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Abstract
Open-World Instance Segmentation (OWIS) is an emerging research topic that
aims to segment class-agnostic object instances from images. The mainstream
approaches use a two-stage segmentation framework, which first locates the can-
didate object bounding boxes and then performs instance segmentation. In this
work, we instead promote a single-stage framework for OWIS. We argue that the
end-to-end training process in the single-stage framework can be more convenient
for directly regularizing the localization of class-agnostic object pixels. Based on
the single-stage instance segmentation framework, we propose a regularization
model to predict foreground pixels and use its relation to instance segmentation
to construct a cross-task consistency loss. We show that such a consistency loss
could alleviate the problem of incomplete instance annotation – a common prob-
lem in the existing OWIS datasets. We also show that the proposed loss lends
itself to an effective solution to semi-supervised OWIS that could be considered
an extreme case that all object annotations are absent for some images. Our
extensive experiments demonstrate that the proposed method achieves impres-
sive results in both fully-supervised and semi-supervised settings. Compared to
SOTA methods, the proposed method significantly improves the AP100 score by
4.75% in UVO→UVO setting and 4.05% in COCO→UVO setting. In the case
of semi-supervised learning, our model learned with only 30% labeled data, even
outperforms its fully-supervised counterpart with 50% labeled data. The code will
be released soon at: https://github.com/showlab/SOIS.

1 Introduction
Traditional instance segmentation [1, 2] methods often assume that objects in images can be catego-
rized into a finite set of predefined classes (i.e., closed-world). Such an assumption, however, can be
easily violated in many real-world applications, where models will encounter many new object classes
that never appeared in the training data. Therefore, researchers recently attempted to tackle the prob-
lem of Open-World Instance Segmentation (OWIS) [3], which targets class-agnostic segmentation
of all objects in the image.

Prior to this paper, most existing methods for OWIS are of two-stage [4, 5], which detects bounding
boxes of objects and then segments them. Despite their promising performances, such a paradigm
cannot handle and recover if object bounding boxes are not detected. In contrast, a single-stage
approach called Mask2Former [6] has recently been introduced, yet only for closed-world instance
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Figure 1: (a). Instances missing annotations in COCO and UVO datasets. The regions in red boxes
are mistakenly annotated as background. (b). Motivation of our novel reg module (The consistency
relationship between instance mask and foreground map). (c). Visualization results of our SOIS on
UVO dataset. Here, the proposed SOIS is trained on COCO dataset and tested on UVO dataset. Our
methods correctly segments many objects that are not labeled in COCO. (d - f). The AP100% of our
SOIS vs.SOTA methods on COCO→UVO, Cityscpes→Mapillary, COCO→UVO. (g). The AR100%
of our SOIS vs. baseline Mask2Former on COCO. From right to left, with the total number of classes
decreases (i.e. more instance annotations missed), the gain of our SOIS over baseline becomes larger,
thanks to the capability of our model to handle incomplete annotations.

segmentation. By extending it to open-world, we are the first to develop a novel detection-free
Single-stage Open-world Instance Segmentation method, dubbed as SOIS.

Note that our work is not just a straightforward adaptation of Mask2Former from close-world to
open-world. This is because unlike closed-world segmentation, where the object categories can be
clearly defined before annotation, the open-world scenario makes it challenging for annotators to
label all instances completely or ensure annotation consistency across different images because they
cannot have a well-defined finite set of object categories. As shown in Figure 1(a), annotators miss
some instances. It still remains challenging that how to handle such incomplete annotations (i.e.
some instances missed).

Recent work LDET [5] addresses this problem by generating synthetic data with a plain background,
but it based on a decoupled training strategy that can only be used in the two-stage method while
our method is of single-stage. Another work called GGN [4] handles such incomplete instance-level
annotation issue by training a pairwise affinity predictor for generating pseudo labels. But training
such an additional predictor is complicated and time-consuming.

In contrast, our proposed SOIS method is end-to-end and simpler. We address this incomplete
annotation issue via a novel regularization module, which is simple yet effective. Specifically, it
is convenient to concurrently predict not only (1) instance masks but also a (2) foreground map.
Ideally, as shown in Figure 1(b), the foreground region should be consistent with the union of all
instance masks. To penalize their inconsistency, we devise a cross-task consistency loss, which
can down-weight the adverse effects caused by incomplete annotation. This is because when an
instance is missed in annotation, as long as it is captured by both our predictions of instance masks
and foreground map, the consistency loss would be low and hence encourage such prediction.
Experiments in Figure 1(g) show that such consistency loss is effective even when annotations miss
many instances.
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So far, like most existing methods, we focus on the fully-supervised OWIS. In this paper, we further
extend OWIS to the semi-supervised setting, where some training images do not have any annotations
at all. This is of great interest because annotating segmentation map is very costly. Notably, our
proposed regularization module can also benefit semi-supervised OWIS – consider an unlabeled
image as an extreme case of incomplete annotation where all of the instance annotations are missed.
Specifically, we perform semi-supervised OWIS by first warming up the network on the labeled set
and then continuing training it with the cross-task consistency loss on the mixture of labeled and
unlabeled images.

Contributions. In a nutshell, our main contributions could be summarized as:
1. We propose a Singe-stage Open-world Instance Segmentation (SOIS) for the first time while

most OWIS methods are of two-stage.
2. We propose a novel cross-task consistency loss that mitigate the issue of incomplete mask

annotations.
3. We further extend the proposed method into a semi-supervised OWIS model, which effec-

tively makes use of the unlabeled images to help the OWIS model training .
4. Our extensive experiments demonstrate that the proposed method reaches the leading OWIS

performance in the fully-supervised learning. (Figure 1(d-f)), and that our semi-supervised
extension can achieve remarkable performance with a much smaller amount of labeled data.

2 Related Work
Closed-world instance segmentation (CWIS) [7, 8, 9, 10, 11] requires the approaches to assign a
class label and instance ID to every pixel. Two-stage CWIS approaches, such as MaskRCNN, always
include a bounding box estimation branch and a FCN-based mask segmentation branch, working
in a ’detect-then-segment’ way. To improve efficiency, one-stage methods such as CenterMask [9],
YOLACT [10] and BlendMask [8] have been proposed, which remove the proposal generation and
feature grouping process. To further free the CWIS from the local box detection, Wang et.al [11]
proposed SOLO and obtained on par results to the above methods. In recent years, the methods
[12, 13], following DETR [14], consider the instance segmentation task as an ensemble prediction
problem. In addition, Cheng et al. proposed an universal segmentation framework MaskFormer [15]
and its upgrade version Mask2Former [6], which even outperforms the state-of-the-art architectures
specifically designed for the CWIS task.

Notably, two-stage method CenterMask preserves pixel alignment and separates the object simulta-
neously by integrating the local and global branch. Although introducing the global information in
this way helps improve the mask quality in CWIS, it can not handle the open-world task very well.
Because CenterMask multiplies the local shape and the cropped saliency map to form the final mask
for each instance. There is no separate loss for the local shape and global saliency. When such method
faces the incomplete annotations in OWIS tasks, the generated mask predictions corresponding to
the unlabeled instances would still be punished during training, making it difficult to discover novel
object at inference. The efficient way to jointly take advantages of global and local information in
OWIS tasks deserves to be explored.

Open-world instance segmentation OWIS task [3] here focuses on the following aspects: (1)
All instances (without stuff) have to be segmented; (2) Class-agnostic pixel-level results should
be predicted with only instance ID and incremental learning ability is unnecessary. Several OWIS
works have recently been developed. Yu et al. [16] proposed a two-stage segmentation algorithm,
which decoupled the segmentation and detection modules during training and testing. This algorithm
achieves competitive results on the UVO dataset thanks to the abundant training data and the
introduction of effective modules such as cascade RPN [17], SimOTA [18], etc. Another work named
LDET [5] attempts to solve the instance-level incomplete annotation problem. Specifically, LDET
first generates the background of the synthesized image by taking a small piece of background in the
original image and enlarging it to the same size as the original image. The instance is then matted
to the foreground of the synthesized image. The synthesized data is used only to train the mask
prediction branch, and the rest of the branches are still trained with the original data. Meanwhile,
Wang et al. proposed GGN [4], an algorithm that combines top-down and bottom-up segmentation
ideas to improve prediction accuracy by generating high-quality pseudo-labels. Specifically, a
Pairwise Affinity (PA) predictor is trained first and a grouping module is used to extract and rank
segments from predicted PA to generate pseudo-labels, which would be fused with groundtruth to
train the segmentation model.
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Figure 2: Overall framework of the proposed SOIS. The mask prediction branch generates the
predicted masks, while the objectness prediction branch computes the objectness score for each mask.
The foreground prediction branch segments a foreground region to guide the optimization of other
two branches.

3 Methodology

In this section, we first define the OWIS problem with both fully and semi-supervised learning. Then
the architecture of our SOIS and the proposed cross-task consistency loss are introduced in Section
3.3 and 3.4, respectively. Finally, Section 3.4 and 3.5 show how to optimize the SOIS in fully and
semi-supervised way, respectively.

3.1 Problem Definition of OWIS

The open-world instance segmentation (OWIS) aims to segment all the object instances (things) of
any class including those that did not appear in the training phase. Technically, OWIS is a task to
produce a set of binary masks, where each mask corresponds to a class-agnostic instance. The pixel
value of 1 in the mask indicates a part of an object instance while 0 indicates not.

3.2 Model Architecture

Our proposed SOIS framework consists of three branches to alleviate the incomplete annotating, as
shown in Figure 6. Basically, we follow the design of one-stage Mask2Former [6]. The objectness
prediction branch estimates the weighting score for each mask by applying a sequential Transformer
decoder and MLP. The mask prediction branch predicts the binary mask for each instance. It first
generates N binary masks with N ideally larger than the actual instance number Ki. Each mask
is multiplied by a weighting score with a value between 0 and 1, indicating if a mask should be
selected as an instance mask. This process generates the mask in an end to end way, which avoids to
miss the instance because of poor detection bounding boxes and meanwhile reduces the redundant
segmentation cost for each proposal. We refer to [6, 15] for more details including the training
procedure.

The foreground prediction branch is a light-weight fully convolutional network to estimate the
foreground regions that belong to any object instance.The more detailed design of the foreground
prediction branch is in the Appendix. This guides the training of the mask branch through our
cross-task consistency loss proposed in the following Sec. 3.3. Once training is done, we discard
this branch and only use the objectness and mask prediction branch at inference time. Therefore,
we would not introduce any additional parameter or computational redundancy, which benefits the
running efficiency.
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Figure 3: Working principle of consistency loss.

3.3 Learning with the cross-task consistency regularization
A critical limitation of the OWIS is the never-perfect annotations due to the difficulties in annotating
class-agnostic object instances. Towards alleviating this issue, we propose a regularization to provide
extra supervision to guide the OWIS model training under incomplete annotations.

We construct a branch to predict the foreground regions that belong to any of the object instance.
Formally we create the the foreground annotation G(x, y) calculated by

G(x, y) =

{
0, if

∑K
i=1 g

i(x, y) == 0

1, otherwise,
(1)

where gi(x, y) is one of the K annotated object instances for the current image and the union of gi
defines the foreground object regions. Here (x, y) denotes a coordinate of a pixel in the an image.
We use G(x, y) as labels to train the foreground prediction branch.

Our consistency loss encourages the model outputs to have the relationship indicated in Eq 1, which
states that the the foreground prediction should be the union of instance predictions. To do so, we use
the following equation as an estimate of the foreground from the instance prediction:

Ĝ(x, y) = Φ

 K∑
j=1

mj(x, y)

 , (2)

where mj means the confidence of pixels in j-th predicted mask, and Φ represents the Sigmoid
function. Then, let the foreground prediction from the foreground prediction branch be F , our
cross-task consistency loss is to make F and Ĝ(x, y) consistent, which finally leads to the following
loss function.

Lc = DICE(Ĝ,F ) + BCE(Ĝ,F ), (3)

where DICE and BCE denote the dice-coefficient loss [19] and binary cross-entropy loss, respectively.

Consistency loss enjoys the following appealing properties. It is self-calibrated and independent with
the incompleteness level of labels. As shown in Figure 3, for a instance mistakenly annotated as
background, but the foreground prediction branch and mask prediction branch both correctly find
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it, the model would be punished through mask loss and foreground loss. However, the consistency
loss think this prediction is correct. In this way, consistency loss down-weights the adverse effects
caused by other unreliable segmentation loss. The mitigation and the compensation factor synergize
to relieve the overwhelming punishments on unlabeled instances.

3.4 Fully-supervised learning
The overall fully-supervised optimization of the proposed SOIS is carried out by minimizing the
following joint loss formulation Lf ,

Lf = αLm + βLp + γLc + ωLo, (4)
where Lm = BCE(m,g) + DICE(m,g), (5)

Lp = BCE(F,G) + DICE(F,G), (6)
Lo = BCE(s,v), (7)

whereLm, Lp andLo denote the loss terms for mask prediction, foreground prediction, and objectness
scoring, respectively. α, β, γ and ω are the weights of the corresponding losses. m and g represent the
predicted masks and corresponding groundtruth, respectively. F and G is the foreground prediction
result and the generated foreground groundtruth, while the estimated objectness score is denoted with
s. v is a set of binary values that indicate whether each mask is an instance. Before computing the
Lm, matching between the set of predicted masks and groundtruth has been done via the bipartite
matching algorithm defined in [6].

3.5 Extension to semi-supervised learning
Due to the ambiguity of the instance definition in OWIS, it is much harder for the annotators to follow
the annotation instruction, and this could make the annotations for OWIS expensive. It is desirable
if we can use unlabeled data to help train OWIS models. In this regard, our proposed cross-task
consistency loss only requires the outputs of both predictors to have a consistent relationship indicated
in 1, and does not always need ground truth annotations. Thus, we apply this loss to unlabeled data,
which becomes semi-supervised learning. Specifically, the easier-to-learn foreground prediction
branch is able to learn well through a few labeled images in the warm-up stage. Then the resulted
foreground map can serve as a constraint to optimize the open-world mask predictions with the help
of our cross-task consistency loss, when the labels do not exist. In this way, our Semi-SOIS achieves
a good trade-off between the annotation cost and model accuracy.

Semi-supervised learning process. Given a labeled set Dl = {(xi, yi)}Nl

i=1 and an unlabeled set
Du = {xi}Nu

i=1, our goal is to train an OWIS model by leveraging both a large amount of unlabeled
data and a smaller set of labeled data. Specifically, we initially use Dl to train the SOIS as a warm-up
stage, giving a good initialization for the model. We then jointly train the OWIS model on the both
labeled and unlabeled data. For the labeled data, we employ the loss function defined in Eq 4. For the
unlabeled data, we apply only the cross-task consistency loss Lc.

4 Experiments
For demonstrating the effectiveness of our proposed SOIS, we compared it with other fully-supervised
methods through intra-dataset and cross-dataset evaluations. We also performed ablation studies in
these two settings to show the effect of each component. Moreover, we apply the proposed cross-task
consistency loss for semi-supervised learning and test our method on the UVO validation set.

4.1 Implementation details and evaluation metrics
Implementation details Detectron2 [20] is used to implement the proposed SOIS framework,
multi-scale feature maps are extracted from the ResNet-50 [21] or Swin Transformer [22] model
pre-trained on ImageNet [23]. Our transformer encoder-decoder design follows the same architecture
as in Mask2Former [6]. The number of object queries M is set to 100. Both the ResNet and
Swin backbones use an initial learning rate of 0.0001 and a weight decay of 0.05. A simple data
augmentation method, Cutout [24], is applied to the training data. All the experiments have been
done on 8 NVIDIA V100 GPU cards with 32G memory.

Pseudo-labeling for COCO train set Pseudo-labeling is a common way to handle incomplete
annotations. To explore the compatibility of our method and the pseudo-labeling operation, we
employ a simple strategy to generate pseudo-labels for unannotated instances in the COCO train
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Table 1: Results of UVO-train→ UVO-val intra-dataset evaluation.
Metric Backbone AP100(%) APs(%) APm(%) APl(%) AR100(%) AR10(%)
MaskRCNN R-50 13.41 4.91 12.33 17.45 22.77 20.01
LDET R-50 16.25 3.27 13.58 22.93 35.64 23.73
Mask2Former R-50 21.85 6.16 16.82 31.65 41.18 28.26
SOIS (Ours) R-50 23.38 6.59 17.35 34.23 41.94 29.24
Mask2Former Swin-B 33.27 9.34 25.21 47.80 50.81 37.49
SOIS (Ours) Swin-B 38.02 12.31 28.64 53.22 54.74 41.78

set [1] in our experiments. Specifically, we follow a typical self-training framework, introducing
the teacher model and student model framework to generate pseudo-labels. These two models have
the same architecture, as shown in Figure 6, but are different in model weights. The weights of the
student model are optimized by the common back-propagation, while the weight of the teacher model
is updated by computing the exponential moving averages (EMA) of the student model. During
training, the image i is first fed into the teacher model to generate some mask predictions. The
prediction whose confidence is higher than a certain value would be taken as a pseudo-proposal. The
state Sij of the pseudo-proposal pij is determined according to Equation (8).

Sij =

{
True, if argmax(ϕ(pij , gi)) 6 ε,

False, otherwise,
(8)

in which gi means any ground truth instance in the image i. ϕ denotes the IOU calculating function,

and ε is a threshold to further filter the unreliable pseudo-proposals. Finally, pseudo-proposals with
states True would be considered as reliable pseudo-labels. Here, the confidence and IOU threshold ε
for selecting pseudo-labels are set to 0.8 and 0.2, respectively. Then, we jointly use the ground truth
and the pseudo-labels to form the training data annotations. If a region is identified as belonging to
an instance in the pseudo-label, it will be considered as a positive sample during training.

Evaluation metrics The Mean Average Recall (AR) and Mean Average Precision (AP) [1] are
utilized to measure the performance of approaches in a class-agnostic way.

4.2 Fully-supervised experimental setting

Table 2: Results of COCO2017-train(VOC) →
COCO2017-val(none-VOC) intra-set evaluation.

Metrics AR100 ARs ARm ARl

Mask2Former 9.21 4.56 8.79 19.30
SOIS 11.03 4.87 9.24 26.81

Intra-dataset evaluation UVO is the largest
open-world instance segmentation dataset. Its
training and test images are selected from the
same domain, while they do not have any over-
lap. Here, we perform the leaning process of
SOIS on the UVO-train subset and conduct the
test experiments on the UVO-val subset. Be-
sides, we split the COCO dataset into 20 seen (VOC) classes and 60 unseen (none-VOC) classes.
We train a model only on the annotation of 20 VOC classes and test it on the 60 none-VOC class,
evaluating its ability of discovering novel objects.

Cross-dataset evaluation Open-world setting assumes that the instance can be novel classes in the
target domain. Therefore, it is essential for the OWIS method to handle the potential domain gap with
excellent generalization ability. Cross-dataset evaluation, in which training and test data come from
different domains, is necessary to be conducted. Here, we first train the proposed SOIS model and
compared methods on the COCO-train subset, while testing them on the UVO-val dataset to evaluate
their generalizability. Then we extend the experiments to an autonomous driving scenario, training
the models on the Cityscapes [2] dataset and evaluating them on the Mapillary [25].Cityscape have
8 foreground classes , while Mapillary contains 35 foreground classes including vehicles, animals,
trash can, mailbox, etc.

4.3 Fully-supervised experimental results
Intra-dataset evaluation The results are illustrated in Table 1. The single-stage approaches based
on the mask classification framework perform better than other two-stage methods. Among them,
our proposed SOIS achieves a significant performance improvement over the Mask2Former baseline,
which is 4.75% in AP100 and 3.93% in AR100 when using the Swin-B backbone. For VOC→none-
VOC setting, the experimental results are shown in Table 2, which verified that our proposed method
can improve the performance for all instances, especially large ones.
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Table 3: Results of COCO2017-train→ UVO-val cross-dataset evaluation.

Metric Backbone AR100 AP100 APs APm APl

MaskRCNN R-50 38.17 19.05 6.27 13.15 28.05
LDET R-50 42.63 21.27 5.66 17.52 18.38
GGN R-50 43.30 20.30 8.70 18.20 27.30
Mask2Former R50 48.71 25.24 6.46 16.09 40.37
SOIS (Ours) R-50 51.28 27.62 7.80 18.61 43.42
Mask2Former Swin-B 51.38 28.16 7.29 18.91 45.48
SOIS(Ours) Swin-B 54.86 32.21 9.03 21.92 50.69

(a) Groundtruth (b) MaskRCNN (c) LDET (d) Mask2Former (e) SOIS (Ours)

Figure 4: Visualization results of COCO→UVO cross-dataset evaluation. The predicted boxes
of two-stage methods MaskRCNN and LDET are also drawn. Proposed SOIS can discover both
unlabeled object (first row) and unseen class of instances (second row) as shown in red boxes.

Table 4: Results of SOIS with SOLOV2 structure (
UVO-train→ UVO-val).

Metric Backbone AR100 AP100 APs APm APl

SOLO V2 R-50 39.41 22.25 5.56 14.18 34.12
SOLO V2SOIS R-50 42.52 25.04 6.77 16.90 38.33

Cross-dataset evaluation For the
COCO→UVO task, according to Table 3,
it is clear that the proposed SOIS outper-
forms all previous methods, achieving a new
state-of-the-art AR100 at 54.86% which is
11.56% higher than previous state-of-the-art
method GGN [4]. We also applied the proposed
techniques to another classic one-stage method SOLO V2 [26]. The experimental results in Table 4
show that it improves AR100 and AP100 by 3.11% and 2.79% compared to SOLO V2. For the
Cityscape→Mapillary task, the overall AP and AR of SOIS still surpass the performance of other
state-of-the-art methods(in Table 8), which demonstrates the effectiveness of our proposed techniques.
We show some of the COCO→UVO visualization results in Figure 7 to qualitatively demonstrate the
superiority of our method. Please refer to the supplementary material for more qualitative examples.

4.4 Ablation study
We perform cross-dataset and intra-dataset ablation studies to analyze the effectiveness of each
component in the proposed SOIS, including the foreground prediction branch and the cross-task
consistency loss. We also try combinations of the pseudo-label generation strategy and our cross-task
consistency loss to investigate the individual and synergetic effects of them. Using the SwinB
backbone, these models are trained on the COCO-train subset and the UVO-train subset, respectively.
The metrics reported in Table 5 are tested on the UVO-val dataset.

Effectiveness foreground prediction branch Table 5 shows that although a separate foreground
prediction branch can guide the method to optimize towards the direction of discovering foreground
pixels, it only slightly boosts the performance.

Effectiveness of cross-task consistency loss Cross-task consistency loss has a positive effect on
both sparse annotated (COCO) and dense annotated (UVO) training dataset. The values of AP100 and
AR100 increase significantly ( 2.74% ↑ and 2.49% ↑ on COCO while 2.90% ↑ and 3.35%↑ on UVO)
after applying the cross-task consistency loss as well as the foreground prediction branches together.
This result outperforms the SOIS counterpart with only pseudo-labeling, showing our effectiveness.
In addition, jointly utilizing our cross-task consistency loss as well as the pseudo-labeling strategy
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Table 5: Ablation results of the proposed components by cross-dataset and intra-dataset evaluations.
Foreground prediction (FP), Cross-task consistency (CTC) loss, Pseudo label (PL).

Component Train on COCO Train on UVO
FP CTC loss PL AP100(%) AR100(%) AP100(%) AR100(%)

28.65 51.54 35.12 51.39
X 29.02 51.60 35.55 51.73

X 30.09 52.97 32.94 51.64
X X 31.39 53.83 38.02 54.74
X X 30.17 52.98 33.35 50.90
X X X 32.21 54.86 37.71 52.27

Table 6: Results of our SOIS and classic semi-
supervised method on UVO-val.

Training Data UVO-train with 30% annotation
Method Fully-SOIS30 Mean Teacher Pseudo Labeling Semi-SOIS30

AP100(%) 21.67 21.95 22.77 25.03
AR100(%) 40.09 40.82 41.56 45.42

Table 7: Results of our SOIS and recent end to end
method on UVO-val.

Training Data UVO-train with 50% annotation
Method LDET50 Mask2Former50 Fully-SOIS50 Semi-SOIS50

AP100(%) 10.61 19.49 22.86 25.22
AR100(%) 25.08 38.08 41.44 47.56

leads to performance improvements on two settings, which demonstrates the synergistic effect of
both approaches.

Effectiveness of pseudo-labeling Pseudo-labeling is not always necessary and powerful for any
types of datasets. As shown in Table 5, the AP100 and AR100 of the COCO trained model increase
by 1.35% and 0.78%, respectively, after applying the pseudo-label generation. However, pseudo-
labeling causes a performance degradation (e.g. 2.18%↓ in AP100) to a model trained in the UVO
dataset. Compared with COCO, the UVO dataset is annotated more densely. We conjecture that the
background annotations of UVO are more reliable than those of COCO, where carefully selected
pseudo-labels are more likely to represent unlabeled objects. The generated pseudo-labels of UVO
contain higher noises than those of COCO. These additional noisy labels mislead the model training.

4.5 Semi-supervised learning experiment
Experimental setting We have divided the UVO-train dataset into the labeled subset Dl and the
unlabeled subset Du. Semi-supervised model Semi-SOIS is optimized as described in Section 3.6
on Dl ∪DU , while the fully-supervised method Fully-SOIS is trained merely on the DL. To ensure
the comprehensiveness of the experiment, two different data division settings are included in our
experiments:{DL=30%, Du=70%} and {DL=50%, Du=50%}. The backbone applied here is Swin-
B. We also implemented the classic Mean teacher model and a simple pseudo-label method based on
the Mask2Former to perform comparison.

Figure 5: Comparison between fully-
SOIS and semi-SOIS

Results and analysis As presented in Figure 5, the Semi-
SOIS50 model trained on the UVO with 50% annotated
data outperforms the Semi-SOIS30 model leaning with
30% labeled training images. However, the performance
increase between the Semi-SOIS30 and Semi-SOIS50

is slight. In addition, Semi-SOIS30 improves Fully-
SOIS30 by 3.36% and 5.33% in AP100 and AR100, re-
spectively. Compared to Fully-SOIS50, Semi-SOIS50

still achieves significant advantages (2.36% in AP100 and
6.12% in AR100). These results reflect that cross-task con-
sistency loss has the ability to extract information from
unlabeled data and facilitates model optimization in the
semi-supervised setting. It is notable that the results of
Semi-SOIS30 are even better than those of Fully-SOIS50.
This illustrates that the information dug out by the cross-
task consistency loss from the remaining 70% unlabeled
data is more abundant than that included in 20% fully-
labeled data. Therefore, our algorithm can achieve better
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performance with fewer annotations. This characteristic is promising in solving the OWIS problem.
In addition, we also compared the semi-SOIS with classic semi-supervised method and recent end
to end segmentation method. The results in Table 6 and 7 show our advantages over the compared
methods.

5 Conclusion

Table 8: Cross-set evaluation on autonomous driv-
ing scenes. Results of Cityscapes→Mapillary.

Method MaskRCNN LDET Mask2Former OSIS(Ours)
AP(%) 7.3 7.8 7.6 8.4
AR10(%) 6.1 5.5 7.0 7.5

This paper proposes the first single-stage frame-
work (SOIS) for the open-world instance seg-
mentation task. Apart from predicting the in-
stance mask and objectness score, our frame-
work introduces a foreground prediction branch
to segment the regions belonging to any instance.
Utilizing the outputs of this branch, we propose
a novel cross-task consistency loss to enforce
the foreground prediction to be consistent with the prediction of the instance masks. We experi-
mentally demonstrate that this mechanism alleviates the problem of incomplete annotation, which
is a critical issue for open-world segmentation. Our extensive experiments demonstrate that SOIS
outperforms state-of-the-art methods by a large margin on typical datasets. We further demonstrate
that our cross-task consistency loss can utilize unlabeled images to obtain some performance gains
for a semi-supervised instance segmentation. This is an important step toward reducing laborious and
expensive human annotation.
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A Appendix

In this appendix, we provide the architecture of the foreground prediction branch (in Figure 6) and
detailed experimental settings first. Then some annotations in UVO dataset are visualized in Figure 7
to show the challenges of open world instance segmentation. Finally, additional visualization results
of proposed SOIS are shown in Figure 8.

Figure 6: Architecture of foreground prediction branch. Multi-scale features extracted from
backbone are fed into the feature fusing module to exchange and fuse the multi-scale information.
Then a fused feature is sent to the prediction head to predict the final foreground map. Considering
the efficiency, we follow [27] to introduce the gOctConv [27] and PallMSBlock [27] to perform
feature fusing.

A.1 Detailed experimental settings
Implementation details For feature extracting, we obtain the multi-scale features through a sequen-
tial backbone network [21, 22], and FPN [28]. The multi-scale features contain D-dimensional feature
maps with resolutions of 1/4, 1/8, 1/16, and 1/32. In the pixel decoder module, six MSDeformAttn
layers are employed, while the transformer decoder have three layers with 100 queries by default.

In fully-supervised learning, the total loss Lf can be formulated as: Lf = αLm +βLp +γLc +ωLo.
We set the weight α of mask loss (Lm) to 5.0, the weight β of foreground loss (Lp) to 1.0, the weight
γ of cross-task consistency loss (Lc) to 1.0 and the weight ω of objectness loss (Lo) to 2.0.

Training settings Specifically, AdamW [29] optimizer and the step learning rate schedule are
applied to optimize our model. An initial learning rate of 0.0001 and a weight decay of 0.05 are
utilized for all backbones. We set a learning rate multiplier of the backbone to 0.1 and we decay the
learning rate at 0.9 and 0.95 fractions of the total number of training steps by a factor of 10. For data
augmentation, we use the large-scale jittering (LSJ) augmentation with a random scale sampled from
range 0.1 to 2.0 followed by a fixed size crop to 1024×1024 on COCO dataset and 640×640 on
UVO dataset. Besides, a Cutout [30] strategy that randomly cuts out a region of size [1/8·w, 1/8·h] to
[1/3·w, 1/3·h] is introduced during training. On COCO dataset, we train our models for 38 × 104

iterations with a batch size of 16, while on UVO dataset, we train our models for 12× 104 iterations
with the same batch size.

SOIS training process with pseudo-labeling on COCO dataset
Algorithm 1: SOIS training process with pseudo-labeling
Data: Image dataset
Result: Proposed SOIS Model Mu

1 initialization the student model Mu, and teacher model Mt=Mu.copy();
2 while Image i /∈ ∅ do
3 read image i and corresponding groundtruth gti;
4 extract backbone feature Xi;
5 pred_masks←Mt.predictor(Xi);
6 pseudo_proposals← filter_masks_with_confidence(pred_masks, confidence_threshold);
7 pseudo labels← filter_masks_with_IOU(pseudo_proposals, IOU_threshold);
8 training labels← merge(gti, pseudo labels);
9 aug_data← Cutout(Xi, training labels);

10 Mu ←Mu.training(aug_data);
11 Mt ←Mt.EMA_update(Mt,Mu)
12 end
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Figure 7: Visualizations of UVO annotations. It is notable that the same class of object may be
labeled as an instance or as background in different images. (as shown in the area highlighted by the
ellipse). This inconsistency of annotations pose a great challenge to the algorithms.
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Figure 8: Visualizations results of our proposed SOIS in UVO dataset. SOIS can discover many
novel objects, as shown in regions in red boxes.
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A.2 Visualization of annotations and our results on UVO dataset
Unlike in closed-world instance segmentation, where the object categories have been clearly defined,
instance definition in OWIS is much more ambiguous and harder for annotators to follow. Inevitably,
the instance annotation could become inconsistent across images, as shown in Figure ??. Our method
is motivated by this observation that the instance annotation in the existing datasets is very noisy. Our
solution to this issue is to introduce a self-correcting mechanism to combat erroneous annotations,
which provides additional guidance to both prediction tasks when the noisy annotations fail to provide
correct supervision. The visualization results in Figure 7 demonstrate that our proposed SOIS can
segment many novel objects that have not been unseen in the training set.
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