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Abstract. Heart disease morbidity and mortality rates are increasing, which has a negative impact on 

public health and the global economy. Early detection of heart disease reduces the incidence of heart 

mortality and morbidity. Recent research has utilized quantum computing methods to predict heart 

disease with more than 5 qubits and are computationally intensive. Despite the higher number of qubits, 

earlier work reports a lower accuracy in predicting heart disease, have not considered the outlier effects, 

and requires more computation time and memory for heart disease prediction. To overcome these 

limitations, we propose hybrid random forest quantum neural network (HQRF) using a few qubits (two to 

four) and considered the effects of outlier in the dataset. Two open-source datasets, Cleveland and 

Statlog, are used in this study to apply quantum networks. The proposed algorithm has been applied on 

two open-source datasets and utilized two different types of testing strategies such as 10-fold cross 

validation and 70-30 train/test ratio. We compared the performance of our proposed methodology with 

our earlier algorithm called hybrid quantum neural network (HQNN) proposed in the literature for heart 

disease prediction. HQNN and HQRF outperform in 10-fold cross validation and 70/30 train/test split ratio, 

respectively. The results show that HQNN requires a large training dataset while HQRF is more appropriate 

for both large and small training dataset. According to the experimental results, the proposed HQRF is not 

sensitive to the outlier data compared to HQNN. Compared to earlier works, the proposed HQRF achieved 

a maximum area under the curve (AUC) of 96.43% and 97.78% in predicting heart diseases using Cleveland 

and Statlog datasets, respectively with HQNN. The proposed HQRF is highly efficient in detecting heart 

disease at an early stage and will speed up clinical diagnosis. 
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1- Introduction 

A change in lifestyle during the 4th Industrial Revolution has led to unhealthy conditions such as physical 

inactivity, obesity, diabetes, and high cholesterol that affect heart health. Over the past few years, the 

number of deaths caused by heart disease has increased significantly. The number of deaths caused by 

heart disease in 2016 was 17.7 million, and it is expected that in 2060 this number will be more than 48 
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million [1]. Increasing cardiac mortality rates are a global health problem. According to the WHO statistics 

of 2016, 82% of cardiovascular patients live in low- or middle-income countries. Additionally, 

cardiovascular diseases account for 50 percent of deaths in developed countries [2]. Heart disease has a 

significant impact on patients' quality of life [3] as well as the country's economy [4–6]. In Europe, the 

government spends more than 200 billion euros on patients with heart disease [5]. Moreover, it increases 

the risk of some other disorders such as dementia [7], pneumonia [8], cognitive dysfunction [9], and 

Alzheimer's disease [10]. Detecting heart disease at an early stage reduces the mortality rate associated 

with it [11], reduces the risk of other diseases associated with heart disease, and reduces the amount of 

money spent by the government on health care. In recent decades, early detection of cardiovascular 

diseases has become a hot topic in research. Heart disease can be categorized in five groups i.e. blood 

vessel disease, irregular heartbeat, congenital heart defect, disease of heart muscle and heart valve 

disease [12]. Coronary artery disease lies in the blood vessel disease group which is the most common 

heart disease in the world. Coronary heart disease is the main reason for immortality in patients with 

heart disease [13]. 

Random forests (RF) and linear methods were used simultaneously by Mohan et al. for the prediction of 

cardiovascular diseases [14]. They have introduced an improved version of RF for predicting early-stage 

coronary disease. They considered the Cleveland dataset and achieved 88.4% accuracy and 87.7% AUC. A 

modified deep neural network (DNN) has been developed by Khan for the prediction of cardiovascular 

diseases by Internet of Things (IoT) devices [15] where 98.2% accuracy was obtained. Dulhare applied 

particle swarm optimization (PSO) and a naive Bayes (NB) method to heart disease prediction [15]. Their 

results show PSO outperforms Genetic Algorithm (GA) with 87.91% accuracy for the Cleveland dataset. 

Waris and Koteeswaran investigated the accuracy of RF, k-nearest neighbor (KNN), NB, XGBoost, CatBoost 

and LightGBM for early prediction of coronary heart disease using the Cleveland dataset. They found that 

RF is more accurate than other methods. Maraten and Goudarzi introduced a fuzzy rule-based method 

for the early prediction of heart disease by considering the Cleveland dataset. They found that the 

Cleveland dataset did not consider some important factors such as BMI which affect heart disease. 

Therefore, the accuracy of the prediction will be improved by modifying the considered attributes. Zhenya 

and Zhang introduced a new ensemble classifier for predicting heart disease. They found AUC of 89.5% 

and 92.68% for the Cleveland and Statlog dataset, respectively. 

Some classical machine learning algorithms such as various neural networks [16] and reinforcement 

learning models [17] are often limited by their computational power and computational time. A Quantum 

machine learning (QML) algorithm was introduced to deal with the problem in [18,19]. QML algorithms 

are based on quantum mechanical principles, such as superposition and entanglement. A superposition 

property allows an algorithm to evaluate the effects of different positions simultaneously on a system. 

Therefore, it may significantly reduce computation time. In essence, entanglement is the property which 

states particles even distant from each other are connected. As a result, QML algorithms can accelerate 

computations significantly and are suitable for complex or big data problems [18]. Combined with rapid 

advancements in communication and information technologies, QML has become a popular topic both 

practically and theoretically. In order to use real quantum devices, Perez-Salinas et al. [20] used a re-

uploading method to overcome memory limitations. The Helstrom centroid measure was used by Sergioli 

et al. [21] to improve the quantum binary classification accuracy. Hellstern [22] introduced a hybrid 

quantum-classical neural network (HQNN) algorithm for classification problems. He found that QNN in 



general suffers from overfitting but is able to speed up the training, compared to a classical neural net 

with the same number of parameters. 

Although QML algorithms are popular and play a significant role in predicting heart diseases, only a few 

approaches have used QML algorithms for cardiovascular disease prediction. In [19], Narain et al applied 

a quantum neural network to the prediction of heart disease. They considered eight features and found 

98% accuracy in their gathered dataset which contains 572 records. Kumar et al. [18] investigated 

quantum random forest (QRF), quantum k-nearest neighbor (QKNN), quantum decision tree (QDT), and 

quantum Gaussian Naïve Bayes (QGNB) for detecting heart failure. They found 89% accuracy for the 

Cleveland dataset with 14 features. Leema et al. [23] investigated quantum particle swarm optimization 

as a means of predicting early heart disease. Abdulsalam et al. applied quantum support vector machine 

on the Cleveland dataset where AUC of 90% was obtained. Kavitha and Kaulgud used QKNN for early-

stage heart disease detection [24]. They showed that data normalization and outliers removals improve 

the classification accuracy significantly. Alsubai et al. introduced a quantum deep learning method for 

early prediction of heart disease. They considered the Cleveland dataset and achieved a maximum AUC 

of 95% [25].  

The major contributions of the paper are given below:  

(a) Improved the prediction rate of heart diseases at an early stage by using quantum computing 

methods for either a small or large data set with limited computational complexity (in terms of 

computation time and memory).  

(b) Developed robust quantum computing methods that can handle outlier effects in the dataset and 

compare their performance with existing quantum computing methods, such as HQNN.  

(c) Proposed a hybrid quantum random forest (HQRF) for predicting the development of coronary 

heart disease in the early stages. According to the experimental results, the proposed HQRF 

algorithm predicts heart diseases with higher accuracy (higher AUC) than earlier methods.  

As an outline of the rest of the paper, as follows: Section 2 discusses the features and datasets that are 

considered, and Section 3 describes how the proposed method is implemented. Detailed numerical results 

are presented in Section 3. The conclusion of the present work is presented in Section 4. 

2- Materials and Methods 

2.1 Dataset description  

Features related to expressing demographic information, clinical history information, presenting 

symptoms, physical examination results, laboratory data and electrocardiogram (ECG) analysis results can 

be considered for predicting early coronary artery heart disease [26]. In this study, we examine the 

Cleveland and Statlog datasets from the UCI machine learning repository which are well-known datasets 

in the early prediction of coronary artery disease. These datasets have been used extensively to 

investigate the efficiency of machine learning methods in predicting heart disease early. Dulhore [27] used 

the Statlog dataset to investigate the effectiveness of the hybrid naïve-Bayes-PSO method in predicting 

heart disease. She achieved 88% accuracy by using 60 iterations in PSO. The Cleveland and Statlog datasets 

were used by Ayon et al. [28] to compare the accuracy of DNN, decision tree, KNN, logistic regression, NB, 

RF and SVM methods in predicting heart disease. Their results show that SVM with 97.36% and DNN with 

98.15% accuracy are the most accurate methods for the Cleveland and Statlog datasets respectively. 



According to Fitriyani et al. [29], Cleveland and Statlog datasets were analyzed using HDPM where 98.40% 

and 95.90% accuracy are obtained for the Cleveland and Statlog dataset respectively. In [30], Amin et al 

applied their feature selection method to Cleveland and Statlog data sets. They found that considering 

nine features by a vote method and using NB and logistic regression procedures is suitable for early heart 

disease prediction where 87.41% accuracy was obtained. Based on graph Lasso and Ledoit–Wolf 

shrinkage, Karadeniz et al. [31] introduced an ensemble method for detecting heart disease in the Statlog 

data. They achieved 85.5% precision for the Statlog dataset. According to Ahmad et al., considering 

Cleveland, Hungary, Switzerland, and Long Beach V dataset simultaneously and using RF result in 100% 

accuracy [32]. El-Shafiey [33] developed a hybrid PSO-random forest method for the prediction of heart 

disease and obtained AUC= 92% and 91% in 10-fold cross-validation for Cleveland and Statlog respectively. 

2.1.1 Cleveland dataset 

The Cleveland dataset consists of 303 data samples with 75 features [34]. There were two levels in the 

data that were considered for heart disease rate: individuals with a vessel diameter narrowing of less than 

50% or greater than 50%. In general, the dataset has five different classes namely, normal control which 

is represented with a target label of 0, and labels 1 to 4 represent the four different types of heart diseases. 

However, the number of samples in each class of heart disease is very small and hence we combined all 

four classes of heart disease into one class and developed the methodology for the binary classification 

problem (group zero: “normal control”; group one: “ coronary heart disease (CHD)”).This proposal has the 

advantage that the proposed methodology can identify any type of heart disease as soon as the data enter 

into the model. Several studies have identified only 14 features as sufficient for predicting heart disease 

since they reduce the computational cost of the study while the accuracy of the prediction does not 

change significantly. In this regard, we also take into consideration the 14 features that are listed in Table 

1. The data consists of 303 samples, 138 of which are healthy and 165 of which are CHD patients. A total 

of six samples have missing values in the data set. In order to impute missing values for each group, the 

median of each group was used as imputation method. 

Table 1. The considered features for early heart disease prediction. 

Feature 
no 

Name 
Feature 

No 
Name 

1 Age 8 Max heart rate achieved (Thalch) 

2 Sex 9 Exercise-induced angina (Exang) 

3 Type of Chest pain (Cp) 10 
ST depression induced by exercise relative 
to rest (Oldpeak) 

4 Resting blood pressure (trestbps) 11 ST segment slope (Slope) 

5 Cholesterol (Chol) 12 Major no of vessels (Ca) 

6 Fasting blood sugar (fbs) 13 Nuclear stress test results (Thal) 

7 Resting ECG test (Restecg) 14 Target (CHD/Normal) (Label) 

 

2.1.2 Statlog dataset 

The Statlog dataset includes 270 samples with 14 features. These features are similar to those of Cleveland 

[29]. There are no missing values in the dataset, and 150 samples belong to group 0 (healthy patients) and 



120 to group one (disease patients). Statistical properties and a comparison between Cleveland and 

Statlog datasets are presented in [33]. In addition, Simmons investigated the Statlog dataset's properties 

and concluded that it was a subset of the Cleveland dataset [13]. In contrast, researchers found different 

results using Cleveland and Statlog datasets, so further research should examine the relationship between 

statistical properties and the accuracy of machine learning methods. Some properties of the mentioned 

datasets are summarized in Table 2. 

Table 2: Properties of Cleveland and Statlog datasets. 

Datasets Number of samples Number of features Number of outliers 
data 

Cleveland 303 14 6 

Statlog 270 14 3 

  

2.2 Quantum random forest method 

The field of quantum computing has become increasingly popular in recent decades. The application of 

quantum machine learning to practical problems has been explored by many authors. Despite 

considerable efforts, quantum machine learning suffers from some drawbacks that sometimes lead to 

questionable results. As an example, quantum computing cannot learn chaotic or random processes [35]. 

A quantum machine learning algorithm also faces limitations because it must deal with noise, connectivity 

in training networks, and parameter tuning. Additionally, quantum computation requires larger problem 

sizes real quantum computers, which are still in the early stages and not always available to the public 

[22]. Due to these limitations, quantum algorithms cannot be used for real-world problems involving big 

data. Compared to classical and quantum algorithms, hybrid quantum-classical models have many 

advantages. Hybrid classical-quantum algorithms can improve computation speed and reduce 

computational costs significantly [36]. Here, we propose a hybrid classical-quantum algorithm for binary 

classification based on random forests and quantum neural networks. 



Algorithm 1. The hybrid quantum neural network for training 

Input: training data, numbers of qubits and layers, classical optimization algorithm with appropriate 
hyper-parameters 
Output: Trained quantum neural network 

1. Feed the data into a neural network where the dimension of the output layer is given by 
three times the number of qubits. 

2. Apply the rotation gates 𝑅𝑦(𝜙𝑖,1)𝑅𝑧(𝜙𝑖,2)𝑅𝑧(𝜙𝑖,3) on each qubit. Here, the three angles 

are determined by the output of the classical layer. i is the index of the qubit. 
3. Entangle the qubits by CNOT gates. 
4. Apply rotation and CNOT gates on each layer again but where the three angles are now 

variational parameters. 
5. Measure each qubit and feed the results into a second neural net with two neurons. 
6. Apply the steps 3-5 for each input sample and build an appropriate objective function 

(binary cross entropy) 
7. Apply a classical optimization algorithm for finding the unknown weights of the neural 

networks and the variational parameters. 
8. Evaluate the Area Under Curve (AUC) of the method by applying the model to training and 

test data 

 

2.2.1 Random Forest method 

Random forest methods are used to classify and predict data using ensemble methods. The RF method is 

generally based on decision trees [33]. Consider a binary classification problem with 𝑘 features. The 

algorithm partitions the features into 𝑚 subsets, and the decision tree method is applied to each subset. 

The parameter 𝑚 and the tree depth are hyper-parameters by the algorithm and must be specified. 

2.2.2 Quantum neural network 

Quantum neural networks (QNN) are modifications of artificial neural networks whose inputs and training 
procedures are based on quantum mechanics principles. Quantum networks are composed of qubits as 
input, and their dynamics follow the rules of superposition and quantum entanglement [20,22]. For N-
dimensional problems, the number of qubits needs to be at least 𝑙𝑜𝑔2𝑁 if amplitude encoding is 
considered [20]. This is a restriction to quantum computing. It is, fortunately, possible to solve a general 
optimization problem with an arbitrary dimension from just one qubit coupled with a classical 
optimization problem. As a result of this fact, Pérez-Salinas et al. [20] introduced data-reuploading as a 
solution to multidimensional classification problems that rely on just one quantum qubit, utilizing a 
variational quantum formulation. Hellstern [22] recently introduced a hybrid quantum neural network 
(HQNN) based on re-uploading data and reducing features via a classical neural network in front of the 
quantum network. The procedure is outlined in Algorithm 1. 
 



Algorithm 2. The hybrid quantum random forest method. 

Input: training data, numbers of qubits (nq) and layers, number of features (m). 
Output: Trained quantum neural network 

1. Partition the feature set into 𝐷 = 𝑐𝑒𝑖𝑙[𝑚 (3𝑛𝑞)⁄ ] where each partition has at most 3 ∗ 𝑛𝑞 
elements. 

2. For 𝑖 = 1𝐷 do the Steps  

3. Apply the rotation gates 𝑅𝑦(𝜙𝑖,1)𝑅𝑧(𝜙𝑖,2)𝑅𝑧(𝜙𝑖,3) on each qubit. Here, the three angles 

are determined by the output of the classical layer. i is the index of the qubit. 
4. Entangle the qubits by 𝐶𝑁𝑂𝑇 gates. 
5. Apply rotation and 𝐶𝑁𝑂𝑇 gates on each layer again but where the three angles are now 

variational parameters. 
6. Measure each qubit and feed the results into a second neural net with two neurons. 
7. Apply the steps 3-6 for each input sample and build an appropriate objective function 

(binary cross entropy) 
8. Apply a classical optimization algorithm for finding the unknown weights of the neural 

networks and the variational parameters. 
9. Aggregate the results over the 𝐷 “trees” and evaluate the AUC for training data. When the 

parameters are fixed apply the model to test data and calculate the AUC.  
 

2.2.3 Hybrid quantum neural random forest 
The RF algorithm is a popular machine-learning method used to solve regression and classification 
problems. Even though RF is widely used, it suffers from overfitting and computational complexity. 
Additionally, QNNs are inefficient in solving high-dimensional problems since they require a high amount 
of memory and computational power on noisy-intermediate computers. QNN is also limited by the 
number and capacity of pure quantum computers, which restricts its application. We therefore propose 
a hybrid quantum neural network and random forest (HQRF) in this subsection that overcomes the 
inefficiencies of QNN and RF. 
 



 

Figure 1. The diagram of HQRF. 

A random forest algorithm is applied to the problem in the first step. This step involves splitting up a high-

dimensional problem into independent low-dimensional problems (subproblems). The hybrid QNN is then 

applied to each subproblem. By using distributed computers to solve the subproblems in parallel, run 

times can be reduced significantly (Figure 1). As a final step, the same traditional random forest is used to 

determine the predicted class based on the score of each class. A description of the procedure can be 

found in Algorithm 2. In HQRF, the number of trees and tree depth are not considered as input parameters 

since tree depth does not matter and the number of trees is dependent on the number of qubits present. 

Using the QNN algorithm [22], we can consider at most 3* number_of_qubits variables in each 

subproblem. Due to this, the proposed algorithm requires fewer input parameters than RF and improves 

the overfitting problem. In this article, we partition the 14 features into four subsets, each with five, five, 



three, and one feature, where the first 13 elements are inputs and the last one is outputs. The algorithm 

was run five times independently where the features were partitioned randomly each time. The results 

are summarized in the next section. 

3 Numerical results and Discussion 

In this work, we have compared the performance of our proposed HQRF with our earlier algorithm 

(HQNN) for a different number of qubits and layers. Since, HQNN has been most widely used for heart 

disease prediction in the literature [22]. There are various parameters that can be used to assess the 

efficiency of machine learning algorithms. Accuracy (Acc), sensitivity (Sen), specificity (Spe), positive 

predictive value (PPV), F1-score, and area under the curve (AUC) are some of the best-known metrics used 

in evaluating algorithms [29,33,37]. In this case, we have N elements that need to be classified in a binary 

manner. A class is labeled with 0 or 1 based on the outcome, where 0 represents no disease (healthy 

control) and 1 represents coronary heart disease (CHD). Table 3 describes the notations used to define 

the evaluation measure mentioned above. The accuracy, sensitivity, specificity, positive predictive value, 

and F1 score formulas are defined in Table 4. 

Table 3. Notations and descriptions of true positive (TP), false positive (FP), false negative (FN), and true 
negative (TN) in the heart disease datasets. 

Notation Description 

TP The number of true positive identified members i.e., the number of true predicted 
elements in class 1. 

TN The number of true negative identified members i.e., the number of true predicted 
elements in class 0. 

FP The number of false positive identified members i.e., the number of predicted elements 
in class 1 that are actually in class 0. 

FN The number of false negative identified members i.e., the number of predicted elements 
in class 0 that are actually in class 1. 

 

Table 4. The considered efficiency measures for comparing the classification algorithms. 

Performance Measures Formula 

Accuracy (Acc) 𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                           (1) 

Sensitivity (Sens) 𝑆𝑒𝑛𝑠 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                      (2) 

Specificity (Spec) 𝑆𝑝𝑒𝑐 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                                                      (3) 

Positive Predictive Value (PPV) 𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                       (4) 

F1-score (F1) 𝐹1 = 2
𝑃𝑃𝑉′𝑆𝑒𝑛𝑠

𝑃𝑃𝑉+𝑆𝑒𝑛𝑠
                                                                                  (5) 

 



Based on the receiver operating characteristic (ROC) curve, the AUC parameter is also calculated. With 𝑥 

being 𝑆𝑒𝑛𝑠 and 𝑦 being 1 − 𝑆𝑝𝑒𝑐, we construct the ROC curve by using different thresholds for points 

(𝑥, 𝑦). The AUC is often the most desired efficiency score among the different efficiency scores since it is 

both consistent and discriminating [38]. Smoot et al. [39] measured AUC to compare the accuracy of 

different breast cancer diagnostic methods. AUC was used by Huang et al. [40] to compare the efficiency 

of landslide susceptibility prediction using machine learning methods; Cai et al. [41] ranked the 

relationship between biomarkers and event time in cardiovascular disease by AUC; Rosendael et al. [42] 

studied the risk of major cardiovascular events by coronary stenosis and plaque composition based on the 

value of AUC. As a result, we are mainly interested in comparing quantum computing algorithms proposed 

in earlier works based on the AUC performance measure.  In order to compare the efficiency of the 

proposed algorithm with the existing algorithm, two distinct procedures are used, namely 10-fold cross-

validation and 70/30 train-test ratio. 

Table 5. A comparison of AUC between different methods for predicting heart disease in the Cleveland 
dataset using 10-fold cross-validation 

Number of Qubits=2 Number of Qubits=3 Number of Qubits=4 

L=1 L=2 L=3 L=4 L=1 L=2 L=3 L=4 L=1 L=2 L=3 L=4 

HQNN 

91.73 91.78 92.61 88.47 93.05 92.59 96.43 93.72 92.03 94.2 94.5 95.59 

HQRF 

88 90.12 89.34 88.1 90.15 91.14 90.27 89.34 90.37 88.91 90.36 88.74 

 

Table 6. The area under the curve (AUC) for HQNN and HQRF with 70-30 (train/test) split ratio in Cleveland 
using different numbers of qubits and layers. 

Number of Qubits=2 Number of Qubits=3 Number of Qubits=4 

L=1 L=2 L=3 L=4 L=1 L=2 L=3 L=4 L=1 L=2 L=3 L=4 

HQNN 

93.30/ 93.45/ 94.13/ 93.01/ 94.26/ 93.98/ 94.92/ 96.98/ 94.89/ 94.77/ 94.50/ 
89.06 

95.92/ 

93.24 88.09 90.76 92.22 93.34 91.88 90.13 92.75 93.78 90.18 90.67 

HQRF 

86.69/ 93.61/ 85.79/ 85.02/ 85.44/ 90.64/ 92.31/ 92.23/ 89.59/ 91.93/ 94.71/ 95.85/ 

94.31 81.58 89.06 85.64 85.47 93.92 92.12 91.44 94.36 93.29 92.85 92.8 

 

3.1 Cleveland dataset 

The HQNN method [22] is used to predict heart disease. The results of all numerical tests are validated 

and compared between 10 independent runs just to ensure that they are robust. Table 5 represents the 

results of 10-fold cross-validation with a different number of qubits and layers (L). An HQNN with 3 layers 

and 3 qubits achieved a maximum AUC of 96.43% compared to other combinations and our proposed 

HQRF. Based on a 70/30 split ratio of train to test, we evaluated the AUCs of the train and test sets and 

results are reported in Table 6. The AUC of the test set is used to compare the efficiency of methods since 

the effectiveness of methods is typically determined by their ability to predict correct labels for new 



elements. It is evident from Table 6 that HQRF with only 2 qubits and 1 layer is superior to other methods, 

with a 94.36% AUC for the test set. We see that in some parts of Table 6, the train set is less accurate than 

the test set. In conclusion, HQRF can detect and ignore outlier data during the execution of the 

classification method. A comparison between the accuracy of the test set in the 10-fold cross (Table 5) 

validation and the 70/30 split ratio of train to test method (Table 6) indicates HQRF outperforms in the 

70/30 split ratio of train to test method while HQNN outperforms in 10-fold cross-validation. This 

concludes HQNN requires larger training dataset while HQRF is more appropriate for small dataset. 

In Figure 2, we show the ROC plot for the most favorable parameter combination (three qubits and three 

layers) of all ten folds used in cross-validation for the Cleveland dataset using HQNN. In some recent 

works, researchers used feature selection methods for improving the heart disease prediction accuracy 

of their suggested methods. Fitriyani et al. [29] introduced HDPM method where information gain (IG) 

feature selection method was used for improving the accuracy of the classification. El-Shafiey et al. [33] 

used a combination of RF and genetic algorithm for feature selection in the Cleveland and Statlog dataset. 

The two-tier CE [43] and CE-Ensemble [44] methods used a PSO-based and relief feature selection 

algorithm respectively. Although the feature selection methods lead to improvement of classification 

accuracy, it requires large computational efforts which is time consuming. Quantum computing 

algorithms gain high speed computation which overcomes the mentioned inefficiency. Figure 3 compares 

the accuracy of HQNN, HQRF, with the recent mentioned classification methods. Area Under Curve 

achieved by our two methods (HQNN and HQRF) is higher than other classification methods except for 

HDPM which scored 100%. HDPM employs a train/test ratio of 90/10 and includes feature selection, 

outlier detection, and data balancing/augmentation. Next, the classification task is performed using the 

XGBoost method. In a recent study, Bentéjac et al. compared the XGBoost method with the RF method 

on the Cleveland dataset [45]. Results show that the gradient boosting method is more accurate than 

others with 83.78% accuracy. Therefore, HDPM benefits from preprocessing data that is not 

computationally efficient. Based on our findings, we conclude that the mentioned quantum methods 

outperform others that do not require any preprocessing. 

 

 

 

 

 

 

 

 

 

Figure 2. The ROC plots for each of the 10 folds using HQNN with 3 layers and 3 qubits and 10-fold cross-
validation. Further the AUC value for each fold and the mean value is shown. 



 

Figure 3. Comparison of AUC obtained in this paper with previous results in the literature. 

3.2 Statlog dataset 

Figure 4 shows the area under curve (AUC) of HQNN and HQRF on Statlog dataset with 10-fold cross-

validation. The maximum mean AUC of 97.78% is achieved with HQNN (3 qubits) and 91.64% with HQRF 

(2 qubits). The results for 70-30 train/test split ratio with different numbers of qubits and layers are given 

in Table 8. As a result of the 70/30 train/test split ratio procedure, the HQRF method with three qubits 

and one layer performs the best. It is appropriate to use HQRF for a 70/30 train/test split ratio, and HQNN 

for a 10-fold cross-validation. Thus, HQNN is a better method for large datasets, whereas HQRF is better 

for small datasets, where both methods should be able to handle a small train set size.  

 
Figure 4. The area under the curve (AUC) for HQNN and HQRF with 10-fold cross-validation for the 

Statlog dataset using different numbers of qubits and layers. 
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Table 7: The area under the curve (AUC) for HQNN and HQRF with 70-30 train/test split ratio in Statlog 
dataset using different numbers of qubits and layers. 

Number of Qubits=2 Number of Qubits=3 Number of Qubits=4 

L=1 L=2 L=3 L=4 L=1 L=2 L=3 L=4 L=1 L=2 L=3 L=4 

HQNN 

97.97/ 99.05/ 98.43/ 98.83/ 98.83/ 99.00/ 98.40/ 98.15/ 99.22/ 98.76/ 99.21/ 99.17/ 

88.33 84.19 79.93 76.72 80.61 76.29 82.83 79.16 84.87 88.14 82.96 82.65 

HQRF 

86.97/ 85.15/ 88.21/ 86.99/ 87.60/ 91.56/ 92.75/ 95.52/ 89.25/ 95.47/ 95.07/ 96.55/ 

76.35 80.21 74.62 76.29 90.52 81.72 81.97 86.23 89.93 85.67 88.76 86.17 
 

Table 8 is similar to Table 5, which shows that the train set's accuracy is less than the test set's accuracy 
at the optimal point. The results confirm that HQRF can detect outliers by considering data and ignore 
them when constructing classification by considering procedures. In Figure 5 we show the ROC plot for 
the most favorable parameter combination (three qubits and two layers) of all ten folds used in cross-
validation for the Statlog dataset. The mean of AUC of 98% confirms the accuracy and robustness of HQNN 
for early prediction coronary artery disease. 

 

Figure 5. The ROC plot for the classification Statlog dataset where 2 layers and 3 qubits with 10-fold 
cross-validation are considered. 

A comparison of the HQNN and HQRF accuracy with the recently introduced quantum computing based 

heart disease classification methods is presented in Table 8. Due to the reason discussed earlier, HQNN 

outperforms other methods except HDPM. A comparison of Table 7 with Figure 4 reveals that HQRF is not 



efficient for the Statlog dataset. To investigate the theoretical reasons behind this, we examine some 

properties of datasets as shown in Table 2. Two major differences are evident in this study: the number 

of samples and the number of outliers. HQNN performed better in 10-fold cross-validation cases, which 

indicates that a large enough training dataset is required. Furthermore, the Statlog dataset has half the 

number of outliers as the Cleveland dataset, resulting in more accurate results in HQRF. Therefore, we 

conclude that HQNN is highly sensitive to outliers while HQRF is robust under noise. Simmons also 

examined the Statlog dataset and concluded that it was a subset of the Cleveland dataset [13]. Therefore, 

HQRF outperforms in large datasets even if outliers are present. Due to its ability to partition data 

dimensions into smaller sets, HQRF can also be used to solve high-dimensional problems. The number of 

qubits in quantum computing is a critical item, so HQRF uses smaller numbers of qubits during each step 

of the simulation, which makes data with small dimensions better suited to quantum simulation. 

Table 8. A comparison of AUC between different methods for predicting heart disease in Statlog dataset. 

Statlog  
Dataset 

Two-tier CE 
[43] 

CS-Ensemble 
[44] 

GAPSO-RF 
[33] 

HDPM 
[29] 

HQNN 
[22] 

HQRF 

(Proposed) 

AUC (in %) 93.42 87.99 92 100 97.78 91.64 

 

4 Conclusion 

Classification using RF is a widely used technique in practical applications. Tree depth and number of trees 

are the two parameters used by RF to determine its output. The RF technique fails if the tree depth and 

number of trees are selected incorrectly, resulting in overfitting. Additionally, QNN is time-consuming and 

should only be used for low-dimensional problems because of its high computational cost. To overcome 

these difficulties, this paper proposes HQRF and uses it to predict heart diseases at an early stage. The 

Cleveland and Statlog heart disease datasets are used to evaluate HQNN and HQRF. HQNN and HQRF 

compared with some recently introduced classification methods. As a result, the studied methods use 

different feature selection methods which require high computational efforts and are time consuming 

while HQNN and HQRF are high speed algorithms since the nature of quantum computing. The numerical 

results show that HQRF is more appropriate for small datasets while HQNN is better suited for larger 

datasets. Further, HQNN is highly sensitive to outliers, whereas HQRF has a very low sensitivity to outliers. 

In future work, we suggest combining an outlier detection method with HQNN to improve its efficiency.  
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