64
out of the 128 models were the IN models, and the remaining
64 models were the OUT models. All models used the same
training recipes except for the data enhancement strategies. For
evaluation, we randomly selected 10 out of the 128 models as
target models. The remaining 127 models were recognized as
shadow models for each respective target model. After that, we
performed the MIA evaluation on target models with all 60,000
data points. The MIA performance results were reported as
the mean and standard deviation for each attack metric across
the ten target models.

Models. Unless otherwise specified, we used the standard
ResNet-18 [47] for the experiments on CIFAR-10 and CIFAR-
100 and a vanilla convolutional neural network (CNN) for
the experiments on SVHN. The CNN we used contained six
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Method Training Acc Test Acc | TPR @ 0.1% FPR TPR @ 0.001% FPR Log-scale AUC MIA Balanced Acc
Base 100.0 £0.0 92.8+£0.2 8.20 = 0.45 2.454+0.93 0.815 £ 0.007 63.34 £ 0.26
Smooth 100.0£0.0 92.9+£0.3 5.22 £ 0.66 0.14 £ 0.07 0.734 £0.012 62.28 £ 0.86
Disturblabel 99.9+0.0 92.7+£0.3 5.88 £ 0.83 0.70 = 0.45 0.775 £ 0.013 61.69 £ 0.24
Noise 100.0£0.0 92.6+0.2 8.33 £0.26 2.79 £ 0.68 0.819 £+ 0.004 63.56 +0.24
Cutout 100.0£0.0 93.1+£04 7.714+0.39 2.48 +£1.03 0.811 £0.010 63.23 £ 0.26
Mixup 99.74+0.1 93.0+0.2 5.17 £0.51 1.31£0.40 0.779 £ 0.008 60.05 £ 0.53
Jitter 100.0 £0.0 92.7+£0.2 8.24 +0.35 2.974+0.76 0.819 + 0.004 63.41 £ 0.31
Distillation 99.9+0.0 93.2+0.2 7.04 +£0.33 2.194+0.70 0.805 £ 0.005 61.57 £0.39
PGD-AT 99.2+0.1 82.2+£0.2 23.78 + 0.89 10.52 +2.30 0.897 £ 0.005 78.82 +0.37
TRADES 96.2+0.2 80.0£04 17.88 & 1.56 8.14 +1.12 0.881 + 0.006 77.21 +0.65
AWP 93.2+2.0 82.6+£0.9 10.58 £+ 3.48 3.06 = 1.81 0.828 £ 0.045 72.13 + 3.76
TRADES-AWP | 91.9+0.5 80.5+£0.2 12.43 £0.89 3.48 £1.36 0.848 + 0.006 74.86 + 0.80

TABLE II: Attack success rates of different data enhancement on CIFAR-10. The 2nd and 3rd columns show the training and
test accuracies of each method, respectively. The 4th - 7th columns show four metrics to evaluate the extent of privacy leakage.
We highlight the MIA success rates for different data augmentation and adversarial training methods that are larger than that

for Base.
Method Training Acc Test Acc | TPR @ 0.1% FPR TPR @ 0.001% FPR Log-scale AUC MIA Balanced Acc
Base 100.0£0.0 70.3+£0.3 34.17 £ 1.05 17.24 +2.93 0.922 £+ 0.002 83.17£0.24
Smooth 100.0£0.0 722+£04 39.21 +£1.25 19.88 £+ 3.86 0.932 + 0.004 86.35 + 0.22
Disturblabel 98.0+0.2 69.9+0.3 19.53 £ 0.64 6.54 +2.58 0.879 £ 0.007 76.65 + 0.28
Noise 100.0+0.0 69.7+0.3 33.83 £ 0.91 18.31 £2.78 0.923 + 0.003 83.26 +0.13
Cutout 100.0 £ 0.0 70.3+£0.3 34.71+1.58 17.25 +5.02 0.923 + 0.005 83.53 +0.22
Mixup 99.7+£0.1 71.2+£04 32.73+£1.13 19.18 £2.48 0.922 £ 0.003 82.39 £ 0.50
Jitter 100.0£0.0 70.3+£0.3 34.19 £ 0.90 18.37 + 3.62 0.924 + 0.003 83.35+£0.17
Distillation 99.84+0.0 72.6+0.3 28.70 +0.83 14.58 £ 2.29 0.911 + 0.002 79.46 +0.14
PGD-AT 99.5+0.0 51.3+£0.3 68.63 + 0.88 47.85 £+ 4.26 0.972 + 0.001 93.62 +0.10
TRADES 98.0+0.3 49.0£0.5 60.23 £+ 0.87 37.45+£5.15 0.963 + 0.002 92.19 + 0.23
AWP 85.34+0.8 54.4+0.3 39.92 + 2.40 17.34 +4.22 0.931 + 0.006 88.10 +0.38
TRADES-AWP | 95.9+0.6 51.3+£0.4 57.51 +2.02 35.57 £ 3.73 0.960 + 0.002 91.92 + 0.36

TABLE III: Attack success rates of different data enhancement on CIFAR-100. The same conventions are used as in Table II.

convolutional layers with output channel numbers (256, 512,
512, 512, 512, 512), kernel sizes (3, 2, 3, 3, 2, 3), strides (1, 2, 1,
1, 2, 1), and padding sizes (1, 0, 1, 1, 0, 0). Batch normalization
[51] was applied to each layer. After the image of 32 x 32 was
down-sampled by these layers to be 6 x 6, an average pooling
operation was followed. Two fully connected layers, which can
be seen as part of a MLP network, were added at the end of
the output, with sizes 200 and 10, respectively. We denoted it
as CNN-8 in the following text. Due to computational resource
constraints, we did not conduct the same experiments on larger
architectures.

Hyper-Parameters. Each model was optimized by stochastic
gradient descent with an initial learning rate of 0.1 and a
momentum of 0.9 for 100 epochs on a single GPU. Multi-step
decay which scales the learning rate by 0.1 was used on the
75th and 90th epochs. The batch size is set to 256.

The hyper-parameters of each data augmentation method
were set to achieve relatively high test accuracy by searching
(see Appendix A for details). Unless other specified, for all
adversarial training methods, we set the maximal perturbation e
under /., norm to be 8. We set the step size to be €/8 and the
number of iterative steps to be 10. In addition, following the
default setting of each method, the regularization parameter A
was set to be 1/6 for TRADES, the perturbation intensity v was

set to be 1 x 102 for AWP, and 5 x 10~2 for TRADES-AWP.

B. Evaluation Results

Tables IT and III respectively show the training and test
accuracies and the MIA results by multiple queries on CIFAR-
10 and CIFAR-100. The results on SVHN are shown in
Appendix B. We denote Random Cropping and Flipping
by the Base method. Different from most previous studies
[14, 25, 9], we evaluated the privacy leakage of seven data
augmentation methods from label smoothing to Distillation
and four adversarial training methods (Section III) combined
with Base. This is a practical setting as Random Cropping and
Flipping has now become a default setting in the computer
vision field and it often brings considerable improvements in
test accuracy. It has been criticized in Rezaei and Liu [16] that
the models with low test accuracies are not practically useful
for evaluating privacy leakage. See the results of different
data augmentation methods without Base in Appendix B as
examples, where the test accuracy of Base exceeds those of
other data augmentation methods by at least 8.4% on CIFAR-
10 and 12.6% on CIFAR-100. Unless otherwise specified, all
data augmentation and adversarial training methods also use
Base as default.
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Fig. 2: Memorization scores of 5,000 randomly selected samples using Jitter (top), Disturblabel (middle) and PGD-AT model

(bottom) v.s., Base model.

With LiRA, we evaluated all models using four metrics: TPR
@ 0.1% FPR, TPR @ 0.001% FPR, Log-scale Area Under the
Curve (AUC), and the Balanced Accuracy. The numbers after 4
denote the standard deviations. As mentioned earlier, it is more
reasonable to use the metric of TPR under low FPR regions
for evaluating privacy leakage. However, on the one hand, we
empirically found that the results of TPR @ 0.001% FPR were
unstable since their standard deviations were relatively large.
On the other hand, 0.001% FPR might be too strict as it has
been shown in Feldman and Zhang [21] that both CIFAR-10
and CIFAR-100 contain quite a few pairs of hard samples that
are very similar. These samples will inevitably be misclassified
with high confidence as members when their counterparts are in
the member set, thereby causing some false positive cases and
resulting in FPRs that exceed the 0.001% tolerance. Therefore,
we mainly use TPR @ 0.1% FPR as the attack success rate
for the following analysis.

C. Evaluation Results and Memorization Scores

To verify whether our evaluation results indeed reflect the
degree of memorization, in Fig. 2 we compare the memorization
scores of 5,000 randomly selected samples computed using the
same method as in Feldman and Zhang [21] for three cases
on CIFAR-100: Jitter, Disturblabel, and PGD-AT v.s. Base.
Wherein the attack success rates are similar to, lower than,
and higher than Base, respectively. Clearly, the corresponding
changes in the memorization scores are consistent with the
attack success rates. The memorization scores of the samples
for Base and Jitter are similar (lying around the diagonal),
which explains the similar attack success rate against the
two methods. The memorization scores of many samples for
Disturblabel are lower than for Base, especially the samples
with high memorization scores for Base. Therefore, one
reason why Disturblabel reduces privacy leakage is that it

can reduce the memorization scores of many atypical samples.

The memorization scores for PGD-AT are in general higher
than those for Base (the points are distributed on the upper of
the diagonal). Thus, one major reason why adversarial training
causes a higher privacy leakage is that it memorizes many

training samples that are not memorized by standardly trained
models. Overall, we conclude that our evaluation results are
reliable as they can reflect the degree of memorization.

VI. PRIVACY AND GENERALIZATION GAP

In what follows, we proceed to analyze the relationship
between privacy leakage and generalization gap.

A. Compared to prior works, our results demonstrate a
much weaker correlation between the privacy leakage and
generalization gap.

Many previous studies have shown that the attack success
rates of MIAs are highly correlated with the generalization
gap, i.e., the degree of overfitting [6, 8, 9, 10, 11]. To
verify whether such a high correlation is still true from the
memorization perspective, in Fig. 3, we demonstrate the attack
success rate in terms of the train-test accuracy gap of all data
augmentation models for all three datasets using MaxPreCA
and LiRA, respectively. It is obvious that compared to the
MaxPreCA attack results, our results demonstrate a more
scattered distribution. We also compute the Pearson correlation
coefficient r for each plot. As shown there, the Pearson
correlation coefficients  of our results are significantly lower
than the results using MaxPreCA, e.g., for CIFAR-10, our r is
only 0.221, which is much lower than 0.708 using MaxPreCA.
Note that the results using other MIAs in Section IV-B are
similar to MaxPreCA (see Fig. E.1 in Appendix E). Hence, via
the lens of memorization, the generalization gap and privacy
leakage appear less correlated than those of the previous results.

It is easy to understand why the results of these attacks
are sensitive to the generalization gap, as their success rate
depends heavily on how different the model behaves for
training and test samples. We remark that there is a distinction
between memorization and overfitting: memorization is only
necessary but not sufficient for overfitting [20], i.e., memorizing
some training samples does not always cause overfitting. In
fact, it has been both theoretically proved and empirically
verified in previous work [20, 21] that memorizing certain
long-tailed samples will help in decreasing the generalization
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Fig. 3: Attack success rate versus the train-test gap of different data augmentation models on CIFAR-10, CIFAR-100, and
SVHN using MaxPreCA (top) and LiRA (bottom), respectively. r stands for the Pearson correlation coefficient.
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Fig. 4: Attack success rates of a single query and multi-
ple queries in two cases: augmentation-unaware (left) and
augmentation-aware (right). We evaluated different data aug-
mentation methods on CIFAR-10 and CIFAR-100 datasets,
respectively. None stands for models trained without any data
augmentation.

gap. As a consequence, many attacks deployed in previous
work might underestimate privacy leakage for non-overfitted
models, making the correlation coefficient unnecessarily high.
This issue can be alleviated in our setting as we measure the
privacy leakage via the memorization perspective, the root
cause of privacy leakage.

We remark that even though Yeom et al. [10] also pointed out
that overfitting is not the only reason for causing vulnerability
to privacy attacks, they did not explicitly identify what are
other factors and their attack results still demonstrate a higher
correlation compared with ours (as shown in Fig. 3). A
related observation is made in Sections V-E of LiRA [17]
showing that there are cases where two models have similar
generalization gaps but the privacy leakages vary a lot. However,

it only gives one counterexample and does not investigate it
deeply. Hence, their results can only support the claim that
reducing the generalization gap does not necessarily make
the model less vulnerable to privacy attacks, while we take a
step further and demonstrate stronger results showing that via
the memorization perspective, the correlation between privacy
leakage and the generalization gap becomes weaker. To the
best of our knowledge, such results have not been reported in
existing work.

B. Data augmentation is not necessarily an effective defense
for MIAs.

By inspecting the attack results for models with data aug-
mentation, we can see that the privacy effects vary significantly
across different data augmentation methods. For example,
Distillation and Disturblabel are shown effective in reducing
the vulnerability to privacy attack. Mixup, Cutout, Jitter, and
Gaussian noise methods do not seem to have big impacts on
the attack success rate. The main reason is that applying data
augmentation does not always reduce the memorization scores
of training samples, e.g., the Jitter model shown in Fig. 2.

Moreover, among all data augmentation methods, label
smoothing has drawn attention as it has been shown in both
Kaya and Dumitras [14] and Hintersdorf et al. [15] that
applying label smoothing will make the model more susceptible
to MIAs. To verify this, we computed the balanced accuracy
using MaxPreCA [8]. As shown in the top panels of Fig. 3,
label smoothing does increase the attack accuracies compared
to Base for all datasets. However, from the memorization
perspective, it did not demonstrate the same tendency. By
inspecting the bottom panels of Fig. 3 we note that label
smoothing demonstrates an inconsistent behavior on different
datasets. On CIFAR-100 and SVHN the privacy leakage is
higher than Base while on CIAFR-10 the privacy leakage is
lower. Hence, the claim that label smoothing would consistently
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Fig. 6: Attack success rates of PGD-AT and TRADES under different € on the three datasets.

amplify privacy leakage is untrue. Overall, we conclude that
it is difficult to give a general claim about whether data
augmentation can help mitigate the privacy attack or not. We
remind that extra attention should be paid when relying on
data augmentation as a defense technique against MIAs.

C. Multiple queries can only enhance the attack if the aug-
mentation method is known.

As stated in Section I, previous studies have shown that using
augmented data to conduct multiple queries would enhance
the attack success rate. To investigate this, we queried the
target model using ten augmented counterparts generated by
the Base method for each data point. We then targeted all the
data augmentation models trained on Base as the augmentation-
aware case. The augmentation-unaware case was then evaluated
by targeting the data augmentation models without using Base
(such models were trained on CIFAR-10 and CIFAR-100, see
Appendix B). As shown in Fig. 4, multiple queries did help
improve the attack success rate for the augmentation-aware
case, whereas, for the augmentation-unaware case, they resulted
in an opposite effect, i.e., lowering the attack success rate. We
note that similar results have been reported in Carlini et al. [17]

but only with Base augmentation. Our results further confirm
their results by extending to several different data augmentation
methods.

VII. PRIVACY AND ADVERSARIAL ROBUSTNESS

In this section, we further analyze the relationship between
privacy leakage and adversarial robustness.

A. Applying adversarial training will make the model memorize
more training samples, thereby causing more privacy leakages
compared to the standardly trained models.

As shown in Tables II, III, and B.1, applying adversarial
training significantly increases privacy leakage compared to
the standardly trained models. For example, the TPR @ 0.1%
FPR increases from 34.17% to 60.23% for Base to TRADES
on CIFAR-100. One reason is that applying adversarial training
will force the model to fit all the adversarial examples found
in the ¢, ball around each training sample, which often
increases the influence of each sample on the trained model,
thereby resulting in a higher privacy risk. To visualize the effect
of applying adversarial training, in Fig. 5, we choose three
examples in CIFAR-100 with different memorization scores and
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Fig. 7: The distributions of normalized confidence ¢ of three samples with different memorization scores using Base and
PGD-AT under four different e. Each row corresponds to a sample.

draw their corresponding distributions of normalized confidence
¢ evaluated by IN and OUT models using Base and all four
types of adversarially trained models. Clearly, if the IN and
OUT distributions of a particular sample are more separated, it
implies that the sample is adversarial training a higher privacy
risk. We can see that for samples that have low privacy risks
(e.g., Raccoon and Train), applying adversarial training would
make the distribution more separable.

Note that there is a bottleneck of increasing the privacy risk
of samples when performing adversarial training: for samples
that are already at a high privacy risk (e.g., Camel with a high
memorization score), applying adversarial training would not
make much difference as the distributions are already quite
separated for standardly trained models. Overall, we conclude
that one major reason why adversarial training causes a higher
privacy leakage is that it memorizes many training samples
that are not memorized by standardly trained models.

B. Better adversarial robustness does not necessarily make
the adversarially trained model more vulnerable to privacy
attacks.

To further investigate the relation between adversarial
robustness and privacy leakage, in Table IV we compare
adversarial robustness and attack success rate using different
adversarial training methods on the three datasets. We can
see that compared to TRADES and PGD-AT, both AWP and
TRADES-AWP achieve higher adversarial accuracies, while the
attack success rates are lower. Hence, for adversarially trained
models, stronger adversarial robustness does not necessarily
come with a cost of privacy leakage.

In addition to the attack results using different adversarial
training methods, it is also interesting to see how the attack
result changes along with varying parameters. Since € is
a critical parameter for adversarial training, in Fig. 6, we

Adversarial TPR @

Dataset Method Ace 0.1% FPR
Base 0.0£0.0 8.20 +0.45
PGD-AT 38.8+0.4 23.78+0.89
CIFAR-10 TRADES 45.24+0.3 17.88 +1.56
AWP 4594+ 0.1 10.58 +3.48
TRADES-AWP | 48.84+0.2 12.43+0.89
Base 0.0+0.0 34.1741.05
PGD-AT 169+ 0.1 68.63 +0.88
CIFAR-100 TRADES 19.7+ 0.4 60.23 +0.87
AWP 23.9+0.1 39.924+2.40
TRADES-AWP | 23.34+0.2 57.51 4+2.02

Base 0.0£0.0 5.27 £ 1.57
PGD-AT 45.24+0.4 10.5540.25
SVHN TRADES 4744+0.1 10.31 +£0.22
AWP 43.7+0.5 8.85+0.24

TRADES-AWP | 46.2+0.4 8.54+0.22

TABLE IV: The accuracies on adversarial examples (Adversar-
ial Acc) and privacy leakage of different adversarial training
models on three datasets. The accuracies are evaluated using
PGD with € = 8 and 20 iteration steps.

compare the attack results of different e using both PGD-AT and
TRADES models on the three datasets. We can see that overall
the attack success rate tends to increase along with € (at least
for € < 8). One reason might be that increasing the perturbation
parameter € will result in a bigger ¢, ball around each training
sample thereby increasing the difficulty of fitting all adversarial
examples. Consequently, the model will be more sensitive to
this sample, thus increasing the privacy risk. To verify this, in
Fig. 7, we use three examples (the same as in Fig. 5) with
different memorization scores and draw their corresponding
distributions of normalized confidence ¢ evaluated by IN and
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Fig. 8: Attack success rate versus the train-test gap of
different data augmentation models on the Purchases and
Locations datasets using MaxPreCA (top) and LiRA (bottom),
respectively. r stands for the Pearson correlation coefficient.

OUT models using Base and PGD-AT models under four
different e. Clearly, we can see that for the sample with a
very low memorization score (Raccon), increasing e¢ makes
the distributions more separable thus posing a higher privacy
risk. Similar to Fig. 5, we observe a bottleneck effect that
for samples with high memorization score (Camel), varying
e will not make much difference. Moreover, such bottleneck
effect is quicker since for samples with a fair memorization
score (Train), the IN and OUT distributions are already quite
separable when € = 1.

VIII. DISCUSSIONS

This section extends our discussion to encompass a broader
range of experimental results, providing further evidence of
the generalizability of our findings across diverse model
architectures, datasets, and MIAs.

A. Expanded Experiments across Diverse Model Architectures
and Datasets

To further verify the generalizability of our key conclusions,
initially derived from experiments on three image datasets
(CIFAR-10, CIFAR-100, and SVHN) using ResNet-18, ResNet-
18, and CNN-8, respectively, we conducted additional experi-
ments involving other combinations of datasets and architec-
tures. Specifically, we replicated the experiments using CNN-8
on CIFARI10 as an alternative combination. Furthermore, we
performed similar experiments with an MLP architecture on two
additional non-image datasets, namely Purchases and Locations
processed by Shokri et al. [6].

In Appendix C, we present the results of experiments con-
ducted using CNN-8 on CIFAR-10. These findings consistently
align with our previous key observations: 1) A less pronounced
correlation between generalization gaps and privacy leakages,
as indicated by the reduced correlation coefficient in Fig. C.1;
2) Adversarially trained models memorize more training data
compared to standardly trained models, as evidenced by the
much higher privacy leakage in Table C.1; 3) An increase in the

adversarial robustness of the adversarially trained models does
not necessarily come with a price of heightened vulnerability
to privacy attacks, as demonstrated by the performance of AWP
in Table C.1. Moreover, the trends depicted in Fig. C.2 closely
resemble those observed with the ResNet-18 architecture on
CIFAR-10 in Fig. 6.

For the non-image datasets, we performed experiments
with an MLP architecture on the Purchases and Locations
datasets. We note that part of the evaluated data augmentation
methods relevant to the image datasets, e.g., Cropping, Jitter,
Cutout, etc, are inapplicable to these non-image datasets. Here
we investigated the privacy impacts of applying Disturblabel,
Distillation, and Gaussian Noise. Additionally, we investigated
a 0-1 Flipping augmentation method specially designed for
these datasets. We did not evaluate adversarial training methods
with the non-image datasets because adversarial training is
primarily focused on the image domain [39, 40, 41], and
there is no standardized definition of adversarial examples
for these non-image datasets. The privacy leakage results
and the experimental details are presented in Appendix D.
In Fig. 8, we demonstrate the attack success rate regarding
the train-test accuracy gap of all data augmentation models
for these non-image datasets using MaxPreCA and LiRA,
respectively. We can see that our results with LiRA demonstrate
a more dispersed distribution and a lower Pearson correlation
coefficient compared with the MaxPreCA attack results.

Overall, we conclude that our key findings remain consistent
across diverse model architectures and datasets.

B. Other MIAs Beyond LiRA

While our initial investigations of privacy leakage focused
on LiRA, it is important to clarify that our primary goal was
to assess the privacy implications of data enhancement in
machine learning models, particularly via the perspective of
memorization. The choice of LiRA was driven by its high
consistency with memorization scores, as demonstrated in
Fig. 1. However, our findings are not limited to LiRA alone;
they extend to other MIAs that demonstrate a strong correlation
with memorization scores. To validate this, we shifted our
attention to the difficulty calibrated loss approach [45], which
shows comparable consistency with memorization scores (see
Fig. 1(e)). The results, depicted in Fig. E.2 and Table E.1,
indicate that the general trends in privacy effects resulting from
data augmentation and adversarial training align with those
observed using LiRA (see Fig. 6 and Table IV). It is worth
noting that the correlation score is slightly higher and the overall
attack performance is lower compared to LiRA, which aligns
with the expectations given LiRA’s higher consistency and
superior attack performance against the importance calibrated
loss approach. Consequently, we conclude that our findings
apply to other MIAs as long as they exhibit a high level of
consistency with memorization scores.

IX. CONCLUSION

In this paper, we reinvestigate the privacy effect of apply-
ing data augmentation and adversarial training to machine
learning models via a new perspective, namely the degree



of memorization. Such reinvestigation is quite necessary as
we found that the attacks deployed in previous studies for
measuring privacy leakage produce misleading results: the
training samples with low privacy risks are more prone to
be identified as members compared to the ones with high
privacy risks. Through a systematic evaluation, we reveal some
findings conflict with previous results, e.g., the generalization
gap and privacy leakage are shown less correlated than those
of the previous results and label smoothing does not always
amplify the privacy leakage. Moreover, we also show that
improving the adversarial robustness (via adversarial training)
does not necessarily make the adversarially trained model
more vulnerable to privacy attacks. Our results call for more
investigations on the privacy of machine learning models from
the memorization perspective.
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Method Training Acc Test Acc | TPR @ 0.1% FPR TPR @ 0.001% FPR Log-scale AUC MIA Balanced Acc
Base 99.2+0.8 92.6+£0.2 5.27 £ 1.57 2.06 £0.85 0.778 £ 0.040 57.71£1.19
Smooth 99.5+£0.3 93.7£0.2 7.89 £1.66 2.89 +£1.22 0.809 + 0.022 60.34 +1.27
Disturblabel 98.7+0.5 93.2+£0.2 4.72 +1.02 1.64 £0.83 0.771 £ 0.028 57.26 £ 0.65
Noise 99.2+09 92.6+0.3 5.29 £ 1.51 2.17 £0.93 0.780 £+ 0.037 57.68 £1.23
Cutout 98.7+0.8 93.1+£0.3 4.38 £1.27 1.66 + 0.83 0.767 £ 0.037 57.02+1.10
Mixup 97.44+0.5 934+0.3 3.37+0.71 0.89 £0.42 0.749 £ 0.020 56.43 £ 0.66
Jitter 99.2+0.6 92.6£0.2 5.254+1.36 2.174+0.94 0.781 £ 0.029 57.59 £ 1.00
Distillation 95.1+54 90.8+34 3.10 £ 2.27 1.29+1.11 0.691 £0.120 54.71 £ 2.69
PGD-AT 979+ 0.5 86.2+£0.3 10.55 +£0.25 4.31 +0.13 0.852 + 0.011 65.23 + 0.49
TRADES 94.3+0.7 825+£0.8 10.31 £ 0.22 4.22 +0.16 0.837 £ 0.014 65.09 £ 0.74
AWP 96.5+0.7 85.2+0.6 8.85 1+ 0.24 3.08 £0.05 0.820 £ 0.020 62.85 1+ 0.59
TRADES-AWP | 914+14 802+12 8.54 +£0.22 3.05 +£0.04 0.794 £+ 0.042 62.76 + 0.63

TABLE B.1: Attack success rates of different data enhancement on SVHN. The same conventions are used as in Table II.

Method Training Acc Test Acc | TPR @ 0.1% FPR TPR @ 0.001% FPR Log-scale AUC MIA Balanced Acc
None 100.0 £ 0.0 82.9+0.5 20.35 £ 4.31 9.44 + 3.24 0.885 +£0.013 76.25 + 2.18
None + Smooth 100.0£ 0.0 83.7+£0.5 14.48 £ 3.03 2.37+1.79 0.839 +0.024 72.91 £1.60
None + Disturblabel | 100.0 £0.0 84.1+£0.6 16.26 £ 1.03 3.43£2.48 0.853 +0.016 72.34 £0.89
None + Noise 100.0 £ 0.0 82.44+0.7 20.84 + 3.69 8.59 + 2.88 0.886 + 0.011 76.90 + 2.52
None + Cutout 100.0 £ 0.0 84.0£0.6 23.07 £ 0.80 10.53 £1.85 0.894 + 0.004 77.42 4+ 0.37
None + Mixup 100.0£ 0.0 83.7+£0.4 16.53 £ 1.42 4.84 £1.58 0.867 £ 0.006 76.53 +0.99
None + Jitter 100.0£0.0 82.0£1.3 21.73 £5.85 8.77+3.64 0.886 + 0.020 77.63 £2.61
None + Distillation | 100.0 +0.0 84.44+0.4 12.79 £ 1.81 5.16 £1.18 0.851 +0.010 69.25 +0.99

TABLE B.2: Attack success rates of different data augmentation methods without using Base on CIFAR-10. The 2nd and
3rd columns show the training and test accuracies of each method, respectively. The 4th - 7th columns show four metrics to
evaluate the extent of privacy leakages. We highlight the MIA success rates for different data augmentation methods that are
larger than that for None.

Method Training Acc Test Acc | TPR @ 0.1% FPR TPR @ 0.001% FPR Log-scale AUC MIA Balanced Acc
None 100.0 0.0 54.0£0.9 54.26 £ 10.72 30.68 £ 11.03 0.954 £0.014 92.96 £ 2.28
None + Smooth 100.0 £ 0.0 53.7+2.0 69.71 + 3.51 41.81 +9.55 0.972 4+ 0.004 96.76 + 0.33
None + Disturblabel | 100.0 £ 0.0 55.54+0.5 56.30 + 1.22 37.37 £ 4.58 0.959 +£ 0.003 90.96 £ 0.23
None + Noise 100.0 0.0 53.5£1.2 50.75 £ 8.61 28.61 £10.75 0.950 £ 0.011 91.79 £ 1.70
None + Cutout 100.0+£0.0 54.1+£0.8 58.14 £ 5.60 36.64 +7.94 0.961 + 0.007 92.87 +1.04
None + Mixup 100.0£0.0 49.3+£0.7 75.88 £ 1.09 51.04 +6.80 0.978 + 0.002 96.13 + 0.06
None + Jitter 100.0+0.0 53.1£0.9 57.05 +11.22 30.21 £14.71 0.955 £ 0.016 93.47 + 2.18
None + Distillation | 100.0+0.0 57.7 £ 1.7 56.45 £ 3.95 35.61 +£7.31 0.959 £ 0.006 90.39 £ 0.88

TABLE B.3: Attack success rates of different data augmentation methods without using Base on CIFAR-100. The same
conventions are used as in Table B.2.

APPENDIX A
THE HYPER-PARAMETERS OF EACH DATA AUGMENTATION

As stated in the paper, the hyper-parameter of each data
augmentation method was set to achieve relatively high test
accuracy by trying various values. Here we report the values
we tried and the final values used when training 128 shadow
models for each data augmentation method on CIFAR-10,
CIFAR100, and SVHN:

1) Random Cropping and Flipping: First, the images with

a resolution of 32 x 32 were padded with zeros of 4
pixels on each end. Then the padded images with the
resolution of 36 x 36 were randomly cropped out to form
inputs with the resolution of 32 x 32. Finally, the inputs
were randomly flipped horizontally. Unless otherwise
specified, all other data augmentation methods also use
this as default.

2)

3)

4)

5)

6)

Label smoothing: We tried ¢ including 0.01, 0.05, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8. Finally, we chose 0.2
on CIFAR-10, 0.3 on CIFAR-100, and 0.2 on SVHN.
Disturblabel: We tried € including 0.01, 0.05, 0.1, 0.2,
0.3, 0.4, 0.425, 0.45, 0.5, 0.525, 0.55, 0.575, and 0.6.
Finally, we chose 0.05 on CIFAR-10, 0.3 on CIFAR-100,
and 0.05 on SVHN.

Gaussian Noise: We tried o including 0.025, 0.01, 0.05,
0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.225, 0.25, 0.275,
0.3, 0.325, and 0.35. Finally, we chose o to be 0.01 on
the three datasets.

Cutout: We tried M including 4, 8, 12, 16, and 20.
Finally, we chose M to be 8 on the three datasets.
Mixup: v used in Mixup is sampled from a beta
distribution v ~ Be(a, ). We tried « including 0.5,
0.1, 0.25, 1, 2, 4, 8, 16, 32, 64, 128, and 256. Finally,
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Fig. C.1: Attack success rate versus the train-test gap of
different data augmentation models on CIFAR-10 with CNN-8
using MaxPreCA (top) and LiRA (bottom), respectively.

we chose « to be 0.5 on the three datasets.

7) Jitter: We used the ColorlJitter function in Torchvision
directly. We tried the parameters corresponding to bright-
ness, contrast, saturation, and hue including 0.05, 0.1,
0.2, 0.15, 0.25, 0.3, 0.35, 0.4, 0.45, and 0.5. Finally, we
chose 0.05 on the three datasets.

8) Distillation: We tried T' including 1, 2, 3, 5, and 10.
Finally, we chose 7" to be 3 on the three datasets.

3

APPENDIX B
ADDITIONAL MEMBERSHIP INFERENCE ATTACK RESULTS

The training and test accuracies and MIA results of all
data augmentation models on SVHN are shown in Table B.1.
In addition, taking CIFAR-10 and CIFAR-100 as examples,
the training and test accuracies and MIA results of all
data augmentation models trained without using Base are
demonstrated in Tables B.2 and B.3. Single query was used
because it obtained higher attack success rates than multiple
queries, as shown in Figure 4 in the paper. Here None stands
for models trained without any data augmentation (only the
original image data). The test accuracies of models trained
without using Base are much lower than that of models trained
using Base.

APPENDIX C
MEMBERSHIP INFERENCE ATTACK RESULTS ON CIFAR-10
WITH CNN-8

The CNN-8 architecture used in this experiment is the same
as the one employed for the SVHN dataset, as described
in Section V-A (Models paragraph). Furthermore, all hyper-
parameter settings align with those described in Section V-A.
The evaluation results of different data augmentation methods
are presented in Fig. C.1, which provides a concise repre-
sentation of the results similar to those shown in Table II.

3https://pytorch.org/vision/stable/index.html

Adpversarial TPR @
Dataset Method Ace 0.1% FPR
Base 0.0+ 0.0 6.57 £0.32
PGD-AT 36.0£0.3 17.08 £0.48
CIFAR-10 TRADES 42.14+0.4 14.254+2.23
AWP 424403 9.07+1.85
TRADES-AWP | 43.0+0.3 11.43+0.76

TABLE C.1: The accuracies on adversarial examples (Adver-
sarial Acc) and privacy leakage of different adversarial training
models on CIFAR-10 with CNN-8. The accuracies are evaluated
using PGD with € = 8 and 20 iteration steps.

CIFAR-10
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- 14
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Fig. C.2: Attack success rates of PGD-AT and TRADES under
different € on CIFAR-10 with CNN-8.

From this figure, we observe a less pronounced correlation
between generalization gaps and privacy leakages compared
to the previous MaxPreCA method. Regarding the adversarial
training methods, the results are presented in Table C.1 and
Fig. C.2. Overall, these results closely resemble the trends
observed with the ResNet-18 architecture on CIFAR-10 in
Table IV and Fig. 6. This consistency in trends supports that our
findings remain consistent across diverse model architectures
and datasets.

APPENDIX D
MEMBERSHIP INFERENCE ATTACK RESULTS ON
NON-IMAGE DATASETS

We performed similar experiments with an MLP architecture
on two additional non-image datasets, namely Purchases and
Locations processed by Shokri et al. [6]*. The Purchases dataset
is based on the “acquire valued shoppers” challenge dataset
on Kaggle, containing shopping histories for several thousand
individuals. Shokri et al. [6] derived a simplified purchase
dataset with 197,324 data samples, where each sample consists
of 600 binary features. The first 60,000 data samples from
Purchases are used to perform 100-category classification in
our experiments. The Locations dataset is processed from the
publicly available set of mobile users’ location “check-ins”,
which contained 5,010 data samples with 446 binary features.
All 5,010 data samples from Purchases are used to perform
classification on 30-category classification in our experiments.

The MLP architecture we used in the experiments has five
fully connected layers, with sizes 512, 256, 128, 128, and 128
in turn. Batch normalization was applied to each layer. As

“https://github.com/privacytrustlab/datasets
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Method | Training Acc Test Acc | TPR @ 0.1% FPR TPR @ 0.001% FPR Log-scale AUC MIA Balanced Acc
None 100.0 £ 0.0 75.2£0.2 19.34 £ 1.09 4.97+£1.49 0.881 £ 0.005 85.60 £ 0.20
Disturblabel | 100.0 £0.0 75.7+0.3 20.69 + 0.86 4.55 £ 3.10 0.873 £0.030 84.60 £0.14
Noise 100.0 £ 0.0 75.3£0.3 19.14 +1.07 3.85+1.71 0.876 £ 0.007 85.58 £0.19
Distillation | 100.0£0.0 75.5+0.3 21.54 +1.54 5.08 +£2.27 0.885 £ 0.009 84.67 £0.36
01 Flipping | 100.0+0.0 75.1+04 22.16 +1.39 4.90 £1.90 0.886 + 0.010 86.64 £+ 0.12

TABLE D.1: Attack success rates of different data augmentation methods on Purchases.

Method | Training Acc Test Acc | TPR @ 0.1% FPR TPR @ 0.001% FPR Log-scale AUC MIA Balanced Acc
None 100.0 £0.0 61.6£0.8 52.43 £ 9.57 43.56 £ 14.33 0.960 + 0.014 94.89 +0.34
Disturblabel | 100.0£0.0 63.4+£0.8 4778 £5.75 36.42 +£9.27 0.953 + 0.009 91.95 £ 0.42
Noise 97.1+04 64.1+£0.7 43.04 +6.14 33.36 £ 7.15 0.948 + 0.008 92.08 +0.37
Distillation | 100.0 +0.0 61.4+0.9 53.89 £8.19 40.97 £ 9.01 0.961 £ 0.008 94.85 +0.53
01 Flipping | 100.0£0.0 65.7£0.8 46.78 + 5.56 30.42 +£12.39 0.945 +£0.014 92.12 +0.54

TABLE D.2: Attack success rates of different data augmentation methods on Locations.
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Fig. E.1: Attack success rate versus the train-test gap of
different data augmentation models on CIFAR-10 using loss-
based MIA [10]. r stands for the Pearson correlation coefficient.
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Fig. E.2: Attack success rate versus the train-test gap of
different data augmentation methods on CIFAR-10 using
difficulty calibrated loss approach [45].

this architecture is relatively simple, we only trained it for 50
epochs. Multi-step decay which scales the learning rate by 0.1
was used on the 25th and 37th epochs. Other experimental
settings default to those described in Section V-A.

As mentioned in Section VIII, we investigated the privacy
impacts of applying Disturblabel, Distillation, and Gaussian
Noise. Additionally, as the features of both Purchases and
Locations are binary, we investigated a new 0-1 Flipping
augmentation method specially designed for these non-image
datasets. Concretely, the 0-1 Flipping augmentation involves
flipping a certain proportion of features, with 1% of features
flipped for Purchases and 10% for Locations. The overall
evaluation results on these datasets are shown in Tables D.1

Adversarial TPR @
Dataset Method Ace 0.1% FPR
Base 0.0£0.0 7.15+£0.33
PGD-AT 38.84+0.4 15.424+1.20
CIFAR-10 TRADES 45.2+0.3 7.54+1.371
AWP 459+0.1 7.32+0.86
TRADES-AWP | 48.84+0.2 7.544+0.73

TABLE E.1: The accuracies on adversarial examples (Adver-
sarial Acc) and privacy leakage of different adversarial training
models on CIFAR-10 using difficulty calibrated loss approach
[45]. The accuracies are evaluated using PGD with € = 8 and
20 iteration steps.

and D.2.

APPENDIX E
MEMBERSHIP INFERENCE ATTACK RESULTS BEYOND LIRA

To demonstrate that the results using other MIAs discussed
in Section IV-B are similar to those using the MaxPreCA,
Fig. E.1 showcases the attack success rate versus the train-test
gap of different data augmentation models on CIFAR-10 using
loss-based MIA [10].

To demonstrate that our findings are not limited to LiRA
alone, Fig. E.2 and Table E.1 showcase the results using
the difficulty calibrated loss approach [45]. As discussed in
Section VIII-B, these results indicate that the general trends in
privacy effects resulting from data augmentation and adversarial
training align with those observed using LiRA (see Fig. 6 and
Table IV).



	Introduction
	Paper contribution
	Outline

	Related Work
	Data Augmentation and Privacy
	Augmented Information Improves Privacy Attack
	Adversarial training and privacy

	Preliminaries
	Deep neural network
	Data Enhancement
	Membership Inference Attack

	Consistency of MIAs and Memorization
	Memorization
	Example MIAs Obtaining Low Consistency with Memorization Scores
	Example MIAs Obtaining High Consistency with Memorization Scores
	Consistency Results and Low FPR Metrics
	Discussion on Previous Evaluations of Data Enhancements

	Evaluating Privacy Effects of Data Enhancement
	Experimental Settings
	Evaluation Results
	Evaluation Results and Memorization Scores

	Privacy and Generalization Gap
	Compared to prior works, our results demonstrate a much weaker correlation between the privacy leakage and generalization gap.
	Data augmentation is not necessarily an effective defense for MIAs.
	Multiple queries can only enhance the attack if the augmentation method is known.

	Privacy and Adversarial Robustness
	Applying adversarial training will make the model memorize more training samples, thereby causing more privacy leakages compared to the standardly trained models.
	Better adversarial robustness does not necessarily make the adversarially trained model more vulnerable to privacy attacks.

	Discussions
	Expanded Experiments across Diverse Model Architectures and Datasets
	Other MIAs Beyond LiRA

	Conclusion
	Appendix A: The Hyper-Parameters of Each Data Augmentation
	Appendix B: Additional Membership Inference Attack Results
	Appendix C: Membership Inference Attack Results on CIFAR-10 with CNN-8
	Appendix D: Membership Inference Attack Results on Non-image Datasets
	Appendix E: Membership Inference Attack Results Beyond LiRA

