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Abstract

In many applications, machine learned (ML) models are re-
quired to hold some invariance qualities, such as rotation,
size, intensity, and background invariance. Unlike many types
of variance, the variants of background scenes cannot be or-
dered easily, which makes it difficult to analyze the robust-
ness and biases of the models concerned. In this work, we
present a technical solution for ordering background scenes
according to their semantic proximity to a target image that
contains a foreground object being tested. We make use of
the results of object recognition as the semantic description of
each image, and construct an ontology for storing knowledge
about relationships among different objects using association
analysis. This ontology enables (i) efficient and meaningful
search for background scenes of different semantic distances
to a target image, (ii) quantitative control of the distribution
and sparsity of the sampled background scenes, and (iii) qual-
ity assurance using visual representations of invariance test-
ing results (referred to as variance matrices). In this paper,
we also report the training of an ML4ML assessor to evaluate
the invariance quality of ML models automatically.

1. Introduction
There are a variety of invariance qualities associated with
machine learned (ML) models. Testing invariance qualities
enable us to evaluate the robustness of a model in its real
world application where the model may encounter variations
that do not feature sufficiently in the training and testing
data. The testing also allows us to observe the possible bi-
ases or spurious correlations that may have been learned by
a model (Wang and Culotta 2021) and to anticipate if the
model can be deployed in other application domains (Wang
et al. 2022). This work is concerned with background invari-
ance testing – a relatively challenging type of testing.

Many types of commonly-deployed invariance testing fo-
cus on variables that can be ordered easily, such as sizes
and rotation angles As illustrated by (Anonymised Authors
2022), ordering the testing results is important for observ-
ing the level of robustness in relation to the likelihood of
different variations (e.g., a slightly rotated car vs. an upside-
down car in an image). However, in background invariance
testing, the term “background” is a multivariate variable and
commonly expressed qualitatively (e.g., an outdoor scene,

in a desert, and so on), making it difficult to order the test-
ing results. Therefore, one cannot judge if a model is ro-
bust against certain variations, or how different background
scenes influence spurious correlations. Furthermore, with-
out a mechanism for ordering background scenes consis-
tently, the ML4ML approach for automated invariance test-
ing (Anonymised Authors 2022) cannot be used.

In the literature, some previous work focused on the qual-
ity of background scenes, e.g., introducing black pixels or
random noise (Lauer et al. 2018) into the background. While
this allows the variations to be ordered, the variations of im-
age quality are indeed very different from the variations of
background scenes. Other previous work focused on test-
ing foreground objects against random background images
(Xiao et al. 2020). While this approach can provide an over-
all statistical indication of the invariance quality, the back-
ground images are randomly selected, and it thus does not
support more detailed analysis such as whether the level of
robustness or biases is acceptable in an application by tak-
ing into account the probabilities of different background
scenes.

In this paper, we present a technical solution to the need
for ordering background scenes by utilizing semantic infor-
mation. Our technical solution is built on the existing tech-
niques of scene understanding in computer vision and those
of ontological networks that are used in many text analysis
applications. With this technique, we are able to:

a. Search for n different background scenes in a meaningful
and efficient way based on the semantics encoded in each
original image with a foreground object x;

b. Control the distribution and sparsity of the n background
scenes according to their semantic distance to the original
image containing x;

c. Construct n testing images from n background scenes for
each x and test an ML model with the testing images;

d. Apply steps (a-c) to a large number of l target images,
x1, . . . ,xl , and generate l × n testing images.

e. Test an ML model for object classification with the l× n
testing images, collect results or intermediate results at
k positions of the model, and transform the results to k
visual representations (referred to as variance matrices)
in a consistently-ordered manner.
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f. Apply step (e) to a model repository of m different ML
models, and use the resultant k×m variance matrices to
train an ML4ML assessor for evaluating the invariance
quality of ML models. With a trained ML4ML assessor,
the process of background invariance testing can be au-
tomated since steps (a-e) can easily be automated.

2. Related Work
The invariance qualities of ML models have been studied for
a few decades. In recent years, invariance testing becomes
a common procedure in invariant learning (Arjovsky et al.
2019; Sagawa et al. 2019; Creager, Jacobsen, and Zemel
2021). Among different invariance qualities, background in-
variance is attracting more attention.

In the literature, several types of variations were intro-
duced in background invariance testing, e.g., by replacing
the original background with random noise, color patterns,
and randomly selected background images.

(Rosenfeld, Zemel, and Tsotsos 2018) tested object detec-
tion models by transforming the original background to ran-
dom noise or black pixels. They reported that all tested mod-
els failed to perform correctly at least in one of their testing
cases. Similarly, (Zhong et al. 2020; Cheng et al. 2020; Chi
et al. 2020) replaced parts of the images with black or grey
pixels for foreground invariance testing.

(Davenport and Potter 2004) noticed that the association
between a foreground object and its background scene af-
fected object recognition and described such association as
“consistency”. (Lauer et al. 2018) tested different models
with consistent and inconsistent backgrounds, while using
the term “semantically-related” to describe consistent asso-
ciation. In particular, they used color texture to replace the
original background of the target image, and controlled the
inconsistency using a parameterized texture model (Portilla
and Simoncelli 2000).

Several researchers experimented with swapping back-
ground scenes in studying background invariance, e.g.,
(Davenport and Potter 2004). (Xiao et al. 2020) provided the
Background Challenge database by overlaying a foreground
object to all extracted backgrounds from other images. To
prepare models (to be tested), they also provided a smaller
version of ImageNet with nine classes (IN9). In this work,
we train a small repository of models on IN9.

Like many invariance qualities (e.g., rotation, size, and
intensity), it is relatively easy to control the variation of
noise level, the size of the replacement patch, and the incon-
sistency level of color textures. However, it is not so easy
to control the level of consistency or semantic association
when one replaces one background scene with another. This
work aims to address this research challenge.

Measuring semantic association between background
scenes can benefit from existing scene understanding mod-
els, e.g., (Pan et al. 2018; Aditya et al. 2015). We refer in-
terested readers to a few comprehensive surveys on scene
understanding, including (Naseer, Khan, and Porikli 2018;
Grant and Flynn 2017). In this work, we use two models,
which were pre-trained on the ADE20k database (Zhou et al.
2017b) and the Place365 database (Zhou et al. 2017a) re-
spectively, to extract semantic information from images.

Figure 1: (a) The variance matrix obtained for rotation in-
variance testing is naturally ordered and its visual patterns
are meaningful. (b) If the background scenes are not ordered
consistently, the same set of background scenes may result
in variance matrices with arbitrary visual patterns, which
cannot be used to train ML4ML assessors.

Our solution also utilizes the techniques developed
in other branches of AI and ML, including ontology
(de Sousa Ribeiro and Leite 2021; Panigutti, Perotti, and
Pedreschi 2020) and association analysis (Agrawal, Srikant
et al. 1994).

3. Definition, Overview, and Motivation
Let xi be the ith image in a dataset D and oi be the fore-
ground object in xi. M be an ML model trained to recog-
nise or classify oi from xi. In general, the invariance quality
of M characterizes the ability of M to perform consistently
when a type of transformation is applied to xi. For exam-
ple, one may apply a sequence of rotation transformations
yi,j = R(x, j◦), j = 0, 1, . . ., and test M with the set of
testing images of yi,j . As reported by (Anonymised Authors
2022), when the testing results are organised into a variance
matrix (Figure 1a), the visual patterns in the variance matrix
can be analyzed using an ML4ML assessor to evaluate the
invariance quality of M.

The background invariance quality characterizes the abil-
ity of M in recognizing oi when it is with different back-
grounds. Hence the transformations of xi involve the re-
placement of the original background in xi with different
background scenes b1,b2, . . . ,bn. The transformations:

yi,j = B(oi,bj), j = 1, 2, . . . , n (1)
generate n testing images. Similar to other invariance test-
ing, the testing results can be summarized as a variance ma-
trix. However, as these background scenes may be ordered
according to their locations in a database, different orderings
may yield different variance matrices (Figure 1b). The visual
patterns in such a variance matrix are not as meaningful as
those resulting from rotation transformations (Figure 1a).

If we can find a way to consistently produce variance
matrices for background transformations, we can adopt
the ML4ML invariance testing framework proposed by
(Anonymised Authors 2022) for background invariance test-
ing. This motivates us to address the following challenges:
1. We need to introduce a metric for measuring the semantic

distance between each background scene and the corre-
sponding target image xi.

2. We need to produce a variance matrix as a uniform
data representation from non-uniform sampling of back-
ground scenes, as sampling background scenes will not



Figure 2: The upper part of the figure shows the previous framework proposed by (Anonymised Authors 2022), where the trans-
formations for invariance testing are uniformly sampled. As the transformations for background invariance testing cannot easily
be sampled uniformly, we propose to introduce a new sub-workflow (lower part) with an additional set of technical components
for enabling non-uniform sampling of such transformations. This sub-workflow is detailed in Section 4. Methodology.

be as uniform as sampling sizes, rotation angles, and
many other types of variables in invariance testing.

3. We need to have an effective way to search for back-
ground scenes that will be distributed appropriately for
producing variance matrices.

As illustrated in Figure 2, the upper part of the figure
shows the previous framework (Anonymised Authors 2022)
for invariance testing involving uniform sampling of trans-
formations. In this work, we introduce a number of new
technical components (the lower part of the figure) to ad-
dress the aforementioned challenges. Once these challenges
are addressed, background invariance testing can be inte-
grated into the ML4ML invariance testing framework.

4. Methodology
In this section, we follow the pathways in the lower part of
Figure 2 to describe a series of technical solutions for en-
abling background invariance testing with non-uniform sam-
pling of the transformations of the original images.

Consider a large collection of l original images xi, i =
1, 2, . . . , l to be tested and a large number of background
scenes bj , j = 1, 2, . . . in an image repository B. The first
part of the sub-workflow is to identify a set of background
scenes suitable for transforming each original image xi (also
called target image) with a specific foreground object oi.
The ML models to be tested for background invariance qual-
ity are expected to recognize oi when oi is combined with
different background scenes, or to classify such combined
images with the label of oi.

Naturally, one may consider to use conventional image
similarity metrics (e.g., cosine/l2 similarity used for metric
learning (Kaya and Bilge 2019)) to find background scenes
similar to xi. However, image similarity does not necessar-
ily imply plausibility. Furthermore, as a suitable background
scene may not (often is desirable not to) have the foreground
object oi, the similarity metrics cannot deal with the con-
flicting requirements, similar background and different fore-

ground, easily. We therefore focus on the semantic distance
between images (Challenge (1) in the previous section).

Image Semantics from Scene Understanding. Research
on scene understanding aims to extract different semantic
information from images. In this work, we represent the se-
mantics of each image with the keywords extracted by em-
ploying existing scene understanding techniques to process
the original images to be tested and background scenes to
be used for transformation. From each image, a (a = xi or
bj), a scene understanding model identifies a set of objects
that are recorded as a set Ka of keywords. We detail the
scene understanding model used in this work in Appendix
A. When a is a target image, i.e., a = xi, we assume that
Ka contains a keyword for the foreground object oi.

Figure 3 shows two examples of foreground images and
two examples of background scenes. For some images,
scene understanding may result in many keywords, but in
other cases, only 1-3 keywords (e.g., the 1st and 3rd images
in Figure 3). Therefore it is desirable to consider not only the
keywords extracted from each image, but also the keywords
related to the extracted keywords.

Ontology from Association Analysis. Ontology is a
graph-based knowledge representation, which is used to
store the relationships among different keywords in this
work. As illustrated in Figure 4, nodes represent keywords,
and an edge between two nodes indicates that two keywords
have been extracted from the same image. The weight on
the edge indicates how strong is the association between the
two keywords. The ontology is typically constructed in a
pre-processing step by training association rules using the
extracted keywords for all images in the repository B.

The Apriori algorithm (Agrawal, Srikant et al. 1994)
is widely used for association analysis. When the size of
the dataset is great, the Frequent Pattern Growth algorithm
(Grahne and Zhu 2005) can run more efficiently. Consider-
ing a set of all possible keywords Kall that can be extracted
from all images in the repository B, the level of association



Figure 3: (a), (b) are target images. (c), (d) are background
candidates. (a) and (c) have only a few detected keywords.

between two keywords ka and kb can be described by two
concepts. Consider three itemsets: sa = {ka}, sb = {kb},
and sab = {ka, kb}, The first concept, support for the item-
set sab:

support(sab) =
number of images where sab is present

total number of images

indicates the frequency of the co-occurrence of ka and kb.
An association rule from one itemset to another, denoted

as ∃sa → ∃sb, is defined as the second concept confidence:

confidence(∃sa → ∃sb) =
support(sa

⋃
sb)

support(sa)
(2)

which indicates the confidence level about the inference that
if the object of keyword ka appears in a scene, the object of
keyword kb could also appear in such a scene. Similarly, we
can compute confidence(∃sb → ∃sa).

For a large image repository, the value of support(s1,2)
is usually tiny, and is more easily changed by the increase
of images in the repository, the introduction of more key-
words, and the improvement of scene understanding tech-
niques. Hence, it is difficult to use the support values con-
sistently. We therefore use the confidence values for weights
on the directed edges in the ontology.

In the ontology, the shortest path between two keywords
indicates the level of association between two keywords,
typically facilitating two measures, (i) the number of edges
along the path (i.e., hops) and (ii) an aggregated weight, e.g.,∏
i wi=1 or min(0, w1 −

∑
i=2(1− wi)αi(αi ≥ 1)).

Background Scenes from Semantic Search. Given a tar-
get image x, to test if an ML model is background-invariant,
we would like to find a set of background scenes that can
be used to replace the background in x while maintaining
the foreground object o. The set of keywords Kx extracted
by the scene understanding model can be used to search for
background scenes with at least one of the matching key-
words k ∈ Kx. When there are many keywords in Kx, se-
mantic search can work very well. However, as exemplified
in Figure 4(top), when an image has only two keywords,
the search will likely yield a small number of background
scenes, undermining the statistical significance of the test.

To address this issue (i.e., challenge (3) in Section 3), we
expand the keyword set Kx by using the ontology that has
acquired knowledge about keyword relationships in the pre-
processing stage. As illustrated in Figure 4, the initial set
Kx has keywords [sky, tree]. The ontology shows that {Sky,
Tree} are connected to {Earth, Field Road, Botanic Garden,
Vegetable Garden, Water}, which form the level 1 expan-
sion set E1,x. Similarly, from E1, the ontology helps us to
find the level 2 expansion set E2,x, and so on. The set of all
keywords after i-th expansion is:

OLx[i] = Kx ∪
( i⋃
j=1

Ei,x

)
(3)

Figure 5 shows three sets of example background scenes
discovered for a targeting image (i.e., the fish image on the
top-left corner of each set). The background scenes in the
first set (left) are discovered by searching the image repos-
itory randomly. Those in the last set (right) are discovered
using the initial set of keywords Kx. Those in the second
set (middle) are discovered using an expanded set of key-
words, OL4, after the 4th expansion. While it is not neces-
sary for every testing image in an invariance testing to be
realistic, the plausibility of a testing image reflects its prob-
ability of being captured in the real world. As discussed in
(Anonymised Authors 2022), it is unavoidable that invari-
ance testing involves testing images of different plausibility,
and therefore it is important to convey and evaluate the test-
ing results with the information of the plausibility. An ideal
set of background scenes should have a balanced distribu-
tion of scenes of different plausibility. Qualitatively, we can
observe that in Figure 5, the random set has too many highly
implausible images and the closest set has images biased to-
wards keywords Kx = {painting, water, tree}, many are not
quite plausible, while the expanded set has a better balance
between more plausible to less plausible background scenes.
In Appendix B, we measure plausibility quantitatively using
semantic distance. And we show more details on the key-
word expansion using the ontology and candidate selection
process in Appendix A.

Testing Images from Background Replacement. The
transformation process for sampling the background varia-
tions is more complex than other commonly-examined in-
variance qualities, requiring the use of a segmentation tool to
separate the foreground object oi from each target image xi,
and then superimpose oi into individual background scenes
discovered in the previous step. As defined in Eq. 1, for n
different background scenes b1,b1, . . . ,bn, the transforma-
tion process produces n testing images yi,1,yi,2, . . . ,yi,n

When a background scene bj also contains one or more
objects of the same class label as the target object oi, it cre-
ates two problems. (i) If oi is superimposed onto bj without
removing those similar objects, this undermines the validity
of the ML testing because when an ML model returns a label
of oi for yi,j , it is unknown that the model has recognized
the superimposed oi or the similar objects in bj . (ii) If those
similar objects are removed, the resulting image yi,j would
have holes that may not be covered by the superimposed oi.



Figure 4: An example image has only two keywords detected by a pre-trained scene understanding model, namely {sky, tree}.
Using an ontology, more keywords can be discovered iteratively, increasing the number and diversity of background scenes.

For these two reasons, we filter out any background scenes
with the same keyword as oi.

Point Clouds from ML Testing. Unlike the previous
framework where the transformation process samples varia-
tions uniformly (e.g., 0◦, 1◦, 2◦, . . . for rotation angles), the
testing images yi,1,yi,2, . . . ,yi,n are a set of non-uniform
sampling points. When we test an ML model M against the
testing images, we can measure the results and intermedi-
ate results of M in many different ways. In (Anonymised
Authors 2022), the different measurements are controlled
by the notions of position and modality. The position in-
dicates where in M the signal may be captured, e.g.,
Max@CONF (the confidence vector of the final predic-
tions) and Max@CONV-1 (the map of the last convolutional
layer). The modality indicates what mathematical function
is used to abstract the signal vector or map at a position to
a numerical measure, e.g., Mean or Max. Hence, within the
context of an ML model M, a fixed position (ps) and a fixed
modality (md) for each testing image yi,j , ML testing re-
sults in a numerical measure S(M, ps,md,yi,j).

In addition, we can measure the semantic distance be-
tween each testing image yi,j and the target image xi. As
shown in Eq. 2, the confidence concept in association analy-
sis is non-commutative. We therefore always use the seman-
tic distance starting from xi. This assigns the value m(yi,j)
with a position away from xi.

Consider two different testing images yi,j and yi,k and
their corresponding semantic distances to xi as di,j and di,k.
The difference between their numerical measures

vj,k = dif(S(M, ps,md,yi,j), S(M, ps,md,yi,k) (4)

indicates the variation between the two testing results. As the
variation corresponds to positions di,j and di,k, this gives us

a 2D data point at coordinates pj,k = (di,j , di,k) with data
value vj,k. When we consider all the testing results for all
yi,1,yi,2, . . . ,yi,n as well as xi, there is point cloud with
n(n+1) data points in the context of xi. In Appendix B, we
list details on the semantic distance di,j and di,k obtained
using the ontology.

When we combine the testing results for all l targeting
images, we have a point cloud with ln(n + 1) data points,
which can be visualized as scatter plots. The first column in
Figure 6 shows five examples of such point clouds. Because
the number and the distribution of these points depend on
the set of background scenes, we can observe that when the
level of expansion OL[i] (see Eq. 3) increases, the sampling
has more data points and better distribution.

Variance Matrices from RBF-based Resampling. Be-
cause the sampling of background transformation is not uni-
form (i.e., challenge (2) in Section 3), unlike the previous
framework in Figure 2, we have to consider the options of
training an ML4ML assessor with point clouds or convert-
ing point clouds to variance matrices. We select the latter op-
tion primarily because, in the previous framework, ML4ML
assessors are trained with ML experts’ annotation of invari-
ance quality based on their observation of variance matrices.
Replacing variance matrices with scatter plots in the annota-
tion process would introduce an inconsistency in the frame-
work in general and annotation in particular. In the short
term, this would not be desirable, but in the longer term,
one should not rule out the possibility of training ML4ML
assessors with scatter plots.

We use the common approach of radial basis functions
(RBFs) to transform a point cloud into a variance matrix. For
each element e in a variance matrix, an RBF defines a circu-
lar area in 2D, facilitating the identification of all data points



Figure 5: Three sets of example background scenes discovered for a target image of fish (the top-left of each set). The random set
includes mostly unsuitable images. The closest set includes those discovered using only the original keywordsKx = {painting,
water, tree}. The expanded set includes those discovered using the ontology, showing more suitable background scenes.

in the circle. Let these data points be p1, p2, . . . , pc and their
corresponding values are v1, v2, . . . , vc. As discussed ear-
lier, the coordinates of each data point are determined by
the semantic distances from the target image to two testing
images. A Gaussian kernel φ is then applied to these data
points, and produces an interpolated value for element e as

value(e) =

∑c
i=1

(
φ(‖e− pi‖) · vk

)∑c
i=1 φ(‖e− pi‖)

However, when the RBF has a large radius, the computation
can be costly. When the radius is small, there can be cases
of no point in a circle. In order to apply the same radius
consistently, we define a new data point at each element e
and use K nearest neighbors algorithm to obtain its value
u(e). The above interpolation function thus becomes:

value(e) =
φ(0) · u(e) +

∑c
i=1

(
φ(‖e− pi‖) · vk

)
φ(0) +

∑c
i=1 φ(‖e− pi‖)

In Figure 6, we show the application of three different
RBFs. The mixed green and yellow patterns in row OL[1]
gradually become more coherent towards OL[5]. We can
clearly see a green square at the centre and yellow areas to-
wards the top and right edges.

ML4ML Assessor Training and Deployment. With the
variance matrices, we can use the same processes to train
ML4ML assessors and deploy them to evaluate the back-
ground invariance quality of ML models in the same way as
the previous framework. The same technical approaches in
(Anonymised Authors 2022) can be adopted, including: (i)
collecting variance matrices and ML models, (ii) splitting
the model repository into a training and testing set and pro-
vide expert annotations of invariance quality based on vari-
ance matrices, (iii) engineering of imagery features for vari-
ance matrices, (iv) training ML4ML assessors using differ-

ent ML techniques, and (v) testing and comparing ML4ML
assessors.

5. Experiments
Testing Image Generation. We use the BG-20k (Li et al.
2022) database with 20,000 background images as all the
candidates. We train a small repository of 250 models on the
IN9 (smaller ImageNet) database (Xiao et al. 2020) to align
with the previous attempts of background invariance testing
(with randomly selected backgrounds).

For each model, we measure the signals at two positions,
including the final predictions and the last convolutional lay-
ers (or the last layer before the final MLP head for Vision
Transformers), as these two positions are considered impor-
tant and interesting by our annotators. We use the max as
the modality, and subtraction as the dif() operator in Eq. 4.
As a result, for each model, we will have two original scatter
plots (point clouds).

For RBF-based interpolation, we use the following pa-
rameters: (r=32, σ=10, K=32). For each model, we there-
fore obtain two variance matrices. For other settings of the
interpolation, we refer interested readers to the Appendix B.

Training ML4ML Assessors. We build a small model
repository of 250 models for object classification. The mod-
els were trained under different settings:
• Architectures: VGG13bn, VGG13, VGG11bn, VGG11

(Simonyan and Zisserman 2014), ResNet18 (He et al.

Table 1: IRR: Cohen’s and Fleiss’ kappa scores

Cohen’s Coder 1 Coder 2 Coder 3 Fleiss’
Coder 1 1 0.651 0.643
Coder 2 0.651 1 0.591 0.628
Coder 3 0.643 0.591 1



Figure 6: Original scatter plots (first column) and inter-
polated variance matrices (second to fourth column). The
scatter plots are generated using the ontology level one to
five, i.e., OL[1], OL[2], . . . , OL[5] for a randomly selected
model M61. Interpolant 1 - 3: (kernel size 16 σ=5), (kernel
size 32 σ=2), and (kernel size 32 σ=10).

2016), and Vision Transformer (Dosovitskiy et al. 2020)
• Hyper-parameters: learning rate, batch size, epochs
• Augmentation: rotation, brightness, scaling, using im-

ages with only foreground (black pixels as background)
• Optimizers: SGD, Adam, RMSprop
• Loss: cross-entropy loss, triplet loss, adversarial loss

We use our sub-workflow in Figure 2 to generate testing
images using the target images in the IN9 dataset, and the
background scenes in the BG-20K database. We apply these
models to the generated testing images. With the two mea-
suring positions per model, we generate two variance matri-
ces using the results from the ML Testing process.

For each model, we then provide professional annotations
based on the original scatter plots and interpolated variance
matrices with three quality levels, namely, 1) not invariant,
2) borderline, and 3) invariant. In Appendix C, we show the
statistics of the model repository, as well as a small ques-
tionnaire and more detail on the annotation process.

Finally, to automate the testing process, we extract the
same set of statistical features as (Anonymised Authors
2022), e.g., mean / standard deviation, from the interpolated
variance matrices. After that, we use the statistical features
and the professional annotations of the training set of the
model repository to train an ML4ML assessor, e.g., a ran-
dom forest / adaboost in our case.

To evaluate the feasibility of the automation process us-
ing ML4ML assessors, we split the model repository into

Table 2: Experiment results: the automation accuracy using
random forest as the assessor is around 80% and the inter-
rater reliability score with majority votes is around 0.65.

Automation Accuracy IRR Score
Random Forest 79.7 + 7.5% 0.649+0.091

AdaBoost 74.8 + 9.1% 0.599+0.102
Worst-case Acc 64.4% 0.387

a training set (2/3 of the models) and a testing set (1/3
of the models). We do not tune any hyper-parameters for
the ML4ML assessors, therefore we do not further split the
training set into training and validation set. To make the
results more statistically significant, we randomly split the
data, repeat the experiments ten times and report the aver-
aged results and the standard deviation.

Results and Analysis In Table 2 we show that the majority
votes of the professional annotations have around 0.4 IRR
score with worst-case accuracy, which shows that the anno-
tations are still aligned with the traditional accuracy metric.
However, the professional labels are provided by consider-
ing the variance matrices and they are the decisions from
many different factors instead of relying only on one single
metric. Furthermore, Table 1 shows that the inter-rater reli-
ability scores among the three professionals are around 0.65
which indicates that the annotations are consistent compared
with many NLP tasks reported by (El Dehaibi and MacDon-
ald 2020). Therefore, we believe that such annotations are
both desirable and reliable.

In Table 2, we also show that by using ML4ML assessors
(Anonymised Authors 2022), we could achieve around 70-
80% automation accuracy which shows that the automation
method (using ML4ML assessors) can achieve a satisfactory
accuracy (∼80%). Furthermore, the IRR scores between the
predictions from ML4ML assessors and the majority votes
are similar to those of the three coders (∼0.6). Therefore
it shows the proposed framework can work as a fully auto-
mated background testing mechanism with sufficient accu-
racy. For more studies and details on the ML4ML assessor,
we refer interested readers to Appendix C.

6. Conclusion
In this work, we propose a technical solution to address
a major limitation of an invariance testing framework re-
cently reported by (Anonymised Authors 2022). The limi-
tation is that background invariance testing cannot be incor-
porated into the framework as many other invariance prob-
lems. Our technical solution brings several non-trivial tech-
niques together to overcome the three challenges in Section
3. The introduction of ontology is both novel and vital in
making background invariance tests as meaningful as other
commonly-seen invariance tests, e.g., rotation invariance. In
this way, the previous framework has been expanded and
improved significantly, paving the critical path for introduc-
ing other invariance tests with transformations that are not
uniformly sampled, e.g., variations of clothing or hairstyles,
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