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Abstract—Deep neural networks (DNNs) are sensitive
to adversarial data in a variety of scenarios, including
the black-box scenario, where the attacker is only al-
lowed to query the trained model and receive an output.
Existing black-box methods for creating adversarial
instances are costly, often using gradient estimation or
training a replacement network. This paper introduces
Query-Efficient Evolutionary Attack, QuEry Attack,
an untargeted, score-based, black-box attack. QuEry
Attack is based on a novel objective function that can
be used in gradient-free optimization problems. The
attack only requires access to the output logits of the
classifier and is thus not affected by gradient masking.
No additional information is needed, rendering our
method more suitable to real-life situations. We test
its performance with three different state-of-the-art
models—Inception-v3, ResNet-50, and VGG-16-BN—
against three benchmark datasets: MNIST, CIFAR10
and ImageNet. Furthermore, we evaluate QuEry At-
tack’s performance on non-differential transformation
defenses and state-of-the-art robust models. Our re-
sults demonstrate the superior performance of QuEry
Attack, both in terms of accuracy score and query
efficiency.

Index Terms—Deep learning, computer vision, ad-
versarial attack, evolutionary algorithm.

I. INTRODUCTION

DEEP neural networks (DNNs) have become
the central approach in modern-day artificial

intelligence (AI) research. They have attained superb
performance in multifarious complex tasks and are
behind fundamental breakthroughs in a variety of
machine-learning tasks that were previously thought
to be too difficult. Image classification, object detec-
tion, machine translation, and sentiment analysis are
just a few examples of domains revolutionized by
DNNs.

Despite their success, recent studies have shown
that DNNs are vulnerable to adversarial attacks. A
barely detectable change in an image, for example,
can cause a misclassification in a well-trained DNN.

The authors are with the Department of Computer Science,
Ben-Gurion University, Beer Sheva 84105, Israel. Corresponding
author: R. Lapid, razla@post.bgu.ac.il.

Targeted adversarial examples can even evoke a
misclassification of a specific class (e.g., misclassify
a car as a cat). Researchers have demonstrated that
adversarial attacks are successful in the real world
and may be produced for data modalities beyond
imaging, e.g., natural language and voice recognition
[1], [2], [3], [4]. DNNs’ vulnerability to adversarial
attacks has raised concerns about applying these
techniques to safety-critical applications.

To discover effective adversarial instances, most
past work on adversarial attacks has employed
gradient-based optimization [5], [6], [7], [8], [9].
Gradient computation can only be executed if the
attacker is fully aware of the model architecture and
weights. Thus, these approaches are only useful in a
white-box scenario, where an attacker has complete
access and control over a targeted DNN. Attacking
real-world AI systems, however, might be far more
arduous. The attacker must consider the difficulty
of implementing adversarial instances in a black-box
setting, in which no information about the network
design, parameters, or training data is provided. In
this situation, the attacker is exposed only to the clas-
sifier’s input-output pairs. In this context, a typical
strategy has been to attack trained replacement net-
works and hope that the generated examples transfer
to the target model [10]. The substantial mismatch
of the model between the alternative model and the
target model, as well as the significant computational
cost of alternative network training, often renders this
technique ineffective.

In our work we assume a real-world, black-box
attack scenario, wherein a DNN’s input and output
may be accessed but not its internal configuration.
We focus on a scenario in which a specific DNN
is an image classifier, specifically, a convolutional
neural network (CNN), which accepts an image as
input and outputs a probability score for each class.

Herein, we present an evolutionary, gradient-free
optimization approach for generating adversarial in-
stances. Our proposed attack can deal with either
constrained (ε value that constrains the norm of the
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Original image Successful attack Failed attack

Fig. 1. Examples of adversarial attacks generated by QuEry
Attack. Top row: Imagenet (l∞ = 6/255). Middle row: CIFAR10
(l∞ = 6/255). Bottom row: MNIST (l∞ = 60/255). Left: the
original image. Middle: a successful attack. Right: A failed attack.

allowed perturbation) or unconstrained (no constraint
on the norm of the perturbation) problems, and fo-
cuses on constrained, untargeted attacks. We believe
that our framework can be easily adapted to the
targeted setting.

In the next section we review the literature on
adversarial attacks. Section III summarizes the threat
model we assume for our proposed evolutionary
attack algorithm. The algorithm itself—QuEry At-
tack (for Query-Efficient Evolutionary Attack)—is
delineated in Section IV. The experiments conducted
to test the method, along with results, are described
in Section V. We discuss our findings and present
concluding remarks in Section VI.

Figure 1 shows examples of successful and un-
successful instances of images generated by QuEry
Attack, evaluated against ImageNet, CIFAR10, and
MNIST.

II. RELATED WORK

Adversarial attacks against DNNs have become an
important research field in the last few years. For a
comprehensive survey, we refer the reader to [11].

An important distinction is between ‘white box’
and ‘black box’ attacks. In white-box attacks, the at-
tacker has knowledge of the attacked model’s internal
structure and parameters, and exploits that knowl-
edge. It is commonly done by using the model’s
gradients [5], [7], [12].

Although white-box methods achieved good re-
sults they usually do not represent a real-world sce-
nario. More realistic is a black-box attack, where the
attacker has no knowledge of the model’s structure
and parameters. The attacker can only query the
model—and act upon its outputs. We can further
distinguish between the more common ‘light black
box’ attacks, where the model gives the prediction’s
confidence (which can be exploited), and ‘dark black
box’ attacks where the model only gives the final
class prediction (e.g., [10]).

The first effective black-box attack traded a-priori
information of the model with extensive runtime
querying [13]. Using a large number of queries it
builds a substitute model, and attacks it with tradi-
tional white-box methods. It uses the transferability
property, namely, an attack that succeeds on one
model will likely succeed on a similar—though not
identical—model.

Other works used the more permissive ‘light black
box’ scenario, which can use the prediction’s confi-
dence value. Some works estimate the gradient with
this information and then use traditional gradient-
based attacks [14].

All these black-box methods rely on gradients,
and thus are sensitive to many defense methods that
obscure gradients [15], [16], [17]. This has given rise
to methods that do not rely on gradients at all, e.g.,
[18], which uses random search and is also query-
efficient.

Instead of randomness, one can use evolutionary
methods. In Evolutionary Algorithms (EAs), core
concepts from evolutionary biology—–inheritance,
random variation, and selection–—are harnessed in
algorithms that are applied to complex computational
problems. EA techniques have been shown to solve
numerous difficult problems from widely diverse
domains, and also to produce human-competitive
machine intelligence [19]. EAs also present many
important benefits over popular Machine Learning
methods, including [20]: less reliance on the exis-
tence of a known or discoverable gradient within
the search space; ability to handle design problems,
where the objective is to design new entities from
scratch; fewer required a priori assumptions about
the problem at hand; seamless integration of human
expert knowledge; ability to solve problems where
human expertise is very limited; support of inter-
pretable solution representations; support of multiple
objectives.

The evolutionary method GenAttack is a targeted
attack (thus not directly comparable to ours, which
is untargeted) that used a fitness function that tries
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to increase the probability of the target class and
decrease the probability of the other classes [21].
Its fitness function ignored the distance between
the images. Interestingly, GenAttack uses fitness-
proportionate selection, which is employed less often
nowadays due to known problems. It uses an adaptive
mutation rate to balance between exploration in early
phases and exploitation in later phases.

[22] treated the adversarial problem as one of
multi-objective optimization: minimize the class pre-
diction’s score on one hand, and the distance between
the original image and a perturbed one on the other
hand.

Another attack method changes a single pixel [23].
This method uses differential evolution (DE) [24]
without crossover. However, it sometimes required
thousands of queries.

[25] also uses DE, but unlike the other evolution-
ary computation (EC) methods reviewed, it uses EC
to approximate the gradients.

Unlike the above methods, which tried to mini-
mize the perturbation as much as possible and make
it as unnoticeable to the human eye as possible,
[26] makes a small but noticeable change, which
looks like a regular scratch (a similar approach in
the domain of Natural Language Processing creates
sentences that do not make sense to a human reader
[27]). The approach uses DE as well, and also
Covariance-Matrix Adaptation Evolution Strategies
(CMA-ES) [28]. Unlike most attacks, which use the
l∞ or l2 norms, this one is based on the l0 norm.

In the EC methods seen so far, evolution is run
against a single image, and each individual is a
perturbation added to that image. [29], on the other
hand, used the transferability property mentioned ear-
lier to evolve a universal perturbation. An individual
is an image mask that can be applied as a perturbation
to any image.

Our extensive scrutiny of the literature and soft-
ware repositories revealed that many authors com-
pare their work to prior works that do not use the
same threat model: There might be a mismatch in
norms (e.g., l2 vs. l∞), white box vs. black box,
or other subtle differences. Moreover, having inves-
tigated numerous software repositories, we found
that running the code of many papers is far from
straightforward.

III. THREAT MODEL

In the black-box attack setting, queries to the
network are permitted but access to internal states is
prohibited (e.g., executing backpropagation). Hence,
our threat model, or scenario, is as follows:

• The attacker is unaware of the network’s design,
settings, or training data.

• The attacker has no access to intermediate val-
ues in the target model.

• The attacker can only use a black-box function
to query the target model.

Note that the above threat model determines the
comparisons we perform, which focus on attacks that
are:

1) black-box,
2) untargeted,
3) l∞-norm bounded.
We can consider a network model to be a function:

f : [0, 1]d → RC , (1)

where d is the number of input features and C is
the number of classes. The c-th value fc(x) ∈ R
specifies the predicted score of classifying input
image x as class c. The classifier assigns class
y = argmaxc=1,...,C fc(x) to the input x.

A targeted attack aims to create an image that will
be incorrectly classified into a given (incorrect) class.
An untargeted attack aims to create an image that
will be incorrectly classified into any class except
the correct one. An image x̂ is termed an adversarial
example, with an lp-norm bound of ε for x, if:

argmax
c=1,...,C

fc(x̂) 6= y,

s.t. ‖x̂− x‖p ≤ ε and x̂ ∈ [0, 1]d. (2)

To wit, the model should classify x̂ incorrectly,
while preserving similarity between x and x̂ under
an lp distance metric.

We focus on a black-box, score-based attack,
wherein the only information of the threat model is
the raw output (logits).

Our suggested black-box approach may theoreti-
cally be used in conjunction with classic machine-
learning models, with the same input-output rela-
tionship. Because DNNs have reached state-of-the-art
performance in a variety of image tasks, we focus on
them in this paper.

IV. QUERY ATTACK

QuEry Attack is an evolutionary algorithm (EA)
that explores a space of images, defined by a given
input image and a given input model, in search
of adversarial instances. It ultimately generates an
attacking image for the given input image. Unlike
white-box approaches, we make no assumptions
about the targeted model, its architecture, dataset, or
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training procedure. We assume that we have an image
x, which a black-box neural network, f , classifies by
outputting a probability distribution over the set of
classes, as stated in Section III. The actual label y is
computed as y = argmax f(x).

Our objective is to find a perturbed image, x̂, of
image x, such that, ‖x̂ − x‖∞ ≤ ε, which causes
the network to predict y′ = argmax f(x̂), such that
y′ 6= y. Finding x̂ may be cast as a constrained
optimization problem:

min
x̂∈[0,1]d

L(f(x̂), y), s.t. ‖x̂− x‖∞ ≤ ε, (3)

for a given loss function L.
We use loss L as the fitness function, defined in

our case as:

fitness(x̂) = fy(x̂)−max
c 6=y

fc(x̂) + λ‖x̂− x‖2, (4)

where x̂ is a perturbed image, fy is the predicted
score that x̂ belongs to class y, fc is the predicted
score that x̂ belongs to class c 6= y. In order
to guarantee that the adversarial perturbation is as
imperceptible as possible we penalize the l2 distor-
tion of the perturbation by including a regularization
component in the fitness function. We use l2 regular-
ization because we noticed that most of the evolved
adversarial examples were on the edges of the ε-ball,
and we wanted to give precedence to examples which
were closer to the original input. This penalization is
determined by the λ value, which is the regularization
strength. In our experiments we used λ = 1.

The ultimate goal is to minimize the fitness value:
Essentially, the lower the logit of the correct class and
the higher the maximum logit of the other classes—
the better the value.

Algorithm 1 provides the pseudo-code of QuEry
Attack. The original image x, along with a number of
hyperparameters, are given as input to the algorithm.
QuEry Attack generates an adversarial image x̂, with
the model classifying x̂ as y′ such that y′ 6= y and
‖x̂− x‖∞ ≤ ε.

The main goal of QuEry Attack is to produce a
successful attack, using as few queries to the model
as possible. The maximal number of queries equals
generation count (G) × population size (N).

a) Initialization: Initialization is crucial for op-
timization problems, e.g., in deep-learning training,
gradient descent reaches a local minimum that is
significantly determined by the initialization tech-
nique [30], [31]. QuEry Attack generates an initial
population of perturbed images by randomly select-
ing images from the edges of the sphere centered
on the original image x with radius = ε. This is

accomplished by adding vertical stripes of width 1
along the image, with the color of each stripe sam-
pled uniformly at random from {−ε, ε} per channel
(i.e., the pixels of each stripe can be either −ε
or ε); in [18], they discovered that convolutional
neural networks are especially vulnerable to such
perturbations.

b) Mutation: Considering the use of (square-
shaped) convolutional filters by convolutional neu-
ral networks, we used square-shaped perturbations.
Specifically, we employed [18]’s technique for de-
termining square size. Let p ∈ [0, 1] be the pro-
portion of elements to be perturbed for an im-
age of shape h × w. The nearest positive in-
teger to

√
p · h · w determines the length of the

square’s edge, with p being a hyperparameter. We
set it initially to p = 0.1, then halved it af-
ter {40, 200, 800, 4000, 8000, 16000, 24000, 32000}
queries, respectively (similar to [18]).

c) Crossover: We experimented both with
single-point and two-point crossover, eventually set-
tling on the latter as it performed better. The operator
works by flattening both (two-dimensional image)
parents, randomly picking two indices, then swap-
ping the pixels between the chosen pixels.

The EA then proceeds by evaluating the fitness
of each individual, selecting parents, and perform-
ing crossover and mutation to generate the next
generation. This latter is obtained by adding one
elite individual from the current generation, with
all other next-generation individuals derived through
crossover and mutation. The process is repeated
until a successful perturbation is found or until the
termination condition is met.

A major advantage of QuEry Attack is its
amenability to parallelization—due to being
evolutionary—in contrast to most other adversarial,
iterative (non-evolutionary) attacks in this field.

V. EXPERIMENTS AND RESULTS

To evaluate QuEry Attack we set out to collect
state-of-the-art algorithms for comparative purposes.
A somewhat disconcerting reality we then encoun-
tered involved our struggle to find good benchmarks
and software for comparison purposes. Sadly, we
found ourselves wasting many a day (which, alas,
turned into weeks) trying to run buggy software,
chasing down broken links, issuing GitHub issues,
and so forth. Perhaps this is due in part to the field
of adversarial attacks being young.

Our experimental results are summarized in Ta-
ble I. The code will be available at github.com/razla.

github.com/razla


LAPID ET AL. 5

Algorithm 1 QuEry Attack

Input:
x ← original image
y ← original label
ε ← maximum l∞ distance
p ← proportion of elements in x to be perturbed
N ← population size
G ← maximum number of generations
T ← tournament size

Output:
x̂ ← adversarial image

# Main loop
1: gen← 0
2: pop← INIT()
3: while not TERMINATION CONDITION(pop, gen) do
4: for x̂ ∈ pop do
5: compute fitness of x̂ using Equation 4
6: new pop← ∅
7: elite← ELITISM(pop)
8: add elite to new pop
9: for i← 1 to P−1

3
do

10: parent1 ← SELECTION(pop)
11: parent2 ← SELECTION(pop)
12: offspring1 , offspring2 ← CROSSOVER(pop)
13: mut1 ← SQUARE MUTATION(offspring1 )
14: mut2 ← SQUARE MUTATION(offspring2 )
15: add offspring1 ,mut1 ,mut2 to new pop

16: pop← new pop
17: gen← gen+ 1

18:
19: return best x̂ from pop # QuEry Attack’s final output

20: function INIT( )
21: pop← ∅
22: for i ← 1 to N do
23: x̂← STRIPES INIT(x)
24: add x̂ to pop
25: return pop

26: function ELITISM(pop)
27: return best x̂ from pop

28: function TERMINATION CONDITION(pop, gen)
29: if gen = G then
30: return true
31: for x̂ ∈ pop do
32: ŷ ← predicted label of x̂
33: if ŷ 6= y then
34: return true
35: return false

36: function SELECTION(pop)
37: tournament ← randomly and uniformly pick T indi-

viduals from pop
38: return best x̂ from tournament

39: function STRIPES INIT(x̂)
40: for i← 1 to c do # c is the image’s number of channels
41: stripe ← create a vertical stripe of width 1, randomly

positioned, with random values ∈ {−ε, ε}
42: x̂ ← x̂ + stripe
43: x̂ ← Πε(x̂) # Πε: clipping operator to ensure pixel

values are within ε-ball
44: return x̂

45: function SQUARE MUTATION(x̂)
46: c← number of channels
47: f ← number of features (h×w) # h: height, w: width
48: k ← d

√
p · fe

49: δ ← array of ones of size k × k × c.
50: row, col ← U({0, ..., w − h}) # U randomly and

uniformly selects from given set
51: for i ← 1 to c do
52: τ ← U({−2ε, 2ε})
53: δrow+1:row+h,col+1:col+h,i ← τ · δ
54: x̂← x̂+ δ
55: x̂← Πε(x̂)
56: return x̂

57: function CROSSOVER(parent1, parent2)
58: Flatten parent1 and parent2
59: Perform standard two-point crossover (as explained in

text), creating offspring1 , offspring2
60: offspring1 , offspring2 ← Πε(offspring1 ),Πε(offspring2 )
61: return offspring1 , offspring2

We evaluated QuEry Attack by executing exper-
iments against three state-of-the-art image classifi-
cation models—Inception-v3 [32], ResNet-50 [33],
and VGG-16-BN [34]—over three image datasets:
ImageNet, CIFAR-10, and MNIST. We employed
200 randomly picked and correctly classified images
from the test sets. For ImageNet, Inception-v3 has
an accuracy of 78.8%, ResNet-50 has an accuracy of
76.1%, and VGG-16-BN has an accuracy of 73.3%
(these are top-1 accuracy values; for ImageNet, top-
5 accuracy values are also sometimes given, which
in our case are: Inception-v3 – 94.4%, ResNet-50
– 92.8%, VGG-16-BN – 91.5%). CIFAR10 accu-
racy values are: Inception-v3 – 93.7%, ResNet-50
– 93.6%, and VGG-16-BN – 94.0%. For the MNIST

dataset we trained a convolutional neural network
(CNN), whose architecture is delineated in Table II,
which attained 98.9% accuracy.

All accuracy values are over test images. We used
the Adversarial Robustness Toolbox (ART) [35] to
evaluate QuEry Attack against other attacks. We
restricted all attacking algorithms to a maximum of
42K queries to the model (N = 70, G = 600) for
MNIST and CIFAR10, and 84K queries (N = 70,
G = 1200) for ImageNet. A query refers to a
prediction supplied by the model for a given image.
To make the most of the computational resources we
had available we prioritized actual, experimental runs
over hyperparameter runs, so hyperparameters were
chosen through limited trial and error. In the future
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TABLE I
EXPERIMENTAL RESULTS. ASR: ATTACK SUCCESS RATE. QUERIES: NUMBER OF MODEL QUERIES. EACH VALUE REPRESENTS

THE MEDIAN OF 200 RUNS (IMAGES). EPSILON: E ∈ {0...255} (8-BITS PIXEL VALUES). TOP RESULTS ARE MARKED IN BOLDFACE.

ImageNet

Model E QuEry Attack Square AdversarialPSO
ASR Queries ASR Queries ASR Queries

Inception-v3

24 100% 1 100% 5 98.5% 51
18 100% 2 100% 8 98.5% 69
12 100% 22 95.5% 32 97% 102
6 99.5% 276 99.0% 263 95% 285

ResNet-50

24 100% 1 99.5% 5 98.5% 51
18 100% 1 100% 5 98.5% 69
12 100% 13 100% 26 97% 102
6 100% 211 99.0% 248 95% 285

VGG-16-BN

24 100% 1 100% 5 98.5% 51
18 100% 1 100% 5 98.5% 69
12 100% 1 100% 5 97% 102
6 100% 77 100% 86 95% 285

CIFAR10

Model E QuEry Attack Square AdversarialPSO
ASR Queries ASR Queries ASR Queries

Inception-v3

24 100% 1 89.5% 5 97.5% 31
18 100% 2 92.5% 17 96.0% 41
12 97.5% 20 94.5% 77 95.0% 54
6 91.0% 428 95.5% 776 94.5% 223

ResNet-50

24 100% 2 92.0% 8 97.5% 31
18 100% 8 91.0% 23 96.0% 41
12 100% 96 87.0% 110 95.0% 54
6 99.0% 565 87.0% 449 94.5% 223

VGG-16-BN

24 100% 1 89.5% 5 97.5% 31
18 99.0% 2 87.0% 14 96.0% 41
12 98.0% 60 87.0% 86 95.0% 54
6 95.5% 741 88.5% 890 94.5% 223

MNIST

Model E QuEry Attack Square AdversarialPSO
ASR Queries ASR Queries ASR Queries

Conv Net 80 100% 5 86.0% 14 76% 2675
60 93.5% 72 93.0% 77 99% 292

we plan to perform a more thorough hyperparameter
sweep using Optuna [36]. The only hyperparameters
we set were the population size N = 70, tournament
size T = 25, and p = 0.1; these are used for all
experiments reported herein. The number of genera-
tions (G) was derived from the query budget.

AdversarialPSO [37] results were obtained by
running the code in the GitHub repository referred
to in their paper. Due to technical difficulties it
was run against the original models that this attack
was planned to run against, namely, Inception-v3
for ImageNet, and their own trained networks for
CIFAR-10 and MNIST. We duplicated these results
in the table for all models.

A. Attacking defenses

We show how QuEry Attack breaks a collection of
defense strategies designed to boost the robustness of
models against adversarial attacks.

a) Attacking non-differentiable transfor-
mations: Gradient masking is achieved via
non-differentiable input transformations, which
rely on manipulating gradients to defeat gradient-
based attackers [38], [39]. Further, randomized
transformations make it more difficult for the
attacker to be certain of success. It is possible to
foil such a defense by altering the defense module
that performs gradient masking, but this is not an
option within the black-box scenario. Herein, we
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TABLE II
CNN USED FOR MNIST.

Conv Block Hyperparameters

Layer Layer type
1 Convolution
2 BatchNorm2d
3 ReLU

Hyperparameter Value
Epochs 300

Batch size 64
Optimizer Adam

Learning rate 0.01
Weight decay 1e− 6

CNN Architecture
Layer Layer type No. channels Filter size Stride

1 Conv Block 32 3× 3 1
2 Max Pooling N/A 2× 2 2
3 Conv Block 64 3× 3 1
4 Max Pooling N/A 2× 2 2
5 Conv Block 128 3× 3 1
6 Max Pooling N/A 2× 2 2
7 Dropout (p = 0.5) N/A N/A N/A
8 Fully Connected 128 N/A N/A
9 Fully Connected 10 N/A N/A

Fig. 2. JPEG compression examples, sorted from left to right
by quality value, ranging from 10 to 100 (original image). Top
images: from ImageNet, middle: CIFAR10, bottom: MNIST.

investigated three non-differentiable transformations
against QuEry Attack: JPEG compression, bit-depth
reduction (also known as feature squeezing), and
spatial smoothing. We show that QuEry Attack
can defeat these input modifications, due to its
gradient-free nature.

JPEG compression [40] tries to generate patterns
in color values to minimize the amount of data that
has to be captured, resulting in a smaller file size.
Some color values are estimated to match those of
surrounding pixels in order to produce these patterns.
This compression means that slight imperfections in
the quality of the image will not be as noticeable. The
degree of compression may be tweaked, providing
a customizable trade-off between image quality and
storage space. An example of the different compres-
sion degrees is shown in Figure 2. The results in
Table III were evaluated with image quality q = 70.

Bit-depth reduction [41] can be done both by
reducing the color depth of each pixel in an image
and using spatial smoothing to smooth out individual
pixel discrepancies. By merging samples that corre-
spond to many different feature vectors in the orig-
inal space into a single sample, bit-depth reduction
decreases the search space accessible to an opponent.

Fig. 3. Bit-depth compression examples, sorted from left to right
by bit-depth values, ranging from 1 to 8 (original image). Top
images: from ImageNet, middle: CIFAR10, bottom: MNIST.

Fig. 4. Examples of spatial-smoothing compression, sorted from
left to right by window-size values, ranging from 10 to 1 (original
image). Top images: from ImageNet, middle: CIFAR10, bottom:
MNIST.

An example of different bit-depth values is shown in
Figure 3. The results in Table III were evaluated with
bit depth d = 3.

The term “spatial smoothing“ refers to the averag-
ing of data points with their neighbors [42]. This has
the effect of a low-pass filter, with high frequencies
of the signal being eliminated from the data while
low frequencies are enhanced. As a result, an image’s
crisp “edges” are softened, and spatial correlation
within the data becomes more prominent, as shown
in Figure 4. Data averaging is determined according
to a given window size. The results in Table III were
evaluated with window w = 5.

Our results are delineated in Table III. For this
experiment we used a total budget of 82K queries
to the model (N = 70, G = 1200)—which was
Inception-v3. For each given image, we first checked
that it was correctly classified after applying the de-
fense on the image, then we applied QuEry Attack on
it. The different input values for the transformations
were chosen such that applying them would not be
destructive.

For these experiments we used the same budget
of queries as in the previous experiments. For both
CIFAR-10 and ImageNet, QuEry Attack has a high
success rate against all non-differentiable transforma-
tions.

b) Attacking robust models: A model is consid-
ered to be robust when some of the input variables
are largely perturbed, but the model still makes
correct predictions. Recently, several techniques have
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TABLE III
QUERY ATTACK’S RESISTANCE TO NON-DIFFERENTIABLE TRANSFORMATION DEFENSES. JPEG COMPRESSION, BIT-DEPTH

REDUCTION, AND SPATIAL SMOOTHING WERE TESTED ON CIFAR10 AND IMAGENET.

Defense E CIFAR10 ImageNet
ASR Queries ASR Queries

JPEG Compression (q = 70)
18 100% 2 100% 2
12 98.0% 13 97.5% 14
6 93.5% 287 99.5% 311

Bit-Depth Reduction (d = 3)
18 100% 2 100% 2
12 99.5% 5 100% 27
6 96.0% 72 99.5% 145

Spatial Smoothing (w = 5)
18 100% 1 100% 1
12 100% 1 100% 2
6 99.0% 6 99.5% 144

TABLE IV
QUERY ATTACK’S PERFORMANCE ON STATE-OF-THE-ART ROBUST MODELS OVER CIFAR10 AND IMAGENET.

Model E ImageNet
ASR Queries

Wide ResNet-50-2 12 98.0% 98
6 93.5% 1187

CIFAR10

Wide ResNet-70-16 18 94.5% 156
12 85.0% 487

been proposed to render the models more robust
to adversarial attacks. One commonly used tech-
nique to improve model robustness is adversarial
training. Adversarial training integrates adversarial
inputs—generated with other trained models—into
the models’ training data. Adversarial training has
been proved to be one of the most successful defense
mechanisms for adversarial attacks [43], [44], [45],
[46].

We conducted an experiment to see how well
QuEry Attack performs on robust models. For CI-
FAR10 we used the robust model, WideResNet-70-
16 [47], wherein they used generative models trained
only on the original training set in order to enhance
adversarial robustness to lp norm-bounded perturba-
tions. For ImageNet we used WideResNet-50-2 [48],
wherein they used adversarially robust models for
transfer learning. Both of these top models were
taken from the RobustBench repository [49]. We
used the same 200 randomly selected images from
our previous experiments, a budget of 84K queries
(N = 70, G = 1200) for CIFAR10, and a budget of
126K queries (N = 70, G = 1800) for ImageNet. As
seen in Table IV, QuEry Attack succeeds at breaking
those strongly defended models.

B. Transferability
An adversarial example for one model can often

serve as an adversarial example for another model,

even if the two models were trained on different
datasets, using different techniques; this is known as
transferability [50]. White-box attacks may overfit on
the source model, as evidenced by the fact that black-
box success rates for an attack are almost always
lower than those of white-box attacks [7], [51],
[52], [53]. Herein, we checked transferability of our
proposed black-box attack on 200 correctly classified
ImageNet images by both the source model and the
target model, using different ε values. The results,
summarized in Table V, show a positive correlation
between the ε values and the transferability success
rate. We noted that attacks are better transferred
between ResNet-50 to VGG-16-BN models and sur-
mise this is due to the fact that ResNets models were
mostly inspired by the philosophy of VGG models,
wherein they use relatively small 3×3 convolutional
layers.

VI. DISCUSSION AND CONCLUDING REMARKS

We presented an evolutionary, score-based, black-
box attack, showing its superiority in terms of ASR
(attack success rate) and number-of-queries over pre-
viously published work. QuEry Attack is a strong
and fast attack that employs a gradient-free opti-
mization strategy. We tested QuEry Attack against
MNIST, CIFAR10, and ImageNet models, comparing
it to other state-of-the-art algorithms. We evaluated
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TABLE V
QUERY ATTACK’S TRANSFERABILITY ON IMAGENET MODELS. TSR: TRANSFERABILITY SUCCESS RATE

Source Model → Target Model E TSR

Inception-v3 → ResNet-50

24 67.0%
18 47.5%
12 33.5%
6 13.5%

ResNet-50 → VGG-16-BN

24 90.0%
18 81.5%
12 61.5%
6 28.5%

VGG-16-BN → Inception-v3

24 59.0%
18 46.5%
12 30.0%
6 12.5%

QuEry Attack’s performance against non-differential
transformations and robust models, and it proved to
succeed in both scenarios.

As noted, we discovered that the software scene
in adversarial attacks is a tad bit muddy. We encour-
age researchers to place executable code on public
repositories—code that can be used with ease. Fur-
thermore, we feel that the field lacks standard means
of measuring and comparing results. We encourage
the community to establish common baselines for
these purposes.

We came to realize the importance of a strong
initialization procedure. While this is true of many
optimization algorithms, it seems doubly so where
adversarial optimization is concerned. Table I shows
that successful attacks are sometimes found dur-
ing initialization—the vertical-stripes initialization in
particular proved highly potent—and even if not, the
number of queries (and generations) is significantly
curtailed.

Figures 5 and 6 show that adversarial examples
are barely distinguishable to the human eye. Clearly,
neural networks function quite differently than hu-
mans, capturing entirely different features. More
work is needed to create networks that are robust
in a human sense.

We think that evolutionary algorithms are well-
suited for this kind of optimization problems and
our findings imply that evolution is a potential re-
search avenue for developing gradient-free black-box
attacks. Furthermore, evolution needs to be evaluated
against a fully black-box model.
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Fig. 5. Adversarial examples generated by QuEry Attack on
MNIST, with ε = 0.3. An image at row , col = i, i shows the
original image for class i. An image at row , col = i, j, i 6= j
shows a targetted attack on class i, with the target being class j.
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