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ABSTRACT
Grounded Situation Recognition (GSR) aims to generate structured
semantic summaries of images for “human-like” event understand-
ing. Specifically, GSR task not only detects the salient activity verb
(e.g. buying), but also predicts all corresponding semantic roles (e.g.
agent and goods). Inspired by object detection and image captioning
tasks, existing methods typically employ a two-stage framework: 1)
detect the activity verb, and then 2) predict semantic roles based on
the detected verb. Obviously, this illogical framework constitutes a
huge obstacle to semantic understanding. First, pre-detecting verbs
solely without semantic roles inevitably fail to distinguish many
similar daily activities (e.g., offering and giving, buying and selling).
Second, predicting semantic roles in a closed auto-regressive man-
ner can hardly exploit the semantic relations among the verb and
roles. To this end, in this paper we propose a novel two-stage frame-
work that focuses on utilizing such bidirectional relations within
verbs and roles. In the first stage, instead of pre-detecting the verb,
we postpone the detection step and assume a pseudo label, where an
intermediate representation for each corresponding semantic role
is learned from images. In the second stage, we exploit transformer
layers to unearth the potential semantic relations within both verbs
and semantic roles. With the help of a set of support images, an al-
ternate learning scheme is designed to simultaneously optimize the
results: update the verb using nouns corresponding to the image,
and update nouns using verbs from support images. Extensive ex-
perimental results on challenging SWiG benchmarks show that our
renovated framework outperforms other state-of-the-art methods
under various metrics1.
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• Computing methodologies→ Vision and Language.
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1Code is available at https://github.com/zhiqic/GSRFormer
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VERB: SPRINKLING

AGENT cook

ITEM salt

SOURCE hand, manus, mitt, paw

DESTINATION frying pan, frypan, skillet

PLACE kitchen

Figure 1: Given an input image, Grounded Situation Recognition
(GSR) not only detects the salient verb category (e.g., sprinkling), but
also predicts all corresponding semantic roles for sprinkling, such
as agent: man, item: spice, and source: cup, etc.
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1 INTRODUCTION
Understanding complex events in a way that obeys human cognitive
habits is one of the core tasks of computer vision andmultimedia. As
shown in Figure 1, “human-like” event understanding goes beyond
traditional object- and action-centric detection and recognition
tasks [11, 13, 24, 30, 31, 39]. Different from image captioning [9,
32, 43, 78] and scene graph generation [20, 67, 68, 71], which use
natural language or object-relational graphs to describe scenes,
human-friendly event understanding must be event-centric, that is,
not only to identify what activities happened, but also to recognize
how objects participate in activities, i.e., answer questions like “who
is doing what with some tools at someplace.”

To meet the demands of “human-like” event understanding, in-
spired by previous research on semantic role labeling [21, 45, 53, 59]
in text, Grounded Situation Recognition (GSR) [47, 73] is proposed
for event understanding in the multimedia domain. As illustrated
in Figure 1, GSR not only detects the salient activity (verb) in the
image (e.g., sprinkling), but also recognizes all semantic roles (e.g.,
agent is man, source is cup). To further determine semantic roles
in images, GSR also provides visually grounded information (i.e.,
bounding boxes) for noun entities. From the perspective of the
theory of frame semantics [26], GSR task can be considered as a
multimedia extension to earlier lexical databases such as FrameNet
[3] and PropBank [33]. By describing activities with verbs and
grounded semantic roles, GSR can provide a visually grounded
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VERB: BUYING

AGENT woman

GOODS flower

PAYMENT credit card

SELLER man

PLACE shop

VERB: GIVING

AGENT man

ITEM flower

RECIPIENT woman

PLACE outdoor

VERB: FIXING

AGENT person

OBJECT water faucet

OBJECTPART handle

TOOL screwdriver

PLACE kitchen

VERB: REPAIRING

AGENT man

ITEM laptop

PROBLEM ∅

TOOL screwdriver

PLACE garage

Figure 2: Some examples illustrate the importance of semantic relations in GSR tasks. Semantic relations are bidirectionally constrained, i.e.,
(left) noun entities can distinguish similar activities (verbs), and (right) similar verbs can control the occurrence of semantic roles (nouns).

verb-frame, which benefits many downstream scene understand-
ing tasks, such as information retrieval [15, 16, 44, 56], question
answering [1, 7, 35, 67], recommended system [10, 12, 14, 55], and
multimedia understanding [29, 51, 77, 78].

To sum up, the essence of GSR task is using semantic relations to
generate verb-frames for event understanding. However, inspired
by object detection and image captioning, almost all current GSR
methods [19, 36, 42, 47, 54] adopt a two-stage framework. As shown
in Figure 3 (a-b), two-stage framework 1) first blindly pre-detects
verbs to reduce the search space, and then 2) predicts the semantic
roles in an auto-regressive (RNN) or parallel (Transformer) man-
ner depending on the detected verbs. Such two-stage frameworks
obviously neglect the semantic relations among verbs and seman-
tic roles. On the one hand, pre-detecting the verb without noun
entities inevitably fails to distinguish some similar daily activities.
For example, as shown in Figure 2 (left), it is hard to distinguish
similar verbs (e.g., buying and giving) without the help of any noun
entities. On the other hand, based on pre-identified verbs, apply-
ing auto-regression in a closed space would accumulate errors and
thus miss the semantic relationships. As shown in Figure 2, once
verb buying is wrongly predicted as giving in the first stage, the
semantic roles payment: credit and place: shop could be neglected
in the second stage.

Similar to our starting point, previous work CoFormer [18] and
SituFormer [65] also argue that the existing two-stage framework
is problematic. As shown in Figure 3 (c), a three-stage framework
is thus proposed to further optimize verbs with predicted nouns.
Following traditional two-stage works, the first two stages per-
form the verb and noun entities detection, respectively. Then, in
the third stage, the predicted noun entities are used to refine the
verb. However, such disentangled framework still has the following
flaws. First, the bidirectional semantic relations between verbs and
noun entities cannot be fully exploited. They either use the noun
roles to refine the verbs (SituFormer), or only use verbs to refine
the noun roles (CoFormer) while ignoring each other. Second, the
framework is redundant. It has two parallel transformer verb and
noun detectors, but does not learn semantic relations between them
during the encoding phase. Third, the refinement process is not
scalable. It can be treated as a one-time noun-to-verb optimization,
which apparently cannot be expanded.

To address these issues, we focus on how to exploit such bidirec-
tional semantic relations within verbs and noun entities, which can
constrain each other. Rather than explicitly pre-detecting the verbs
at the first stage, we postpone decision verbs, thus simply assuming
a pseudo-category and learning an intermediate representation for
each noun entity. We then devise an iterative framework to capture
the semantic relations among verbs and nouns and alternately learn

their features. As such, we streamline the redundant structures and
make them flexibly handle semantic roles in parallel.

Technically, our proposed method, called GSRFormer, is built
based on the transformer structure [62] due to its parallel processing
capability. As shown in Figure 4, GSRFormer adopts a two-stage ar-
chitecture that consists of an encoder and a decoder. In the encoder
part, we first utilize stacked Multi-Head Attention (MHA) layers
to learn the feature of the verb. By assuming a pseudo category of
the verb, we further learn the intermediate representations of the
corresponding noun entities from the image. In the decoder part,
MHA layers are employed to mine the implicit relations among both
verbs and nouns. By leveraging a set of support images, the model
alternately optimizes the verbs and nouns in a loop: update the
features of verbs using nouns, and vice versa. Our framework suc-
cessfully learns the semantically rich representations for both verbs
and nouns and thus performs accurate recognition. To conclude,
our contributions are mainly three folds:

• We reveal the problems of existing frameworks and point
out that learning the bidirectional semantic relations is the
core for accurate role recognition.

• We propose a two-stage framework with transformer struc-
tures to iteratively refine activity verbs and noun entities. It
flexibly mines the potentially open semantic relations within
verbs and nouns and alternately updates their features.

• Extensive experiments on challenging SWiG benchmarks
fully demonstrate that our proposed framework outperforms
other state-of-the-art methods under various metrics.

2 RELATEDWORK
History of SR to GSR tasks. Although deep learning achieves
satisfactory performance in basic vision tasks such as action recog-
nition [6, 30, 39, 61, 64, 70, 79] and object detection [5, 11, 24, 40,
48, 58], they still cannot fully understand events in natural scenes.
To address this problem, image captioning [1, 23, 49, 52, 69, 75] and
scene graph generation [8, 20, 37, 66, 68, 71, 76] attempt to reason
and describe scene content through natural language or relational
graphs of objects. However, these efforts have still failed to un-
derstand events consistent with human cognition, i.e., identifying
what happened and who was involved in what roles.

In this context, Yatskar et al. [73] first proposed Situation Recog-
nition (SR) task and annotated imSitu dataset as the benchmark.
However, the original SR task cannot point to where the involved
noun entities are located in the image. To further address the vi-
sual grounding of the entities, Pratt et al. [47] redefines Grounded
Situation Recognition (GSR) task and proposes SWiG dataset by
providing bounding box annotations on imSitu dataset. GSR task
can be seen as a further extension of SR task.
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CNN
Verb
Mode

RNN RNN RNN RNN

selling

1st verb

man flower woman shop
2nd noun

Transformer 
Encoder 

Transformer
Decoder 

selling

[man, flower
woman, shop]

Fine-Grained
Verb Mode

buying

1st verb-c 2nd noun-c 3rd verb-f

a) Two-stage RNN

Transformer 
Encoder 

Transformer
Decoder 

CNN

[man, outdoor,...
shop, flower]

[selling,…]

1st verb2nd noun

b) Two-stage transformer

CNN

c) Three-stage transformer

Figure 3: GSR task learning framework. (a) Two-stage RNN pre-detects verbs in the first stage and predicts noun entities in an auto-regressive
manner in the second stage. (b) Two-stage transformer first uses the encoder to detect verbs and then uses the decoder to predict noun entities.
(c) Three-stage transformer [18, 65] adopts a coarse-to-fine refinement process. It still obeys the two-stage idea, where the first stage detects
a set of similar verbs and the second stage recognizes noun entities. The third stage utilizes noun entities to refine verbs.

Challenges of GSR tasks. The challenges of GSR task are to han-
dle the semantic relations in the scene. Yatskar et al. [73] proposed a
conditional random field (CRF) model in the initial phase. However,
follow-upwork [72] pointed out that CRFmethod cannot effectively
utilize semantic relations. Since then, a lot of works have started to
investigate how to model the relations among semantic roles. The
previous technical routes mainly include Recurrent Neural Network
(RNN) [42, 47, 63, 63], Graph Neural Network (GNN) [36, 54] and
Relational Reasoning [4, 22], etc.
Transformers in GSR task. After great success in NLP tasks,
transformer structure [62] was introduced to solve various com-
puter vision problems, including image generation [17, 46], image
recognition [25, 41, 60], object detection [5, 80], object segmentation
[74], image captioning [23] and scene graph generation [20], etc. To
further exploit the strength of the transformer in GSR task, Cho et
al. [19] proposed the first transformer framework (GSRTR) by re-
placing the object queries in transformer object detector (DETR
[80]) with semantic role queries. Wei et al. [65] recently proposed
SituFormer, which uses two transformer-based verb and noun de-
tectors to improve the performance. In addition, Cho et al. [18]
proposed CoFormer that tends to leverage the semantic relations
between the verb and noun roles to refine the prediction.
Problem of framework. To elaborate, as shown in Figure 3, al-
most all existing GSR methods [4, 19, 22, 42, 47, 54, 63] adopt a
two-stage framework based on RNN or transformer. In RNN struc-
ture, Pratt et al. [47] proposes a Joint Situation Localizer (JSL) model,
which consists of a verb classifier in the first stage and an RNN-
based object detector in the second stage. In transformer structure,
GSRTR [19] uses a transformer encoder to detect verbs in the first
stage and a transformer decoder to predict semantic roles in the
second stage. These two-stage frameworks evidently cannot ex-
ploit the semantic relations. First, recklessly detecting verbs in the
first stage will inevitably misidentify similar activities. Second, the
closed auto-regressive strategy of the second stage not only fails to
correct misrecognized verbs, but leads to more mispredicted seman-
tic roles. Although recent works (SituFormer [65] and CoFormer
[18]) are also aware of framework issues and adopt a three-stage
framework to refine prediction results from coarse to fine, they
are still unable to optimize the results with bidirectional semantic
relationships (i.e., from both verbs and nouns).

3 PROPOSED METHOD
3.1 Problem Formulation
Definition of GSR task. Given an image 𝐼 , GSR aims to generate
a structured verb frame F𝑣 = {𝑣,R𝑣}2. As shown in Figure 1, GSR
not only recognizes the salient verb 𝑣 ∈ V , but also detects all
corresponding semantic roles R𝑣 = {(𝑟, 𝑛𝑟 , b𝑟 ) | for 𝑟 ∈ ℛ𝑣},
where ℛ𝑣 = {𝑟1, ..., 𝑟𝑚} is the set of role types for verb 𝑣 . For
instance, the verb-frame in Figure 1 can be instantiated as F𝑣 =(
𝑆𝑝𝑟𝑖𝑛𝑘𝑙𝑖𝑛𝑔,

{
(𝐴𝑔𝑒𝑛𝑡, 𝑀𝑎𝑛, □), (𝐼𝑡𝑒𝑚, 𝑆𝑝𝑖𝑐𝑒, □), (𝑆𝑜𝑢𝑟𝑐𝑒, 𝐶𝑢𝑝, □),

(𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛, 𝑃𝑎𝑛, □), (𝑃𝑙𝑎𝑐𝑒, 𝐾𝑖𝑡𝑐ℎ𝑒𝑛, ∅𝑏 )
})
. Semantic roles R𝑣 is

a collection of triples, where each role contains the role type 𝑟 , the
noun entity 𝑛𝑟 ∈ N and the corresponding bounding box b𝑟 ∈ R4.
Note that not all semantic roles have corresponding nouns and
bounding boxes, i.e., 𝑛𝑟 or b𝑟 can be equal to {∅}.
Problems of existing frameworks. Inspired by object detection
and image captioning, as shown in Figure 3, the existing GSR meth-
ods [19, 36, 42, 47, 54] widely adopt a two-stage framework, i.e., 1)
identifying salient verbs 𝑣 in the first stage, and 2) detecting the
corresponding semantic roles R𝑣 in the second stage:

P(F𝑣 |𝐼 ) = P(𝑣 |𝐼 )︸ ︷︷ ︸
verb

P(R𝑣 |𝑣, 𝐼 )︸      ︷︷      ︸
noun

. (1)

There are multiple highly similar activities in GSR tasks, such as
buying and giving, as shown in Figure 2. This two-stage framework
is inherently unable to utilize the noun entities in the first stage to
distinguish similar verbs, let alone misidentify semantic roles due
to the verb prediction errors accumulated in the second stage.

To address these issues, Wei et al. [65] recently proposed a three-
stage framework (SituFormer) as,

P(F𝑣 |𝐼 ) = P(V𝑐 |𝐼 )︸    ︷︷    ︸
verb-c

P({R𝑣}𝑐 |V𝑐 , 𝐼 )︸              ︷︷              ︸
noun-c

P(𝑣,R𝑣 |V𝑐 , {R𝑣}𝑐 , 𝐼 )︸                      ︷︷                      ︸
verb-f

, (2)

where the main idea is to refine verb predictions in a coarse-to-
fine manner. As shown in Figure 3 (c), it uses the first two stages
to identify a set of candidate verbs V𝑐 and corresponding noun
entities {R𝑣}𝑐 . Then the third stage uses a ranking loss to refine
the verb 𝑣 with a set of support images through similarity retrieval.

2These predefined verb frames are filtered from PropBank [33] or FrameNet [3, 27].
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Figure 4: GSRFormer follows the classic encoding and decoding framework. Transformer encoder utilizes twomulti-head attentionmodules
to learn the intermediate features for verbs and semantic roles. Transformer decoder consists of four parts. 1) A set of similar activities (verbs)
are retrieved using features from the encoder. 2) A multi-head attention layer is used to compute the messages p, thus capturing semantic
relations among verbs and nouns. 3-4) The features of nouns and verbs are updated alternately with the computed messages. Note that we
stack multiple decoder layers for iterative optimization (refinement).

Similarly, Cho et al. [18] also proposed a three-stage framework
(CoFormer). From the framework perspective, CoFormer is simi-
lar to SituFormer. 1) The first stage coarsely predicts noun roles
(Glance). 2) The second stage uses the predicted noun roles to help
predict the verb (Gaze-Step1). 3) The third stage refines the candi-
date noun roles in Gaze-Step1 using the predicted verb (Gaze-Step2).

Obviously, these revised frameworks are still unreasonable due to
the following issues. 1) It uses only noun entities to refine the verb,
but totally ignores semantic constraints in the opposite direction
(i.e., from verbs to noun entities). 2) Although it has two redundant
transformer-based noun and verb detectors, it does not learn the
semantic relations between them at the encoding stage. 3) The
coarse-to-fine refinement process can only be done once, and it is
impossible to iteratively optimize both verbs and nouns.

3.2 Overview of GSRFormer
To solve these problems, we reconstruct a framework (GSRFormer)
with transformers to fully exploit the semantic relations of GSR
tasks. We reformulate GSR task as,

P(F𝑣 |𝐼 ) = P(𝑣,H𝑣 |𝐼 )︸       ︷︷       ︸
step-1: encoding

P(𝑣,R𝑣 |H𝑣, 𝐼 )︸            ︷︷            ︸
step-2: decoding

, (3)

where 𝑣 is the assumed pseudo verb category, and H𝑣 is the inter-
mediate feature for the verb and associated roles. The godsend is
that it yields the essence of the GSR task, which is to extract com-
prehensive semantic relations and then iteratively refine the results.
As shown in Figure 4, GSRFormer consists of a transformer-based
encoder and decoder, respectively. In the first step (Sec. 3.3), instead
of pre-detecting verbs, the transformer encoder learns intermediate
representationsH𝑣 of verbs and corresponding semantic roles from
images, respectively. In the second step (Sec. 3.4), we first use the
features obtained in the encoder to retrieve the representations of
Top-𝐾 similar verbs as the support verb set {H𝑣}𝑠 . To mine the
various semantic relations, the neural message passing mechanism
[28] is then used to flexibly associate relevant relations to each verb
or role, thus effectively updating their representations. Finally, we

take full advantage of the transformer structure to performmultiple
iterations to refine verbs 𝑣 and semantic roles R𝑣 .

3.3 Transformer-based Encoder
The transformer encoder is devised to learn intermediate representa-
tions of verbs and semantic roles from images using two multi-head
attention modules, respectively.
Representation of verbs. As shown in Figure 4, given an image 𝐼 ,
CNN backbone first extracts the feature mapXimg ∈ R𝑐×ℎ×𝑤 . Since
the input to the transformer encoder is a sequence of tokens, a 1× 1
convolutional layer and a flatten operator are used to convert the
Ximg into a sequence of “visual” tokens [f1, ..., fℎ𝑤], where each
token f𝑖 ∈ R𝑑 is compressed as a 𝑑-dim visual feature. Inspired by
the classification token used in ViT [25], we initialize a learnable
verb token f𝑣 ∈ R𝑑 to stands for verb 𝑣 . Then all visual and verb
token sequences are fed into the first encoding module as,

[e𝑣, e1, ..., eℎ𝑤] =

MHAverb
img ( [f𝑣, f1, ..., fℎ𝑤] ⊕ E𝑝𝑜𝑠 ),

(4)

where ⊕ is element-wise addition and E𝑝𝑜𝑠 is positional embedding
used to distinguish relative positions in the sequence. MHAverb

img is a
set of stacked multi-head self-attention blocks. As shown in Figure
4, each block consists of a multi-head self-attention layer and a feed-
forward network, and the layer normalization [2] (Add & Norm)
is used before both of them3. The role of MHAverb

img module is to use
multi-head self-attention to learn the intermediate representation
of the verb from image features. The output can be divided into
optimized 1) image features Eimg = [e1, ..., eℎ𝑤] ∈ R𝑑×ℎ𝑤 and 2)
verb feature e𝑣 ∈ R𝑑 . Here verb feature e𝑣 is fed to a classifier to
determine a pseudo verb category 𝑣 . After obtaining 𝑣 , we can
fetch the corresponding semantic roles ℛ𝑣 and initialize them to a
sequence [r1, ..., r𝑚], where each initialized role r𝑖 ∈ R𝑑 is a 𝑑-dim
visual feature.

3E𝑝𝑜𝑠 has the same dimension as sequences of visual and verb tokens. For more
implementation details, see original papers [19, 62].
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Representation of semantic roles. We further learn interme-
diate representations of corresponding semantic roles plus verb
H𝑣 = [h(0)

𝑣 , h(0)
𝑣→𝑛1 , ..., h

(0)
𝑣→𝑛𝑚 ] from images. Specifically, Eimg and e𝑣

are used as the input to the second encoding module as,[
h(0)𝑣 , h(0)𝑣→𝑛1 , ..., h

(0)
𝑣→𝑛𝑚

]
=

MHAroles
img (E𝑝𝑜𝑠 ⊕ E𝑖𝑚𝑔︸         ︷︷         ︸

key/value

, [e𝑣, r1, ..., r𝑚]︸           ︷︷           ︸
query

), (5)

where we concatenate verb feature e𝑣 and corresponding semantic
role embeddings [r1, ..., r𝑚] as query. As shown in Figure 4, similar
to the previous encoding module, MHAroles

img is also a set of stacked
multi-head attention blocks. The output representation H𝑣 is then
utilized in the decoder part. After GSRFormer encoder, we assume
that the feature H𝑣 has captured the semantics from the image.

3.4 Transformer-based Decoder
The transformer decoder aims to utilize the semantic relations
among a set of similar verbs and corresponding semantic roles to
simultaneously refine their features. While transformer itself is a
powerful model that can mine the implicit relations of all pairwise
interactions, it still struggles to leverage additional domain-specific
knowledge. In our framework, we expect to exploit a set of support
verbs (excluding their corresponding nouns) to profit the noun
refinement, while only using the nouns in one single image to
refine its verb. This a priori knowledge can hardly be included
when directly applying the transformer since it considers ALL
pairwise relations. To this end, we borrow ideas from the neural
message passing [28], where the “messages” are first computed by
transformers, and then each verb or noun entity is updated using
“messages” arising from the relations to other appropriate entities.
As shown on the right of Figure 4, the transformer decoder is mainly
composed of the following four parts.
Support verbs set. There are many very similar verbs in GSR tasks,
as shown in Figure 2. Inspired by previous work [65], we use the
featuresH𝑣 = [h𝑣, h𝑣→𝑛1 , ..., h𝑣→𝑛𝑚 ] learned from the encoder to
retrieve the features of top-𝐾 similar verbs {H𝑣}𝑠 = {H𝑣1 , ...,H𝑣𝐾 }
as support verbs set,

{H𝑣}𝑠 = arg
H𝑣𝑗

top-𝐾
𝑣𝑗 ∈DT

S(H𝑣,H𝑣𝑗 ), (6)

where DT is the set of all training images. The similarity score
S(·, ·) is the average cosine similarity of semantic roles as,

S(H𝑣,H𝑣𝑗 ) =
1
𝑚

𝑚∑︁
𝑖=1

sim(h(0)𝑣→𝑛𝑖
, h(0)𝑣𝑗→𝑛𝑖

), (7)

where sim(·) is cosine similarity. h𝑣→𝑛𝑖 and h𝑣𝑗→𝑛𝑖 are the noun
entity features for the verbs 𝑣 and 𝑣 𝑗 , respectively.
Semantic relation message computation. Given retrieved sup-
port set {H𝑣}𝑠 , we aim to update the feature representation of each
element inH𝑣 by leveraging the relations between or within H𝑣

and {H𝑣}𝑠 . Following the standard message passing paradigm, we
compute one message p for each involved verb and noun in one

image by a multi-head attention (MHA) layer as,[
p(𝑡 )𝑣 , p(𝑡 )𝑣→𝑛1 , . . . , p

(𝑡 )
𝑣→𝑛𝑚

]
=

MHAroles
verb

( [
h(𝑡 )𝑣 , r1 ⊕ h(𝑡 )𝑣→𝑛1 , . . . , r𝑚 ⊕ h(𝑡 )𝑣→𝑛𝑚

] )
,

(8)

where ⊕ is element-wise addition, and 𝑡 implies the 𝑡-th iteration.
h(𝑡 )𝑣 and h(𝑡 )𝑣→𝑛 (·) are the learned verb and noun entity features,
respectively. Here we replace the positional encoding in the original
MHA layer with the semantic role embedding r( ·) . ThusMHAroles

verb is
actually a multi-head self-attention model. We perform the relation
message computation for the entire support set. The obtained verb
message p(𝑡 )𝑣 and the noun entity message p(𝑡 )𝑣→𝑛 (·) contain all the
semantic information within a single image. Below we will consider
semantic relations in multiple verbs (i.e., support verbs set).
Refine noun entity with verbs. We utilize the semantic relations
(messages) from the verbs of support set to refine the noun entities.
To update the representation of a noun entity h(𝑡 )𝑣→𝑛𝑖

, a single update
message p(𝑡 )𝑣𝑎𝑙𝑙

is computed by aggregating the messages of support
set verbs {p(𝑡 )𝑣1 , ..., p

(𝑡 )
𝑣𝐾 } as Eq. 9. The aggregation function Agg(·)

can be any permutation-invariant function (e.g., element-wise sum
and max), and here we employ a gated update function [38]. After
the messages are fused, a transformer sublayer (FFN and LN) are
used to updated representation with residual connection:

p(𝑡 )𝑣𝑎𝑙𝑙
= Agg({p(𝑡 )𝑣𝑘

| for 1 ≤ 𝑘 ≤ 𝐾}), (9)

q(𝑡 )𝑣→𝑛𝑖
= LN

(
h(𝑡 )𝑣→𝑛𝑖

+ p(𝑡 )𝑣𝑎𝑙𝑙

)
, (10)

h(𝑡+1)𝑣→𝑛𝑖
= LN

(
q(𝑡 )𝑣→𝑛𝑖

+ FFN
(
q(𝑡 )𝑣→𝑛𝑖

))
, (11)

where LN(·) is layer normalization [2] and FFN(·) is a feed-forward
neural network (commonly with one large intermediate layer).
Refine verb with noun entities. Similarly, when updating the
verb feature, we utilize the messages of nouns only from the single
associated image, as shown in Eq. 12-14,

p(𝑡 )𝑛𝑎𝑙𝑙
= Agg({p(𝑡 )𝑣→𝑛𝑖

| for 1 ≤ 𝑖 ≤ 𝑚}), (12)

q(𝑡 )𝑣 = LN
(
h(𝑡 )𝑣 + p(𝑡 )𝑛𝑎𝑙𝑙

)
, (13)

h(𝑡+1)𝑣 = LN
(
q(𝑡 )𝑣 + FFN

(
q(𝑡 )𝑣

))
. (14)

Note that the above two refining processes can be accomplished
alternately. Unlike the previous work [65], which only optimized
from rough noun entities to verbs, our framework takes full ad-
vantage of the flexibility of the transformer structure to efficiently
perform multiple refinement iterations.

After completing the refinement of noun entities and verb fea-
tures for 𝑇 iterations, we employ a lightweight MLP over the verb
and noun entity features, respectively, to achieve the classification
of verbs and the regression of noun entities with bounding boxes,

𝑣 = MLP(h𝑇𝑣 ), (15)

{𝑛𝑖 , b𝑖 } = MLP(h𝑇𝑣→𝑛𝑖
) . (16)

We discuss the training process in detail in the following section.
In the ablation studies, we discuss the effect of the number of loops
and refinement order on the results in detail.
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Table 1: Performance (%) comparisons of GSRFormer (ours) and baseline methods on SWiG dataset development set.

Models Top-1-Verb Top-5-Verb Ground-Truth-Verb
verb value val-all grnd grnd-all verb value val-all grnd grnd-all value val-all grnd grnd-all

Methods for Situation Recognition
CRF [73] 32.25 24.56 14.28 – – 58.64 42.68 22.75 – – 65.90 29.50 – –
CRF+DataAug [72] 34.20 25.39 15.61 – – 62.21 46.72 25.66 – – 70.80 34.82 – –
VGG+RNN [42] 36.11 27.74 16.60 – – 63.11 47.09 26.48 – – 70.48 35.56 – –
FC-Graph [36] 36.93 27.52 19.15 – – 61.80 45.23 29.98 – – 68.89 41.07 – –
CAQ [22] 37.96 30.15 18.58 – – 64.99 50.30 29.17 – – 73.62 38.71 – –
Kernel-Graph [54] 43.21 35.18 19.46 – – 68.5 56.32 30.56 – – 73.14 41.68 – –

Methods for Grounded Situation Recognition
ISL [47] 38.83 30.47 18.23 22.47 7.64 65.74 50.29 28.59 36.90 11.66 72.77 37.49 52.92 15.00
JSL [47] 39.60 31.18 18.85 25.03 10.16 67.71 52.06 29.73 41.25 15.07 73.53 38.32 57.50 19.29
GSRTR [19] 41.06 32.52 19.63 26.04 10.44 69.46 53.69 30.66 42.61 15.98 74.27 39.24 58.33 20.19
SituFormer [65] 44.32 35.35 22.10 29.17 13.33 71.01 55.85 33.38 45.78 19.77 76.08 42.15 61.82 24.65
CoFormer [18] 44.41 35.87 22.47 29.37 12.94 72.98 57.58 34.09 46.70 19.06 76.17 42.11 61.15 23.09
GSRFormer (ours) 46.64 37.69 23.58 31.61 14.42 73.43 58.75 35.82 48.42 21.67 78.76 44.71 63.95 25.85

3.5 Training Objectives
We use the same data augmentation and batch training strategy
as previous work [19]. The training details for the encoder and
decoder are as follows.
Training of encoder. We use the cross-entropy loss function to
train the encoder to obtain the pseudo-verb category as,

Lverb-e = LCE (𝑣𝑔𝑡 , 𝑣), (17)

where the ground-truth verb category is denoted as 𝑣𝑔𝑡 and the pre-
dicted pseudo-verb category is 𝑣 . Note that the first multi-head at-
tention module of the encoder performs gradient back-propagation
only when training the encoder, and does not participate in param-
eter updates when training the decoder.
Training of decoder. When training the decoder, we need to op-
timize the categories of verbs and nouns as well as the bounding
boxes of nouns. Following previous work [19, 65], the losses of the
decoder are calculated as,

Lverb-d = LCE (𝑣𝑔𝑡 , 𝑣), (18)

L𝑛𝑜𝑢𝑛𝑠 =

𝑚∑︁
𝑖=1

[
LCE (𝑛

𝑔𝑡

𝑖
, 𝑛𝑖 ) + L𝑏𝑜𝑥 (b

𝑔𝑡

𝑖
, b𝑖 )

]
, (19)

where we use the cross-entropy loss function to train the decoder
to get the true verb categories 𝑣 . For the noun loss function, 𝑛𝑔𝑡

𝑖

and b𝑔𝑡
𝑖

denote the ground-truth noun category and bounding box,
while 𝑛𝑖 and b𝑖 are the predicted noun category and bounding box.
LCE is the cross-entropy loss for noun classification. L𝑏𝑜𝑥 consists
of the generalize IoU loss [50] and the 𝐿1 regression loss.
Process of inference. Similar to previous methods [19, 42, 47, 65],
GSRFormer also requires inference in the encoder and decoder sep-
arately. Compared to the three-stage SituFormer [65], our inference
process is more straight. At inference time, GSRFormer first pre-
dicts a pseudo-verb category and then constructs the corresponding
semantic roles to learn the representations using the encoder. Based
on the output features from the encoder, a set of similar support
verbs is then retrieved in the training set as the input to the decoder.
Finally, the decoder produces the verb and noun predictions.

4 EXPERIMENT
4.1 Experimental Settings
Datasets. Our experiments are carried out on the challenging SWiG
benchmark [47]. SWiG dataset builds on the original Situation
Recognition (SR) imSitu dataset [73] by adding bounding box (bbox)
annotations for all visible semantic roles (63.9% of roles have bbox
annotations). Since each image in imSitu is annotated with three
verb frames by three annotators, SWiG contains 126,102 images
with 504 verbs and 190 semantic role types, and each verb is fol-
lowed by 1 to 6 semantic roles (3.55 on average). We followed the
official splits to construct the training/validation/testing set with
sizes of 75K/25K/25K, respectively.
Evaluation metrics. We use the same five evaluation metrics as
Pratt et al. [47], including 1) verb: the accuracy of verb prediction,
2) value: the accuracy of noun prediction for each semantic role, 3)
val-all: the accuracy of noun prediction for the whole semantic role
set, 4) grnd: the accuracy of noun predictionwith correct grounding
(bbox) for each semantic role, 5) grnd-all: the accuracy of noun
prediction with grounding (bbox) for the whole semantic role set.
Note that we consider a grounding is correct if the IoU between the
predicted and ground-truth bbox is above 0.5. Meanwhile, we report
the above metrics in three evaluation settings: 1) Top-1-verb, 2)
Top-5-verb and 3)Ground-Truth-Verb, which select verbs based
on top-1 prediction, top-5 predictions, and corresponding ground
truth, respectively. If verb predictions are incorrect in the Top-
1-verb and Top-5-verb settings, the corresponding semantic role
predictions are also considered false.

4.2 Comparisons with State-of-the-Arts
Baselinemodels. Existing SRmodels can be classified into: 1)CRF
[73]: CRF-based model, 2) CRF+DataAug [72]: CRF-based model
with data augmentation, 3)VGG+RNN [42]: RNN-based prediction
model with VGG backbone, 4) FC-Graph [36]: GNN-based model
with fully connected semantic roles, 5) CAQ [22]: Query-based
model with top-down attention, 6)Kernel-Graph [54]: GNN-based
model with mixture kernel attention. Correspondingly, existing
GSR models can be divided as: 1) ISL [47]: RNN-based method has
independent semantic role values and grounding predictions. 2) JSL
[47]: RNN-based methods jointly predict semantic role values and
their basis. 3) GSRTR [19]: Transformer two-stage model has both
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Table 2: Performance (%) comparisons of GSRFormer (ours) and baseline methods on SWiG dataset test set.

Models Top-1-Verb Top-5-Verb Ground-Truth-Verb
verb value val-all grnd grnd-all verb value val-all grnd grnd-all value val-all grnd grnd-all

Methods for Grounded Situation Recognition
ISL [47] 39.36 30.09 18.62 22.73 7.72 65.51 50.16 28.47 36.60 11.56 72.42 37.10 52.19 14.58
JSL [47] 39.94 31.44 18.87 24.86 9.66 67.60 51.88 29.39 40.60 14.72 73.21 37.82 56.57 18.45
GSRTR [19] 40.63 32.15 19.28 25.49 10.10 69.81 54.13 31.01 42.50 15.88 74.11 39.00 57.45 19.67
SituFormer [65] 44.20 35.24 21.86 29.22 13.41 71.21 55.75 33.27 46.00 20.10 75.85 42.13 61.89 24.89
CoFormer [18] 44.66 35.98 22.22 29.05 12.21 73.31 57.76 33.98 46.25 18.37 75.95 41.87 60.11 22.12
GSRFormer (ours) 46.53 37.48 23.32 31.53 14.23 73.44 58.84 35.82 48.43 21.41 78.81 44.68 63.87 25.35

Table 3: Effectiveness of each component of GSRFormer.

Components verb value val-al grnd grnd-all
w/o Encoder-1st 35.30 25.44 15.69 21.27 7.60
Gains (Δ) -11.23 -12.04 -7.63 -10.26 -6.63
w/o Encoder-2nd 32.84 24.21 14.60 20.91 7.66
Gains (Δ) -13.69 -13.27 -8.72 -10.62 -6.57
w/o Decoder 34.94 25.08 14.28 20.99 7.79
Gains (Δ) -11.59 -12.40 -9.04 -10.54 -6.44
w/o Iteration 39.10 31.30 19.11 26.18 11.92
Gains (Δ) -7.43 -6.18 -4.21 -5.35 -2.31
w/o Alternate 35.81 27.87 16.39 22.09 9.17
Gains (Δ) -10.72 -9.61 -6.93 -9.44 -5.06
w/o Message 38.06 29.87 17.69 21.83 7.77
Gains (Δ) -8.47 -7.61 -5.63 -9.70 -6.46
GSR-Former (ours) 46.53 37.48 23.32 31.53 14.23

a verb predictor and semantic role detector. 4) SituFormer [65]:
Transformer three-stage model consists of a coarse-to-fine verb
predictor and a semantic role detector. 4) CoFormer [18]: Trans-
former three-stage model exploits the semantic relations between
the verb and noun roles to improve results.
Results under Ground-Truth-Verb setting. The Ground-Truth-
Verb setting evaluates whether the system can understand events
in a human-cognitive manner. The numerical value of this setting
describes how well the machine predictions match the human an-
notations. The experimental results are shown in Table 1 and Table
2. In general, our GSRFormer outperforms other state-of-the-art
methods. Compared with SituFormer[65], which also adopts the
transformer structure, GSRFormer improves the accuracy of noun
prediction in single (value) and all semantic roles (val-all) by 2.96%
and 2.55%, respectively. Furthermore, GSRFomer achieves similar
improvements under the vision grounding setting (i.e., grnd and
grnd-all), which shows that GSRFormer can effectively learn visual
information from natural scenes.
Results under Top-N-Verb settings. We use the Top-N-Verb set-
ting to evaluate the accuracy of predicting verb categories. The re-
sults in Table 1 and Table 2 show that our GSRFormer outperforms
other state-of-the-art methods. It is well known that SituFormer
[65] adopts a three-stage framework to improve the accuracy of
verb prediction. Compared to SituFormer, GSRFormer can further
push the verb prediction accuracy by 2.33% (absolute) under the
Top-1-Verb setting. In addition, GSRFormer also achieves a more
splendid improvement on SituFormer in single noun prediction
(2.24% on value) under the Top-1-Verb setting. Unlike SituFormer,
which only uses nouns to improve verbs, our GSRFormer adopts a
bidirectional refinement strategy to iterative optimize the results.
The 2.24% increase in noun prediction accuracy fully reveals the
effectiveness of our proposed alternative semantic refinement.

Table 4: Effects of adopting two opposite refinement orders.

Order Ground-Truth-Verb
verb value val-all grnd grnd-all

Refine-Verb-First - 75.45 42.29 61.61 24.72
Refine-Noun-First - 78.81 44.68 63.87 25.35

Top-1-Verb
Refine-Verb-First 45.23 36.26 22.57 31.12 13.65
Refine-Noun-First 46.53 37.48 23.32 31.53 14.23

Table 5: Effects of utilizing different aggregate functions.

Aggregate Functions value val-all grnd grnd-all
Element-wise Sum 75.64 42.79 61.31 24.38
Max-Pooling 76.30 42.94 61.85 24.23
Aggregated Message [34] 77.79 43.58 62.30 24.76
Gated Function [38] 78.81 44.68 63.87 25.35

4.3 Ablation Studies
Effectiveness of encoder. We perform ablation studies on two
multi-head attention modules of the encoder (denoted as Encoder-
1st and Encoder-2nd), as shown in Table 3. Experimental results
show that both structures significantly improve performance (over
10% absolute improvement). This fully demonstrates the effective-
ness of the encoder module. Encoder-1st is valuable in understand-
ing visual grounding details (comparable on grnd-all metrics), while
Encoder-2nd is more conducive to mining verbs and semantic roles.
Effectiveness of decoder. We validate the entire decoder module.
By removing the decoder, the modified model resembles a simple
two-stage approach [19]. The results in Table 3 show that the abso-
lute improvement is also over 10%, which fully demonstrates the
effectiveness of the decoder module. Below we will analyze each
part of the decoder in detail.
Effectiveness of iterative refinement. We verify iterative refine-
ment. Without iterative refinement (i.e., only 1 transformer layer
in the decoder instead of 5), the performance (2%-8% drop) will be
similar to traditional RNN-based methods (e.g., JSL[47]). It hints
that the real improvement to the transformer structure is the ability
to make iterative improvements.
Effectiveness of alternate optimization. We verify alternate op-
timization. By removing this, we mean to update the verb with sup-
port verbs, and update nouns with other nouns. We are surprised to
find that alternate optimization resulted in more performance drop
than iterative refinement, except for the visual relevant grnd-all
metrics. This fully illustrates that the core of iterative refinement
is to exploit the semantic relationship between verbs and nouns
(roles) in both directions.
Effectiveness of message computation. We compare with that
removes the message passing mechanism, i.e., directly using fea-
tures of transformer encoder to learn the semantic relations. As
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VERB: MAKING → SPRINKLING

1. Squeezing Sprinkling ↑ AGENT cook

2. Arranging Making ↑ ITEM flour

3. Sprinkling Pouring	↑ SOURCE hand

4. Making Arranging ↓ DESTINATION dough

5. Pouring Squeezing ↓ PLACE kitchen

VERB: HITTING → PITCHING

1. Hitting Pitching ↑ AGENT pitcher

2. Hurling Flinging ↑ OBJECTIVE baseball

3. Drop Hurling ↓ GOAL catcher

4. Pitching Hitting ↓ TOOL Hand

5. Flinging Drop ↓ PLACE ball field

What does a woman do on the eyebrows? How are women's 
eyebrows made?

VERB: TRIMMING

AGENT woman

ITEMPART eyebrow

ITEM woman

TOOL scissors

PLACE 𝜙

VERB: BRUSHING

AGENT woman

TARGET eyebrow

TOOL brush

SUBSTANCE makeup

PLACE dressing

VERB: TATTOOING

AGENT woman

TARGET eyebrow

TOOL needle

PLACE office

VERB: APPLYING

AGENT woman

SUBSTANCE makeup

DESTINATION eyebrow

TOOL brush

PLACE 𝜙

a)

b)

Figure 5: (a) Comparison of GSRFormer and GSRTR [19], where GSRFormer predicts more correct verbs and nouns under Top-5-Verb setting.
(b) An example demonstrates the application of GSRFormer, which can serve cross-modal semantic question answering.

1 2 3 4 5 6 7 8
#Layers 1 2 3 4 5 6 7 8
Top-1 31.69 33.97 38.61 42.15 45.24 46.53 45.21 45.46
Top-5 60.35 65.45 67.85 69.30 71.16 73.44 72.37 71.66
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1 2 3 4 5 6 7 8
#Layers 1 2 3 4 5 6 7 8
Top-1 27.24 31.20 36.61 40.24 43.21 46.53 45.27 44.71
Top-5 56.74 60.74 63.99 68.73 71.03 73.44 71.92 72.16
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#Layers 1 2 3 4 5 6 7 8
Top-1 35.30 39.34 43.99 45.27 46.53 46.11 46.13 44.25
Top-5 65.08 68.49 71.23 72.17 73.44 73.48 72.44 71.12
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verb value val-al grnd grnd-all
1 36.13 28.21 13.68 25.46 10.86
3 43.05 31.40 18.71 27.06 11.20
5 46.53 37.48 23.32 31.53 14.23
10 44.12 31.61 18.60 27.41 11.38
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a) MHA!"#$%&'(Eq. 4) b) MHA!"#&()%*(Eq. 5) c) MHA$%&'
&()%*(Eq. 8) d) Size of Support Verbs Set

Figure 6: (a)-(c) show the verb prediction accuracy under the Top-1-Verb and Top-5-Verb settings. Here we verify the effect of different
numbers of stacked layers on three multi-head attention structures. (d) reveal the effect of the size of the support verbs under the Top-1-Verb
setting.

shown in Table 3, message passing not only effectively uses seman-
tic relations to improve verb and noun prediction, but also learns
the visual grounding information (grnd and grnd-all metrics).
Effects of refinement order. Table 4 shows that refining the noun
first gives better results. This is the exact opposite of the previous
work [19, 42, 47]. We speculate that this is because the set of noun
entities is more relevant to the visual groundings, so predicting
nouns first leads to fewer errors than verbs. For example, humans
naturally recognize noun entities as evidence for judgments when
stating verbs. This inspires us to prioritize noun entities.
Effects of aggregate functions. We test four aggregate functions.
Table 5 shows that Gated Function [38] achieves the best results and
Element-Wise Sum does not reach satisfactory results. This contrast
points out that aggregation functions should strive to highlight
semantically relevant features while ignoring unnecessary noise.
In future work, we will explore more fusion strategies.
Effects of the number of stacked layers. We validate the ef-
fect of stacking layers in three multi-head attention structures. As
shown in Figure 6, the best performance is achieved when six layers
are stacked in the encoder and five layers in the decoder. As the
number of stacked layers increases, the performance first increases
and then decreases. We attribute this performance change to the
noise of stacking too many layers.
Effects of the size of support verb set. As shown in Figure 6
(d), the best performance is when the support set size is 5. The
performance drops when the size is 1, indicating that similar verbs
can support semantic understanding. Moreover, when the size is
10, the performance does not further improve, which means that
expanding support verbs also raises noise.

4.4 Visualization and Application
We visualize the results of GSRFormer in Figure 5 (a). With the
help of alternate semantic refinement, GSRFormer predicts some

almost indistinguishable action verbs and semantic roles (see red
font). We also show an example of the semantic question-answering
application in Figure 5 (b). For example, when we ask questions
like "How are women’s eyebrows made?", GSRFormer can not only
utilize the generated verb-frame to understand the question, but
also provide structured answers with rich image facts.

5 CONCLUSION
In this paper, we first reveal the problems of existing frameworks
and point out that the use of semantic relations is the root of the
GSR task. To this end, we propose GSRFormer, a two-stage trans-
former framework that utilizes bidirectional semantic relations
to iteratively refine predictions of verb and noun entities. Exper-
imental results on SWiG dataset show that it outperforms other
state-of-the-art methods. In the future, we will further explore to
explain the semantic structure of GSRFormer and extend it to other
semantic analysis tasks.
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A IMPLEMENTATION DETAILS
Network structure. We use ImageNet pre-trained ResNet-50 as
the backbone. To facilitate computation, we use 1×1 convolution to
compress the dimension of image features to 512, which is consis-
tent with the hidden dimension of each semantic role query and
verb token. To further speed up inference, the dimension of verb
embedding and role embedding is 256. Correspondingly, we use
learnable 2D embeddings for positional encodings, which have the
same dimensions as sequences of visual and verb tokens. The num-
ber of heads for all multi-head attention blocks is 8. The sizes of
the hidden dimensions of the four structures are 2048, 1024, 1024,
and 1024, and the dropout rates are 0.15, 0.3, 0.3, and 0.2, respec-
tively. The bounding box regressor is three fully connected layers
with ReLU activation function and 1024 hidden dimensions, using
a dropout rate of 0.2. Label smoothing regularization [57] is used
for target verb and noun labels with label smoothing factors of
0.3 and 0.2, respectively. We set the support verb set size to 5. The
number of stacked layers of the encoder is set to 6, and the number
of stacked layers of the decoder is set to 5.
Training details. Although using the data augmentation strategies
similar to DETR [5] can improve the experimental results, for a fair
comparison, we employ the same data augmentation procedure as
previous work [19]. Specifically, Random Color Jittering, Random
Grayscale Scaling, Random Scaling, and Random Horizontal Flip-
ping are employed. The Hue, Saturation, and Lightness Scales in
random Color Jittering are set to 0.1. Random Grayscale Scaling is
set to 0.3. Random Scaling is set to 0.5, 0.75, and 1.0. The probability
of Random Horizontal Flip is set to 0.5. The number of semantic
roles varies from 1 to 6, depending on the verb category. To speed
up training, inspired by previous work [19], we utilize zero padding
for each output of the noun prediction branch to ensure batch train-
ing. Because there are as many semantic role queries as semantic
roles, we directly ignore the padding output in the loss computa-
tion. When training the decoder, we need to alternately compute
verb and noun losses separately. Since there are three nouns per
semantic role, the final noun loss is the sum of the three noun losses.
In addition, we also illustrate more visualization comparisons and
application examples, as shown in Figure 7-8.
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VERB: SELLING→ GIVING

1. Selling Giving↑ AGENT man

2. Buying Offering ↑ ITEM flower

3. Providing Buying ↓ RECIPIENT woman

4. Offering Providing ↓ PLACE outdoors

5. Applying Selling↓

VERB: GIVING→ BUYING

1. Giving Buying ↑ AGENT woman

2. Selling Selling - GOODS flower

3. Providing Giving	↓ PAYMENT credit card

4. Offering Providing ↓ SELLER man

5. Applying Offering ↓ PLACE shop

VERB: READING→ SIGNING

1. Reading Signing ↑ AGENT woman

2. Writing Writing - OBJECTIVE document

3. Signing Sketching	↑ TOOL pen

4. Sketching Helping ↑ PLACE room

5. Helping Reading ↓

VERB: STARTING→ COACHING

1. Staring	 Coaching ↑ AGENT woman

2. Resting Resting - STUDENT people

3. Coaching Staring	 ↓ SKILL basketball

4. Aiming Aiming - PLACE stadium

5. Giving Giving -

VERB: EXTERMINATING→ VACUUMING

1.Exterminating Vacuuming	↑ AGENT man

2. Dusting Clearing ↑ SURFACE rug

3. Mopping Mopping - TOOL vacuum

4. Scrubbing Scrubbing - PLACE house

5. Applying Dusting ↓

VERB: MAKING→ BAKING

1. Making Baking ↑ AGENT woman

2. Frying Cooking 	↑ FOOD cake

3. Cooking Making	↓ FOODCONTAINER pan

4. Microwaving Pouring ↑ HEATSOURCE ∅

5. Stirring Stirring - PLACE kitchen

Figure 7: Comparison between GSRFormer and GSRTR [19]. The first two columns compare the verbs detected by GSRTR and GSRFormer,
respectively. The last two columns are the semantic roles predicted by GSRFormer. With the help of an iterative refinement mechanism,
GSRFormer predicts more correct verbs and nouns (marked in red font) under the Top-5-Verb setting. These examples also clearly illustrate
the importance of semantic relations for GSR tasks, i.e., bidirectional semantic ties can mutually refine the predictions of verbs and nouns.

How do people maintain their house? What people use to 
maintain their houses?

VERB: EXTERMINATING

AGENT man

PLACE house

INSTRUMENT nozzle

VERB: CLEANING

AGENT man

SOURCE brick

TOOL sponge

PLACE house

VERB: MOPPING

AGENT man

SURFACE floor

PLACE house

VERB: SEALING

AGENT man

ITEM plastic wrap

SEALANT tape

PLACE house

How do people cook? What do people cook with and where do 
people cook?

VERB: FRYING

AGENT man

FOOD meat

CONTAINER frying pan

PLACE Kitchen

VERB: BAKING

AGENT man

FOOD cake

CONTAINER ∅

HEAT SOURCE ∅

PLACE kitchen

VERB: CHOPPING

AGENT man

ITEM meat

TOOL knife

PLACE kitchen

VERB: MASHING

AGENT man

ITEM food

TOOL masher

PLACE kitchen

How do people get treated? What treatment do people use and 
where do they treat it?

VERB: CHECKING

AGENT nurse

PATIENT woman

ASPECT health

TOOLS stethoscope

PLACE hospital

VERB: OPERATING

AGENT man

ITEM ∅

TOOL hand

PLACE hospital

VERB: BANDAGING

AGENT nurse

VICTIM man

PLACE hospital

VERB: INJECTING

AGENT doctor

SUBSTANCE ∅

SOURCE syringe

DESTINATION arm

PLACE hospital

What will the teacher do? What are the responsibilities of the
teacher?

VERB: LECTURING

AGENT teacher

AUDIENCE student

PLACE classroom

VERB: TRAINING

AGENT teacher

AUDIENCE student

PLACE classroom

VERB: TEACHING

AGENT teacher

AUDIENCE student

PLACE classroom

VERB: ERASING

AGENT teacher

ERASED writing

SOURCE blackboard

PLACE classroom

Figure 8: Application example. GSFormer can serve cross-modal semantic question answering and reasoning on the basis of human event
understanding. For example, when questioned "How do people cook? What do people cook with, and where do people cook?", GSRFormer can
list cooking procedures and steps. Compared to image captioning and scene graphs, GSRFormer can not only utilize the generated structured
verb-frame to apprehend the questions, but also provide answers with intuitive image facts to help users understand.


	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Problem Formulation
	3.2 Overview of GSRFormer
	3.3 Transformer-based Encoder
	3.4 Transformer-based Decoder
	3.5 Training Objectives

	4 Experiment
	4.1 Experimental Settings
	4.2 Comparisons with State-of-the-Arts
	4.3 Ablation Studies
	4.4 Visualization and Application

	5 Conclusion
	Acknowledgments
	References
	A Implementation Details

