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ABSTRACT
We propose the Vision-and-Augmented-Language Transformer
(VAuLT). VAuLT is an extension of the popular Vision-and-
Language Transformer (ViLT), and improves performance on
vision-and-language (VL) tasks that involve more complex text
inputs than image captions while having minimal impact on training
and inference efficiency. ViLT, importantly, enables efficient train-
ing and inference in VL tasks, achieved by encoding images using a
linear projection of patches instead of an object detector. However, it
is pretrained on captioning datasets, where the language input is sim-
ple, literal, and descriptive, therefore lacking linguistic diversity. So,
when working with multimedia data in the wild, such as multimodal
social media data, there is a notable shift from captioning language
data, as well as diversity of tasks. We indeed find evidence that the
language capacity of ViLT is lacking. The key insight and novelty of
VAuLT is to propagate the output representations of a large language
model (LM) like BERT to the language input of ViLT. We show that
joint training of the LM and ViLT can yield relative improvements
up to 20% over ViLT and achieve state-of-the-art or comparable per-
formance on VL tasks involving richer language inputs and affective
constructs, such as for Target-Oriented Sentiment Classification in
TWITTER-2015 and TWITTER-2017, and Sentiment Classification
in MVSA-Single and MVSA-Multiple. Our code is available at
https://github.com/gchochla/VAuLT.

Index Terms— Vision-and-Language, Transformers, Social
media, Sentiment Classification

1. INTRODUCTION

The study of social media can have positive societal outcomes. In-
terest in the importance of emotion has been growing beyond sci-
ence [8] to law [27], and politics [26]. Social media users read-
ily express their emotions about their experiences and world events
through multimedia content such as videos, images, memes, and raw
text. This allows researchers to use machine learning (ML) methods
to study, for instance, the dynamics of public perception and opinion
and to provide feedback to policy makers and inform future actions
[12]. Social media are also ripe with opportunities for social ma-
nipulation [4]. This manipulation can be personalized based on user
data [1], or use network effects [11]. Mitigating these risks and iden-
tifying widespread manipulation attempts hence becomes pivotal.

Due to the massive volume of data and the dynamic nature of
social media, constant streams of data are required, thus efficiency
is of the essence. In addition, multimedia content necessitates mul-
timodal modeling, as users can use these extra degrees of freedom
to convey complex and conflicting meanings, for instance in irony.
Moreover, a multimodal model should be able to handle a subset of
its input modalities if a post is missing the rest [24].

Many state-of-the-art vision-and-language models (VLM), e.g.,
VL-BERT [25] and ViLBERT [17], contain an object detector, such

Fig. 1. VAuLT propagates representations from a LM to a VLM in a
modular fashion. We show that even with little tuning data, language
representations can be effectively used to significantly improve the
performance of ViLT on tasks with greater linguistic and construct
diversity than captioning datasets.

as Faster-RCNN [22], to compute input visual features. Object de-
tectors are costly to run relative to the rest of the pipeline [15], which
can be prohibitive for social media applications. Hence, we turn to
the Vision-and-Language Transformer (ViLT) [15], whose visual in-
put consists of linearly projected image patches.

Regardless, these models, designed to understand and extract in-
formation from multimedia content such as vision and language, are
frequently trained only on images and their captions crawled from
the web. Image captions are a weak form of language supervision,
often describing literal content with simple syntax and little subtlety,
deviating substantially from the text of social media posts.

In this paper, we propose the Vision-and-Augmented-Language
Transformer (VAuLT), which directly addresses the impoverished
language representations of ViLT by processing the language input
through a pretrained large language model (LM) (Figure 1). We
find that VAuLT is able to outperform ViLT on a variety of tasks
involving affective constructs common in social media, including
TWITTER-2015, TWITTER-2017 [28], and MVSA [21].

Our key contributions can be summarized as follows:
• In VAuLT, we stack Transformer architectures, a pretrained

LM and VLM, and jointly train them end-to-end, yielding
substantial performance gains from little tuning data.

• We show that VAuLT competes with or outperforms state-of-
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the-art methods for the social media analysis tasks examined.

• We provide evidence that the performance trade-offs of ViLT
and VAuLT depend on the complexity of the image and lan-
guage components commensurate with the relative richness
of, and variety within, the modalities in the source and target
domains, as well as the tasks themselves.

2. RELATED WORK

2.1. Language Transformers

Transformers pretrained on general-purpose text grants them the
ability to be used as backbones for many downstream tasks [6].
Such models can also be pretrained on more specialized corpora
to improve their transferability to specific domains, like BERTweet
[20], a model trained on tweets.

2.2. Vision-and-Language (VL) Transformers

Similar to language transformers, VL transformers [25, 17] are
trained with multiple input modalities on web-crawled captions, and
yield state-of-the-art results on many multimodal tasks [2]. These
models frequently use region-of-interest (ROI) features extracted
from a pretrained object detector [22] as their Transformer’s visual
inputs. However, this visual embedding step is computationally
expensive during training and inference [15], requiring caching of
features. ViLT [15], based on the Vision Transformer (ViT) [7],
proposed using image patches as visual input to the Transformer
model instead. This results in slightly worse model performance,
but is much more computationally efficient. However, ViLT also
has limited language understanding capacity due to being initialized
from ViT and pretrained solely on image caption data. VAuLT over-
comes this issue by replacing ViLT’s language embedding inputs
with features extracted from a large LM pretrained on greater lin-
guistic diversity, which can also be selected to more closely suit the
needs of the downstream task.

2.3. Affective Analysis on Social Media

Researchers tend to focus on single modalities when analyzing emo-
tion and sentiment in social media posts, such as text-only [19], and
image-only [23] datasets.

Emotion recognition from text has long relied on word-counting
techniques [9], which can be deployed at scale but disregard con-
text. LSTMs [3] and Transformers [5] capture context and provide
superior performance with less interpretability.

On the other hand, multimodal affect modeling tasks with so-
cial media have predominantly focused on sentiment [28, 21, 13].
[28] have annotated tweets with their corresponding images for sen-
timent expressed towards entities in the text, resulting in the Target-
oriented Sentiment Classification (TMSC) task and the TWITTER-
15 and TWITTER-17 datasets. Similarly, MVSA [21] has annota-
tions for sentiment expressed in the text and the image of a tweet.
User-provided tags have been used as “self-reports” of emotion in
scraped multimodal data from Tumblr [13].

The proposed approaches for the aforementioned tasks typi-
cally involve dedicated architectures or targeted modifications of
VL Transformers. An example of the former is TomBERT [28] for
TMSC. TomBERT consists of multiple components: first, a ResNet
[10] extracts visual features. Then, a cross-attention layer is used to
query these visual features using target embeddings extracted from
BERT [6]. Parallel to the visual feature extraction, the text sequence

is passed though another BERT, and is concatenated with the refined
visual features and fed to a multimodal encoder, also a BERT.

3. METHODOLOGY

3.1. Task Definitions

3.1.1. Sentiment Classification

For our purposes, “Sentiment Classification” corresponds to classi-
fying an image and text pair as positive, neutral, or negative.
3.1.2. Target-oriented Sentiment Classification (TMSC)

TMSC extends the basic sentiment classification formulation to
opinion expressed toward given targets within the text of multimodal
tweets. In our setting, sentiment targets were repurposed from types
of named entities, and an input tweet can contain multiple targets.

3.2. Vision-and-Language Transformer (ViLT)

ViLT is a multimodal transformer. The language component of ViLT
follows conventional practices and embeds input tokens with a look-
up table. On the other hand, the visual component of ViLT fol-
lows ViT [7], segmenting each image into non-overlapping square
patches, flattening the resulting values, and mapping them to the in-
put space using a linear projection.

ViLT is pretrained on image captioning datasets like MSCOCO
[16]. Its pretraining objectives include: image-text matching and
word-patch alignment, and masked language modeling and whole
word masking. The former group of objectives focuses on enforcing
joint modeling of the two modalities, while the latter is centered on
the language understanding of the model. Explicit language train-
ing is necessary since the model is initialized from ViT weights,
itself trained on images, in contrast to previous works that initial-
izes weights from LMs [25, 17], thus ViLT’s language understanding
comes solely from image-captioning datasets.

3.3. Vision-and-Augmented Language Transformer (VAuLT)

The proposed VAuLT can use any LM that produces token embed-
dings for tokenized text, irrespective of the specific tokenizer. We
have this requirement because we use the sequence of embeddings
produced by the LM to replace the canonical language input of ViLT.
Therefore, we are essentially substituting the context-free represen-
tations from the lookup table of ViLT, with context-aware representa-
tions [6] from the output layer of a LM. Images are embedded in the
canonical fashion with ViLT’s trained linear projection of patches.

Concretely, given an input image-text pair, and a specific LM
and its tokenizer, we tokenize the input text sequence and pass this
through the LM to produce its output contextual embeddings. Along
with these embeddings, we pass these two input streams through
ViLT. Note that position embeddings, etc., are added in both ViLT’s
and the LM’s forward pass.

We use LMs like BERT and BERTweet that have not been
trained on similar datasets with ViLT or tokenize text in the same
manner as ViLT does. That is to say, the language tokens might not
correspond to the tokens ViLT has been trained with.

4. EXPERIMENTS

Overall, our goal is to show that VAuLT improves upon ViLT on
multimodal, small-scale, affective datasets derived from social me-
dia, in our case Twitter. More than that, we also show that ViLT



TWITTER-15 TWITTER-17 MVSA-M MVSA-S

Model Acc mac-F1 Acc mac-F1 Acc w-F1 Acc w-F1

ViLT 70.5±1.3 62.6±2.5 62.6±0.1 58.1±0.7 69.1±0.8 67.0±0.3 74.4±1.5 73.7±1.6

VAuLT† 75.6±0.8 70.0±1.7 70.2±0.4 67.8±0.1 70.0±0.7 68.9±0.7 78.0±1.2 77.4±1.4

VAuLT? 77.5±0.4 72.9±0.5 71.0±0.5 69.5±0.7 70.3±1.6 67.0±2.9 72.8±5.6 71.8±5.8

EF-CaTr-BERT [14] 77.9±0.8 73.9±0.8 72.3±0.3 70.2±0.2 - - - -
ITIN [29] - - - - 73.5 - 75.2 -

Table 1. Direct comparison between ViLT, VAuLT (†: w/ BERT, bert-base-uncased, or ?: w/ BERTweet, vinai/bertweet-base),
and the state-of-the-art on each benchmark. Bold indicates best performance based on ranges, where available.

can achieve competitive performance over dedicated architectures
for such datasets, and VAuLT can even exceed their performance.

4.1. Datasets

We use TWITTER-15 and TWITTER-17 [28] annotated for the task
of TMSC. The former contains 1548 positive, 630 negative and 3169
neutral examples. The latter contains 2516 positive, 728 negative
and 2728 neutral examples. We use the splits provided by the au-
thors. Accuracy and macro F1 are typical evaluation criteria. We
predict for one target at a time, even if the tweet contains multiple.
We follow [28] in replacing the target of interest with the placeholder
$T$, and appending the target as a second sequence.

We also evaluate our model on MVSA-Multiple and MVSA-
Single [21], pre-processed for Sentiment Classification. Initially,
both datasets contain annotations for the sentiment of both the image
and the text of a tweet. MVSA-Single has annotations from solely
one annotator, while MVSA-Multiple utilizes three separate annota-
tors, plus more examples. We merge the annotations into a single
annotation and aggregate across annotators, as is customary [29].
The filtered MVSA-Single contains 2683 positive, 460 negative and
1358 neutral examples. The filtered MVSA-Multiple contains 11318
positive, 4408 negative and 1298 neutral examples. We also had to
remove 3 additional samples from MVSA-Multiple because of cor-
rupted images (example IDs: 3151, 3910 and 5995). Since canonical
splits are not provided and evaluation criteria are not well-defined,
we follow previous work in randomly splitting the data 8:1:1 [29]
and use accuracy to compare. We also include the weighted F1 score
of our methods as our best guess as to what other methods are report-
ing as merely “F1 score”.

4.2. Implementation details

We use Python v3.7.4, PyTorch v1.11.0, and transformers v4.19.2.
We keep our learning rate at 2 · 10−5 unless specified. We use

linear warm-up for 10% of the training steps and then linear decay
to 0. In re-implementations of published models, we use the speci-
fied hyperparameter configuration.

Test performance (mean and standard deviation) is reported after
3 different training runs with fixed hyperparameters. The main tun-
ing of all of the hyperparameters but the number of training epochs
was performed on TWITTER-15 and TWITTER-17. We searched
for whether to use bias correction in AdamW, selecting no bias cor-
rection, the number of epochs (ran for 15 epochs and picked the best
performing one based on average accuracy and macro F1 for MVSA-
Multiple and MVSA-Single, and {8, 15, 25} for TWITTER-15 and
TWITTER-17), and whether to integrate the placeholder $T$ to the
tokenizer as a standalone token in TWITTER-15 and TWITTER-
17 (yes for VAuLT; no for ViLT, existing baselines, and variants

thereof).
We find that divergence in the training of VAuLT can rarely oc-

cur, but those runs can be filtered by observing degradation in the
training metrics. While we had to correct for such artifacts during
development, no such instances occurred on the test sets.

We use simple random cropping instead of the augmentation uti-
lized in ViLT for simplicity. We use augmentation in all cases where
ViLT’s linear projection is solely used to extract image embeddings.
We use ekphrasis1 to pre-process the text of the tweets, but we re-
move the special characters added by the library around the names
of the tags (e.g., when “<user>” would have been the original sub-
stitute for the actual Twitter handle appearing in a tweet, we simple
use “user”). We also substitute emojis for their plain-text descrip-
tions in parentheses, when they would be dropped by a tokenizer.
In particular, in our work, only BERTweet’s tokenization preserves
emojis. Because the text of TWITTER-15 and TWITTER-17 has
been independently pre-processed, we do not use ekphrasis on them.

We use 2 NVIDIA GeForce GTX 1080 Ti GPUs (12GB of mem-
ory). We only use one GPU per model, limiting our training batch
sizes to 16 or 32, always choosing the maximum possible of the two.

4.3. Comparison with ViLT

First and foremost, let us focus on the comparison of the evaluation
metrics between ViLT and VAuLT, where we indeed find that VAuLT
exceeds ViLT’s performance across all examined affective social me-
dia data. Results can be seen in Table 1. We can see that VAuLT with
BERTweet improves upon ViLT in TWITTER-15 and TWITTER-
17, with relative improvements between 9.9% and 19.6%. VAuLT
with BERT also provides substantial improvements but still lags be-
hind compared to BERTweet, and only we find overlapping ranges
across the two versions of VAuLT on TWITTER-17’s accuracy.

Smaller yet still substantial improvements are observed in
MVSA-Multiple and MVSA-Single. In particular, for this set of
benchmarks, VAuLT with BERT performs favorably compared to
ViLT and VAuLT with BERTweet. In fact, for the latter, we observe
large fluctuations in performance, emphasized by the large devi-
ation presented in Table 1. Otherwise, performance is analogous
to VAuLT’s with BERT. Quantitatively, improvements over ViLT
are up to approximately 5%. It has to be noted that ranges are
overlapping for VAuLT and ViLT in MVSA-Multiple accuracy.

4.4. Comparisons with State of the Art

For completeness, we also compare VAuLT and ViLT with state-of-
the-art models for the examined benchmarks. We do not elaborate
on the state-of-the-art models because of the variety of tasks, as well
as them being not central to the main goals of our work. We find

1https://github.com/cbaziotis/ekphrasis



TWITTER-15 TWITTER-17

Model Acc mac-F1 Acc mac-F1

ViLT 70.5±1.3 62.6±2.5 62.6±0.1 58.1±0.7

VAuLT† 75.6±0.8 70.0±1.7 70.2±0.4 67.8±0.1

VAuLT?,f 68.8±0.6 58.8±1.5 64.0±0.9 61.0±0.6

VAuLT? 77.5±0.4 72.9±0.5 71.0±0.5 69.5±0.7

Table 2. Comparing ViLT and VAuLT (f : using a frozen LM,
and †: w/ BERT, bert-base-uncased, or ?: w/ BERTweet,
vinai/bertweet-base) on TWITTER-15 and TWITTER-17.
Bold indicates best based on ranges.

that VAuLT can outperform or be competitive with dedicated state-
of-the-art models in terms of our evaluation criteria.

We observe, in Table 1, that VauLT with BERTweet has overlap-
ping performance ranges with the state-of-the-art model, EF-CaTr-
BERT, on TWITTER-15 and TWITTER-17, except for accuracy in
TWITTER-17.

For MVSA-Multiple and MVSA-Single, we have mixed results.
We achieve state-of-the-art results for MVSA-Single, where we im-
prove upon the previous best accuracy by 3.8 absolute percentage
points (note that our best-guess F1 score is also the state of the art
if our assumption is correct). In MVSA-Multiple, our models are
still outperformed by the competition. Caveats in the evaluation in
MVSA include the random splits that are used in the literature, of-
ten with different cardinalities in the different splits, while evaluation
criteria remain opaque, and pre-processing, aggregation and normal-
ization techniques could differ between different works.

4.5. Ablation Studies

4.5.1. Frozen LM

We first examine whether ViLT can “read” the outputs of a LM with-
out any adjustments on the part of the latter. That is to say, we
keep the LMs frozen. [18] showed that early layers of transform-
ers change significantly less than later layers during fine-tuning, im-
plying that fine-tuning of the LM in VAuLT may be unnecessary.
However, we find joint training to be essential.

Results can be seen in Table 2. Overall, fine-tuning of the lan-
guage model appears essential, since we see such notable degrada-
tion in performance, as VAuLT with a frozen LM drops to the level
or even below ViLT. This demonstrates the necessity of fine-tuning
the LMs in conjunction with ViLT.

4.5.2. Deep Vision vs. Deep Language

In this section, we present an experiment supporting the hypothesis
that the complexity of the modality-specific components and their ef-
fect on the final performance depends on the domain addressed, and
that the linear projections used by ViLT and ViT do not inherently re-
strict the model’s performance. We do so by introducing and study-
ing two variants of TomBERT we call TomVAuLT and TomViLT,
solely for the purposes of examining our hypothesis in this section.

TomVAuLT extends TomBERT by replacing the multimodal
encoder with ViLT. The multimodal encoder in TomBERT is re-
sponsible for the final classification, and its input consists of the
queried features from ResNet and the contextual embeddings of the
tweet from BERT. In this way, we replace the visual embeddings
of ViLT with ResNet features, while we also retain the BERT that
pre-processes the tweet before the multimodal encoder, giving us

TWITTER-15 TWITTER-17

Model Acc mac-F1 Acc mac-F1

TomViLT 73.2±0.7 66.1±1.3 67.3±0.5 64.4±0.7

ViLT 69.6±1.0 60.3±1.5 64.0±1.2 58.0±1.5

TomVAuLT 73.2±0.5 67.1±0.4 67.3±0.9 61.1±0.9

VAuLT 75.0±0.6 69.0±0.9 67.8±1.0 64.9±0.9

Table 3. Comparing ViLT, VAuLT, TomViLT and TomVAuLT on
TWITTER-15 and TWITTER-17. Bold indicates best based on
means only.

VAuLT in that regard. By disposing of that BERT from TomVAuLT,
we arrive at the other variant, TomViLT, where only ViLT is used to
process the text inputs. We compare these with ViLT and VAuLT
using BERT on the dev sets of TWITTER-15 and TWITTER-17. In
this manner, we present all possible configurations: i) ViLT: no deep
encoder, ii) VAuLT: deep language encoder, iii) TomViLT: deep
visual encoder, iv) TomVAuLT: both deep encoders.

Our results, shown in Table 3, demonstrate that having a deep
visual encoder actually hurts performance in the presence of a deep
language encoder, contrasting previous assumptions that transferring
a “strong” visual vocabulary is essential, which to the best of our
knowledge is a novel analytical result.

5. CONCLUSION

In this work, we introduce VAuLT. It utilizes a large pretrained LM,
such as BERT, to propagate enhanced language representations to
ViLT in order to perform multimodal tasks. We find that this pre-
processing to be integral, as ViLT’s impoverished language repre-
sentations, owning to its limited language exposure during pretrain-
ing, cannot be easily fine-tuned to perform out-of-distribution tasks,
such as affective analysis on multimodal social media data. Our ap-
proach obviates the requirements for extensive pretraining of ViLT
on the desired domains, as the appropriate LMs can bridge the distri-
bution shift between source and target. Importantly, we demonstrate
state-of-the-art or competitive performance of VAuLT.

Our work opens up several research directions. Anecdotal evi-
dence from experiments not presented in this work indicate VAuLT
struggles with pure reasoning tasks compared to ViLT, a direction
left for future research. Second, we observe rare divergences dur-
ing training. This hints at possible misalignment of the output space
of the LM and the input space of ViLT. Third, we offer some evi-
dence that shallow visual encoders but deep language encoders can
achieve better classification performance to alternatives, a paradigm
that could be investigated in greater detail. Finally, VAuLT can be
used in multilingual settings with the proper LM choice.

Despite the utility of multimodal emotion recognition on social
media, as discussed earlier, multiple ethical concerns can be raised.
These include utilization of these models for the identification and
suppression of dissent and free speech beyond text, such as in the
form of images and memes, as well as their general integration in
the aforementioned social manipulation tools, rendering them more
powerful with the inclusion of visual capabilities.
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