2208.08795v1 [cs.CV] 18 Aug 2022

arxXiv

An Adjustable Farthest Point Sampling Method for
Approximately-sorted Point Cloud Data

Jingtao Li*, Jian Zhou', Yan Xiong*, Xing Chen*, Chaitali Chakrabarti*
*School of Electrical Computer and Energy Engineering, Arizona State University, Tempe, AZ, 85287
tASML Holding
*{jingtaol, yxiong35, xchen382, chaitali} @asu.edu; f{zhoujian1991} @gmail.com

Abstract—Sampling is an essential part of raw point cloud
data processing such as in the popular PointNet++ scheme.
Farthest Point Sampling (FPS), which iteratively samples the
farthest point and performs distance updating, is one of the
most popular sampling schemes. Unfortunately it suffers from
low efficiency and can become the bottleneck of point cloud
applications. We propose adjustable FPS (AFPS), parameterized
by M, to aggressively reduce the complexity of FPS without
compromising on the sampling performance. Specifically, it
divides the original point cloud into)/ small point clouds and
samples M points simultaneously. It exploits the dimensional
locality of an approximately sorted point cloud data to minimize
its performance degradation. AFPS method can achieve 22 to 30x
speedup over original FPS. Furthermore, we propose the nearest-
point-distance-updating (NPDU) method to limit the number of
distance updates to a constant number. The combined NPDU
on AFPS method can achieve a 34-280x speedup on a point
cloud with 2K-32K points with algorithmic performance that is
comparabe to the original FPS. For instance, for the ShapeNet
part segmentation task, it achieves 0.8490 instance average mloU
(mean Intersection of Union), which is only 0.0035 drop compared
to the original FPS.

Index Terms—LiDAR Sensor, 3D Point Cloud, Farthest Point
Sampling, Multi-core Hardware

I. INTRODUCTION

With the wide application of LiDAR (Light Detection
and Ranging) technology in autonomous driving and self-
navigation robots, point cloud data has become a popular data
source. However, processing large volume of point cloud data
efficiently is a difficult problem especially when it is generated
at a fast rate as in LIDAR. Recently, PointNet++ [1]] is shown
to achieve excellent performance in processing raw point
cloud data with low latency compared to traditional processing
schemes that depend on converting point clouds into other
formats. PointNet++ is based on hierarchical set abstraction
layer that consists of sampling and grouping operations, where
sampling derives representative points and grouping derives
groups of neighboring points of each sampled point.

There are several popular sampling schemes. Of these,
Random Point Sampling (RPS) achieves low latency but has
poor performance for a sparse point cloud since it can miss
out sampling in sparse regions. Farthest Point Sampling (FPS),
which iteratively samples the farthest point and performs
distance updating, has been widely accepted [[1]-[3]]. However,
FPS suffers from poor hardware efficiency and is the latency
bottleneck of PointNet++ model when executed on a GPU.

To improve the sampling efficiency, alternative approaches
have been investigated. In [4], [5], learning-based methods
are used, [6] proposes an efficient and effective Grid-GCN
sampling method. The above approaches either requires re-
design of the network or an expensive pre-processing step,
leading to extra design effort and implementation overhead.

The computational complexity of FPS is O(NC), where
N is the number of points in the point cloud and C' is the
number of sampled points. One way of reducing the time
complexity is by dividing the original point cloud data into
multiple sectors and performing local FPS on each one of
them. The sampling performance of such a method can be
quite poor if the original (unsorted) point cloud data is divided
arbitrarily. However, we observe performance degradation can
be avoided if the point cloud data is sorted or approximately
sorted. In this paper we propose adjustable FPS (AFPS) which
divides the original point cloud into multiple point sectors
along the (sorted) dimension and performing local FPS on
each of them. AFPS exploits the locality of data in the sorted
dimension and is able to maintain algorithmic performance
comparable to FPS while achieving significant reduction in the
complexity. Moreover, we propose the nearest-point-distance-
updating (NPDU) heuristic to further improve the efficiency of
performing local FPS in each small sector. By only performing
distance updates for points close to the newly sampled one,
the number of distance update operations in each iteration is
reduced from O(N) to a constant number. With application of
NPDU, the AFPS achieves even better efficiency with minimal
performance loss in certain cases. Our evaluation of three
down-streaming tasks shows the massive speedup of proposed
NPDU-AFPS with minor degradation in task performance. In
summary, we make several contributions:

e We propose AFPS, a parametrizable sampling scheme
that partitions the point cloud into M point sectors and
performs small-scale FPS locally. We show if the point
cloud is approximately sorted, AFPS brings minimal
performance loss while achieving a huge reduction in
time cost. The method is amenable to parallel implemen-
tation and easy-to-use in current FPS-based Point cloud
processing schemes.

« To further reduce the complexity, we propose a neighbor-
ing point distance updating scheme to reduce the number
of distance updates per iteration to a constant, instead of

O(N) in the original FPS.

o Compared to original FPS, AFPS can achieve 22 to 30x
speedup. With NPDU, AFPS can achieve 34x speedup
with a slightly worse task performance of 0.8490 in
instance average mean Intersection of Union (mloU),
compared to the original FPS of 0.8525 on a part-
segmentation task.

The rest of the paper is organized as follows: section
introduces the background of point cloud processing and FPS.
Section |I1I| presents the motivation and detail of our proposed
AFPS method and NPDU heuristic. Section [[V] gives extensive
evaluation on performance and efficiency of proposed methods
and section [V] concludes this work.

II. BACKGROUND
A. Point Cloud Processing

PointNet++ [[1] processes raw point cloud data directly and
achieves good performance compared to traditional method
based on 3D voxels or 2D views. Unlike schemes such as [7]],
[8]] that use global max pooling of the point cloud and might
miss detailed local features, PointNet++ uses set abstraction
layer, which can extract local features and gradually extend
to larger global regions. Set abstraction layer adopts sampling
and grouping as the key operation for feature extraction where
FPS is adopted as the sampling operation. FPS has since then
been used widely in modern point cloud processing schemes
[1]-13l]. However, FPS dominates the PointNet++ inference.
On GPU, for example, an RTX-2080ti GPU with 4352 CUDA
cores, FPS takes about 53.7% of the total time cost.

B. Farthest Point Sampling

While FPS was introduced in traditional image processing
long back [9]], it has gained popularity with PointNet++ [1]].
FPS is described in Algorithm [I] FPS is a greedy algorithm
that samples the point that is the farthest away to visited points
in each iteration. The visualization of this process is shown
in Fig. |1} After the first point is sampled randomly, all other
points calculate their Euclidean distance to the sampled point,
and store the distance in an array. Then, the point that has the
largest distance is selected as the next point to sample (line
12), and the distance array is updated if the current distance
being calculated is smaller than the old distance (line 8, 9).

1st lteration Initial Point (Sampled Randomly)
[T T T T T T I T I T T T I I I I T I]

Points that need to update distances

Sample next: Sample
the point has the
largest distance.

Update distances: Each
point maintains its smallest
distance of to {visited points}

ond |teration Sample next (Farthest Point)

Fig. 1. Visualization of FPS process.

We observe two important properties of FPS:

(P1): Points that are far from the newly sampled point have
high priority to be sampled.

(P2): In each iteration, only one point is sampled, followed
by O(N) distance calculations.

Because of P1, FPS is able to capture prominent point
features and is robust in sampling point clouds regardless of
the sparsity. However, because of P2, FPS has poor hardware
efficiency and lacks scalability.

Algorithm 1: Farthest Point Sampling
Input: Point cloud P of shape (N, D) denoted by
number of point N and point cloud dimension
D (D=3), and number of points to be sampled
n_point.
// Initialize distance
1 Distance[N| = {1el0};
2 Sampled[n_point] = {—1};
// Sampling start
3 sample_idx = randint(0, N);
4 Sampled|0] = sample_idzx;
5 for i < I to n_point - 1 do

// Update distances

6 for j < 0 to N-1 do

7 dist = geo_dist(P[j, :], P[sample_idz,:], D);

8 if dist < Distance[j] then

9 Distance[j] = dist;

10 end

1 end
// Sample next

12 sample_idzr = argmax(Distance);

13 Sampled[i| = sample_idz;

14 end

To solve the high computation complexity of O(NC) of
FPS, the original work [9] as well as [[10] propose to use
a tree-based data structure to reduce its complexity. However,
implementing tree-based optimizations are difficult for a multi-
core system such as GPU, and implementing the original FPS
is still the more favorable option [11f]. This paper address
the poor performance of FPS on a multi-core processor by
proposing a heuristic version of FPS that is both light in
computation and easy for parallel implementation.

There are other alternate solutions to replace FPS and we
mention them here for completeness. They include DNN-based
sampling methods [4], [12] that use a sample network as a
differentiable sampling and can be optimized during training,
DNN-assisted sampling methods [5]], [13]] that compensate ran-
dom point sampling with a dedicated neural network module
to achieve good scalability. Grid-GCN [6]] adds a voxelization
pre-processing step to put raw point cloud data into a regular
grid before doing a scalable sampling. But this pre-processing
step is non-trivial (will be shown in later experiments) and
lead to poor latency in some cases.

III. METHOD
A. Dimensional Locality

Most point cloud data is not unstructured and unsorted as
previously assumed. In fact, point cloud data points stored in
consecutive memory locations are found to be related. This is
because of the nature in how they are collected. We refer to this
characteristic of the data as dimensional locality. For example,
point cloud data collected by 3D scanning LiDAR can be
regarded as streaming data — a fact that is exploited in [14] to
reduce the latency. Another interesting case is generating 3D
point cloud data from 2D-LiDAR by attaching a step motor
at the bottom of a 2D LiDAR sensor and moving the sensor
vertically [[15]], [[16].

We model two data collection methods in Fig. 2] The scan-
ning 3D LiDAR senses the environment by rotating around
the z-axis, according to Fig. |Z| (a). Thus the point cloud can
be seen as approximately sorted along the x-axis, where the
bin size of the approximate sorting algorithm is dependent on
the Field of View (FoV) of the sensor and proximity of the
object to the sensor. The 2D LiDAR is modeled in Fig. 2] (b).
It is equipped with a step motor and moves vertically so the
point cloud data is sorted along the z-axis.

/\ 2D lidar
z FoV
X = - /

lidar Step motor

(a) (b)

y

Fig. 2. LiDAR point cloud data collection process. (a) Scanning 3D LiDAR,
where point cloud data is approximately-sorted. (b) 2D LiDAR with stepping
motor, where point cloud data is exactly-sorted.

If dimensional locality is present in the point cloud, the
proposed AFPS has minimal loss in sampling quality, as will
be shown in later experiments. Dimensional locality can also
be used to find approximate “point neighbors” for our NPDU
heuristic. For cases where point cloud data does not have
locality, some form of binning can be used — exact sorting
is not required. However, in this paper, we focus on cases that
naturally have the dimensional locality and are free of sorting
overhead as shown in Fig. 2]

B. Adjustable FPS

A direct approach to accelerate original FPS is to divide the
distance calculation of all points into many cores and process
them in parallel. However, such an approach does not scale
well with the number of cores. Synchronization is needed to
derive global farthest point when all cores finish their distance
updating in each iteration and so as the number of cores
increases, synchronization gradually dominates the time cost,
Our approach is quite different. We divide the original point
cloud P into M sectors according to their storage location and
perform a local FPS on each sector. Our approach reduces the

total number of computations by a factor of M since to sample
C points using AFPS, only C/M iterations are needed.

However, implementing AFPS on unsorted point cloud
comes with loss in sampling quality. AFPS only samples
N/M points separately from each sector. Therefore, if an
unsorted point cloud happens to have all the “representative
points” in the same sector, the reduced number of points
(from N to N/M) can result in missing the “representative”
points. But if the point cloud data has dimensional locality,
the “representative points” are likely to be distributed more
uniformly in different sectors, resulting in fewer misses. Thus,
while this method could suffer from some small performance
degradation, it results in significant reduction in number of
computations. We set M as an adjustable parameter in AFPS.
In one extreme case, if M is equal to the number of sampled
points, the algorithm can finish in a single iteration and is
equivalent to RPS. On the other, if M is equal to one, AFPS
is the same as the original FPS. We can choose the value
of M to achieve great latency reduction with little impact on
task performance, as will be shown in the experimental results
section.

C. NPDU Heuristic

From the property P1 of the original FPS, we see that for
each newly sampled point, we need to exclude points that
have small distances from the points have been sampled and
should encourage points that have large distances since they
are better potential sampling candidates. We want to keep this
good property while limiting the number of distance updating
to further reduce the computational complexity.

Towards this goal, we propose the nearest points distance
updating (NPDU) method: for a point cloud that has dimen-
sional locality, we only update the distances of points that
are stored in the nearest neighboring locations of the newly
sampled point. As shown in Fig.] (a), the horizontal bar
represents a point cloud that is stored in the memory, with
NPDU, only k neighboring points’ distances will be updated
in each iteration. Notice that NPDU can be easily applied on
top of the AFPS as shown in Fig. [§| (b). It limits the number of
distance updates of each smaller-scale FPS and further reduces
the computational complexity. NPDU heuristic preserves the
nice property P1 of the original FPS in the following manner:
due to dimensional locality, it is sufficient to choose points
that are approximate neighbors, that is, close in one or more
dimensions. The assumption is that points that are close in
one dimension are more likely to be neighbors in 3D space.
Second, once distance updating of neighboring points is done,
sampling of neighboring points is less likely to happen in
future iterations. By applying NPDU, we can limit distance
updating in each iteration to a constant k£ per sector.

IV. EXPERIMENTAL RESULTS

A. Experiment Settings

We implement the proposed methods on top of a Pytorch
repository of PointNet++ [[17]], which includes classification
task on Modelnet40 [18]], Part Segmentation task on ShapeNet

Point cloud Sampled Point

T T T T T T T T T T T

Points that need to update distances

(a)

Sample Points simultaneously

BT T T e 1 1 | EEEeee]

Divided to two
(b)

Fig. 3. Illustration of NPDU heuristics. (a) Apply NPDU on original FPS
with k equal to 8, distance updates are done only for points that are located
near the sampled points. (b) Apply NPDU on AFPS wth M equal to 2 and k&
equal to 4, point-cloud is divided into sectors, and NPDU is applied to each
sector.

[19] and Semantic Segmentation task on S3DIS [20]. The
details of the three tasks are shown in Table. [l The input
size is represented by (B, N, D), where B is the batch size, N
is the number of points and D is the number of dimensions.

We use “task performance” as an accuracy metric of the
point cloud sampling method. For the evaluations presented
here, we apply sampling methods in a pre-trained PointNet++
model, and perform testing on down-streaming tasks. For
instance, we use class accuracy for object classification task
and sematic segmentation task, and instance average mloU
(mean Intersection of Union) for part segmentation task ﬂ
We take the average of 10 evaluations for each data point
to eliminate randomness.

TABLE I
DETAIL OF THREE POINTNET++ TASKS (BATCH SIZE = 24).

Task Input Size Evaluation Metric
Object Classification (24, 1024,3) Class Accuracy
Part Segmentation (24, 2048,3) Instance Average mloU
Semantic Segmentation (24, 4096,3) Class Accuracy

For evaluation, we use Transmuter [21]] (TM) as the testbed.
TM is a multi-core architecture that optimizes both pro-
grammability and efficiency. We use a configuration with
4 tiles, where each tile consists of one LCP (local control
processor) and 16 Arm cores. Cache memory design comprises
shared cache of 4KB L1 cache bank per core (shared across
cores) and 4KB L2 cache bank per tile (shared across tiles). We
use its Gem-5 implementation for cycle-accurate simulation to
get latency and cache statistics.

B. AFPS evaluation

We test the speedup of the proposed AFPS sampling method
on the part segmentation task. As is shown in Fig. @] compared
to original FPS, AFPS reduces time cost significantly with
increasing M. It saturates when M increases above 16 because

IFor detailed definition of each metric, refer to [Point-

net_Pointnet2_pytorch

please

GPE to LCP communication gradually dominates the time
cost. At M = 32, the time cost is 5.7 x 10~% second, a 29.8x
speedup compared to the original FPS which takes 0.017
second. Thus, setting M = 32 (or even lower) for this TM
configuration is sufficient for addressing the bottleneck issue
for this application. Note that choosing a large M provides
marginal improvement on FPS performance and does not
translate to the overall latency reduction as other components
become the bottleneck.

0.018 0 EPS
3 :
+— 0.012
(%]
o
O
o 0.006 ! RPS
£ ! 4.2x10°%
'_ 0 L T ——— ke e Le)

M: 02 16 32 48 64

Fig. 4. Time cost of the proposed AFPS on part segmentation task measured
on TM testbed. for different values of M. The input size is (24, 2048, 3) and
the sample size is N=512.

Next, we investigate the task performance of the proposed
AFPS on the part segmentation task, where we compare its
performance on unsorted, approximately sorted, and exactly
sorted point clouds. The results are shown in Table. [l The
baseline original FPS achieves an average mloU of 0.8522
on the part segmentation task. If the point cloud is unsorted,
applying AFPS suffers a large performance drop: When M
is 32, it only achieves mloU of 0.8447. However, if the
point cloud is approximately sorted along dimension z, the
performance drop is much smaller. For approximately sorted
data, we set the bin sizeﬂ at 128 points. For M is 2 or 8,
AFPS on approximately-sorted point cloud has almost no drop
in task performance compared to the baseline. We also have a
similar observation on a point cloud that is exactly sorted. For
2D LiDAR with stepping motor case where the point cloud is
exactly sorted along z axis, the performance even increases to
0.8527 mloU for M of 32, which is even higher than that of
the original FPS.

TABLE 11
TASK PERFORMANCE OF PROPOSED AFPS ON POINT CLOUDS WITH
DIFFERENT CHARACTERISTICS. (BASELINE: 0.8522)

Task Performance (mlIoU)

Characteristics M=2 M=8 M=32
unsorted 0.8503 0.8468 0.8447
approx.-sorted (x) 0.8526 0.8518 0.8488
exactly-sorted (x) 0.8519 0.8515 0.8489
exactly-sorted (z) 0.8493 0.8523 0.8527

C. NPDU on original FPS
Next, we test the proposed NPDU heuristic in terms of
hardware efficiency. The number of points [V of the input point

Zevery point in a bin with a larger index is greater than points in a bin with
a smaller index, but points in a bin are unsorted.

https://github.com/yanx27/Pointnet_Pointnet2_pytorch
https://github.com/yanx27/Pointnet_Pointnet2_pytorch

cloud is varied from 1K to 16K and & is set equal to 8. The TM
time cost and cache hit rate performance is shown in Fig. [3}
When the point cloud size is small at 1K/2K, applying NPDU
achieves a 2x speedup but when the input size increases to
8K, a peak speedup of around 11x can be achieved. The reason
of the large gain is that while the cache hit rate of FPS drops
significantly, the cache hit rate of NPDU remains the same.
However, when the point cloud size data increases to 16K,
the difference in the cache hit rates reduces and the time cost
difference between the two methods is not as spectacular.

Time mm TimeCost (Baseline) | TimeCost (NPDU) Cache
Cost (s) —a— L1CacheHit (Baseline) —e— L1CacheHit (NPDU) Hit (%)
0.617 100
0.6

80
0.4 60
40

0.2 1168
0.089 20

0.010.006 0.017 0.009 ‘).015 026

0 _— — 0

#Points: 1K 2K 4K 8K 16K

Fig. 5. Time cost of FPS (baseline) and NPDU for varying number of points of
input sizes while keeping sample size to be 512. NPDU has good performance
even for larger input data sizes.

0.86 _ Original mloU
&% o 084 k=8 | 16 k=32 k-.64
g © 0.82 -
> € 08 _
< 73 Ok
0.0088 0.0093 0.0098 0.0103

Time Cost (s)

Fig. 6. Task performance (mloU) and time cost of part segmentation task as
a function of k. The input size is 2048 and the sample size is 512.

We investigate the task performance and efficiency tradeoff
of NPDU on the part segmentation task for different values of
k (4 to 64). As shown in Fig. [f] choosing a small & brings the
lowest time cost but results in a noticeable degradation in task
performance, compared to original FPS that is represented by
the red line. We observe choosing & equal to 8 can achieve
optimal mloU performance with a lower time cost compared
to larger k. However, the optimal point differs from case to
case, especially when using NPDU with AFPS.

D. NPDU on AFPS

Next, we study a combination of applying NPDU on AFPS,
which further reduces the time cost. In Fig. [7] the time cost
of the baseline AFPS with different values of M are shown
as the background gray grids. We can see a clear difference
in time cost between different values of M. The time cost
of NPDU with AFPS is shown by the blue bars. We see that
NPDU with AFPS achieves 30% to 50% time cost reduction
compared to the AFPS baseline (lower than gray grids). We
also observe that for small M, using a small k& can impact
the average mloU task performance a lot. While other cases

do not present obvious trend. To achieve the optimal tradeoff
point, k£ needs to be tuned differently for different choices of
M through experimentation. For the part segmentation task,
the optimal k£ is 8 for M = 8 and the optimal %k is 16 for
M = 16.

M=8 mmmM=16 m=.M=32
M=8

0.002 0.849
“ 0.0016 4 . a 4 3
- A 0848 2
2 0.0012 A A
o M=16 Q
o . 0.847 Y
o 0.0008 A M=32 ®
E l] 0.846 O
e i W W
0 0.845
k=4 k=8 k=16

Fig. 7. Time cost on TM and average mloU for different values of M and k
of NPDU AFPS. The input size 2048 and the sample size is 512. The three
gray rails are AFPS w/o NPDU.

We also observe that AFPS in conjunction with NPDU is
suitable for multi-core hardware such as TM. For low k, when
the number of cores (of TM) increases, NPDU has lower core
utilization which results in speedup degradation. For instance,
when the number of cores equals to 16, the speedup over
a single core is only 13.72x (instead of 16x), as shown in
Table. This is because the workload of only £ distance
calculations per iteration is small for distribution among 16
cores. When combined with AFPS, the total workload be-
comes k x M, and the speedup is steady at around 2x when
number of cores doubles.

TABLE III
SPEEDUP OVER SINGLE CORE

Number of cores

Method 5 4] 16

NPDU FPS (k=8) 2.19x 4.27x 872x 13.72x
NPDU AFPS (M=16, k=4) 2.02x 4.28x 8.99x 17.17x
NPDU AFPS (M=32, k=16) 1.96x 4.01x 8.79x 16.78x

The proposed NPDU AFPS can easily scale up to a larger
problem. As shown in Table. [[V] NPDU AFPS with M set to
32 achieves much better scalability. Using all 16 cores, AFPS
can sample a 32K large point cloud in just 0.0022s and achieve
a massive speedup of 280x compared to the original FPS.

TABLE IV
TIME COST (S) FOR DIFFERENT POINT CLOUD INPUT SIZES

Point Cloud Input Sizes

Method 2% 4k 8k 16k 3k
FPS 00170 00892 03028 06172 12211
NPDU AFPS (M=32) 0.0005 00007 0.0011 00022 0.0044

E. Comparisons
We compare both the time cost and task performance of

other sampling methods with our proposed method. Compari-
son with Grid-GCN is done by implementing both voxelization

that partitions point cloud into 3D grids with 40 grids in
each dimension, and the random voxel sampling method used
in the original paper [[6] in C++ on the TM platform. We
also include RPS and original FPS in our evaluations. For
task performance, we include all three tasks as described in
Table I} Fig.] shows time cost in logarithmic scale in (a) and
performance degradation compared to original FPS in (b). For
time cost comparison, we can see that RPS achieves the lowest
time cost while FPS and Grid-GCN have similar highest time
cost. The gray bar that represents our proposed NPDU AFPS
achieves the second-lowest time cost. Grid-GCN has poor time
cost performance because of the time-consuming voxelization
step. It costs even more time than the original FPS for part
segementation and object classification because of smaller
number of points. For task performance, RPS has the highest
degradation, whereas proposed NPDU FPS and AFPS achieve
the smallest degradation. NPDU AFPS is slightly worse than
AFPS, but it is consistently better than Grid-GCN or RPS in
all three tasks.

NPDU-AFPS = RPS W Grid-GCN

MFPS NPDU-FPS M AFPS
2
3

-4
-5

Logarithmic
Time Cost (s

(a)
0.04
0.03
0.02 I
0.01
0 - ||

Part Object
Segmentation Classification

(b)

Fig. 8. Comparison of different sampling methods. (a) logarithm (base 10) of
time cost (base 10). (b) Performance degradation compared to original FPS.

Semantic
Segmentation

Performance
Degradation

V. CONCLUSION

In this work, we propose AFPS method that separates point
cloud into multiple small sectors along a sorted dimension,
and NPDU heuristic that limits the number of distance updates.
We exploit the approximately-sorted point cloud pattern in the
data collection step and use it to our advantage to compensate
for the task performance degradation. Experimental results
show the improvement on latency and scalability over the
original FPS method. NPDU in combination with AFPS can
achieve a 34x speedup on a 2K point cloud and 280x speedup
on a 32K point cloud, compared to the original FPS. For
task performance, the proposed NPDU AFPS has consistently
better performance than RPS or Grid-GCN. While this work
focused on demonstration of AFPS with NPDU on a multi-
core hardware, we plan to implement it in a GPU in the near
future.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

REFERENCES

C.R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical
feature learning on point sets in a metric space,” Advances in neural
information processing systems, vol. 30, 2017.

S. Shi, X. Wang, and H. Li, “Pointrcnn: 3d object proposal generation
and detection from point cloud,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2019, pp. 770—
779.

M.-H. Guo, J.-X. Cai, Z.-N. Liu, T.-J. Mu, R. R. Martin, and S.-M.
Hu, “Pct: Point cloud transformer,” Computational Visual Media, vol. 7,
no. 2, pp. 187-199, 2021.

I. Lang, A. Manor, and S. Avidan, “Samplenet: Differentiable point
cloud sampling,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 7578-7588.

Q. Hu, B. Yang, L. Xie, S. Rosa, Y. Guo, Z. Wang, N. Trigoni, and
A. Markham, “Randla-net: Efficient semantic segmentation of large-
scale point clouds,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 11 108-11117.

Q. Xu, X. Sun, C.-Y. Wu, P. Wang, and U. Neumann, “Grid-gcn for fast
and scalable point cloud learning,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp.
5661-5670.

C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on
point sets for 3d classification and segmentation,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
652-660.

S. Ravanbakhsh, J. Schneider, and B. Poczos, “Deep learning with sets
and point clouds,” arXiv preprint arXiv:1611.04500, 2016.

Y. Eldar, M. Lindenbaum, M. Porat, and Y. Y. Zeevi, “The farthest point
strategy for progressive image sampling,” IEEE Transactions on Image
Processing, vol. 6, no. 9, pp. 1305-1315, 1997.

R.-T. Liu, C. Chang, Z.-Q. Man, and Z. Wang, “The farthest neighbor
queries based on r-trees,” in 2015 International Conference on Machine
Learning and Cybernetics (ICMLC), vol. 1, 2015, pp. 235-238.

0. D. Team, “Openpcdet: An open-source toolbox for 3d object detection
from point clouds,” https://github.com/open-mmlab/OpenPCDet, 2020.

O. Dovrat, 1. Lang, and S. Avidan, “Learning to sample,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, 2019, pp. 2760-2769.

X. Yan, C. Zheng, Z. Li, S. Wang, and S. Cui, “Pointasnl: Robust
point clouds processing using nonlocal neural networks with adaptive
sampling,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 5589-5598.

W. Han, Z. Zhang, B. Caine, B. Yang, C. Sprunk, O. Alsharif, J. Ngiam,
V. Vasudevan, J. Shlens, and Z. Chen, “Streaming object detection for 3-
d point clouds,” in European Conference on Computer Vision. Springer,
2020, pp. 423-441.

Z. Fang, S. Zhao, S. Wen, and Y. Zhang, “A real-time 3d perception and
reconstruction system based on a 2d laser scanner,” Journal of Sensors,
vol. 2018, 2018.

H. F. Murcia, M. F. Monroy, and L. E. Mora, “3d scene reconstruction
based on a 2d moving lidar,” in International Conference on Applied
Informatics. Springer, 2018, pp. 295-308.
X. Yan, “Pointnet_pointnet2_pytorch,”

Pointnet_Pointnet2_pytorch, 2021.

Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d
shapenets: A deep representation for volumetric shapes,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2015, pp. 1912-1920.

A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li,
S. Savarese, M. Savva, S. Song, H. Su et al., “Shapenet: An information-
rich 3d model repository,” arXiv preprint arXiv:1512.03012, 2015.

I. Armeni, O. Sener, A. R. Zamir, H. Jiang, 1. Brilakis, M. Fischer,
and S. Savarese, “3d semantic parsing of large-scale indoor spaces,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 1534-1543.

S. Pal, S. Feng, D. Park, S. Kim, A. Amarnath, C. Yang, X. He,
J. Beaumont, K. May, Y. Xiong, K. Kaszyk, J. M. Morton, J. Sun,
M. F. P. O’Boyle, M. Cole, C. Chakrabarti, D. T. Blaauw, H. Kim, T. N.
Mudge, and R. G. Dreslinski, “Transmuter: Bridging the efficiency gap
using memory and dataflow reconfiguration,” in PACT ’20, Virtual Event,
GA, USA, October 3-7, 2020, V. Sarkar and H. Kim, Eds. ACM, 2020,
pp- 175-190.

https://github.com/yanx27/

https://github.com/open-mmlab/OpenPCDet
https://github.com/yanx27/Pointnet_Pointnet2_pytorch
https://github.com/yanx27/Pointnet_Pointnet2_pytorch

	I Introduction
	II Background
	II-A Point Cloud Processing
	II-B Farthest Point Sampling

	III Method
	III-A Dimensional Locality
	III-B Adjustable FPS
	III-C NPDU Heuristic

	IV Experimental Results
	IV-A Experiment Settings
	IV-B AFPS evaluation
	IV-C NPDU on original FPS
	IV-D NPDU on AFPS
	IV-E Comparisons

	V Conclusion
	References

