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Vision-Language Matching for Text-to-Image
Synthesis via Generative Adversarial Networks

Qingrong Cheng, Keyu Wen, and Xiaodong Gu

Abstract—Text-to-image synthesis is an attractive but chal-
lenging task that aims to generate a photo-realistic and se-
mantic consistent image from a specific text description. The
images synthesized by off-the-shelf models usually contain limited
components compared with the corresponding image and text
description, which decreases the image quality and the textual-
visual consistency. To address this issue, we propose a novel
Vision-Language Matching strategy for text-to-image synthesis,
named VLMGAN#*, which introduces a dual vision-language
matching mechanism to strengthen the image quality and se-
mantic consistency. The dual vision-language matching mecha-
nism considers textual-visual matching between the generated
image and the corresponding text description, and visual-visual
consistent constraints between the synthesized image and the
real image. Given a specific text description, VLMGAN* firstly
encodes it into textual features and then feeds them to a dual
vision-language matching-based generative model to synthesize
a photo-realistic and textual semantic consistent image. Besides,
the popular evaluation metrics for text-to-image synthesis are
borrowed from simple image generation, which mainly evaluate
the reality and diversity of the synthesized images. Therefore,
we introduce a metric named Vision-Language Matching Score
(VLMS) to evaluate the performance of text-to-image synthesis
which can consider both the image quality and the semantic
consistency between synthesized image and the description. The
proposed dual multi-level vision-language matching strategy
can be applied to other text-to-image synthesis methods. We
implement this strategy on two popular baselines, which are
marked with VLMGAN+A11“GAN and VLMGAN+DFGAN . The
experimental results on two widely-used datasets show that the
model achieves significant improvements over other state-of-the-
art methods.

Index Terms—Text-to-image synthesis, Generative Adversarial
Networks, vision-language matching.

I. INTRODUCTION

Photo-realistic image synthesis [1], [2] has drawn lots of at-
tention in recent years, which has many potential applications,
such as art design, computer graphics, and so on. Deep Neural
Networks (DNNs) is powerful model for image related tasks,
such as image generation [3], [2] and image encoding [4].
Remarkably, Generative Adversarial Networks (GANs) [5] is
a milestone for image synthesis. GANs-based methods have
achieved incredible results on various image synthesis tasks,
especially in high-resolution image generation [6], image style
transfer [7], and text-to-image synthesis [8], [9], [10], [11],
[12], [13], [14]. Among them, text-to-image synthesis is one
key research sub-direction of Generative Adversarial networks.
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Fig. 1. Illustration of the dual multi-level Vision-Language Matching that
presents the basic idea of learning text-to-image synthesis by strengthening
the semantic and visual matching of generated image with the real image
and the corresponding text description. The bounding boxes indicate different
image local-level feature, which are extracted by pre-trained model.

To be specific, text-to-image synthesis aims to generate photo-
realistic and text-consistent image based on a specific text
description. Image synthesis conditioned on natural language
description has become an attractive direction, which presents
great potential application in practical. For this task, a large
mount of approaches [11], [8], [15], [9], [16], [17], [10],
[18], [19], [20], [21], [22] have been proposed to deal with
this issue. The technique direction of text-to-image contains
traditional DNNs and GANs. The former [23] adopts a DNNs
to recover the image like other image reconstructions [24],
[2]. Generally, GANs-based text-to-image synthesis has two
branches of techniques, one-stage framework and multi-stage
framework. One-stage framework follows the conventional
GANs framework, which contains only one generator and one
discriminator, such as GAN-INT-CLS [11], DFGAN [17]. For
example, GAN-INT-CLS [11] concatenates the text embed-
ding vector with a random noise vector and then feeds it into
the generator to synthesis text-conditioned image. Multi-stage
framework for text-to-image synthesis consists of multiple
generators and discriminators, which are stacked in a pipeline,
such as StackGAN [21], StackGAN++ [22], DMGAN [10],
MA-GAN [25]. Compared with one-stage framework, multi-
stage framework [21], [22], [10] is also a popular solution for
text-to-image synthesis, which firstly generates relatively blur
and low-resolution images and then refines them to photo-



realistic and high-resolution images. Since attention mecha-
nism [26] shows excellent performance in various tasks such
as language translation, combining attention mechanism with
multi-stage GANs [8] shows excellent performance in text-to-
image synthesis. AttnGAN becomes an popular baseline and
many researches follow their work, such as [15], [10], CFA-
HAGAN [9]. Cheng et al. proposed CFA-HAGAN [9] for text-
to-image synthesis, which contains cross-modal attention and
self-attention in the generation framework. SAMGAN [27]
also adopts self-attention to support text-to-image synthesis in
GAN.

Text-to-image synthesis is significantly different from sim-
ple image synthesis, which contains two challenges, visual
reality and textual-visual semantic consistency. The visual
reality of image synthesis has been fully studied with the
development of generative models, especially GANs [5]. Some
approaches [1], [6] can generate highly realistic images, which
are even difficult for our human to distinguish. The visual-
textual semantic consistency is the key challenge for text-to-
image synthesis on account of the variegated text description.
Although many approaches have ability in synthesizing rela-
tively fine-grained and realistic images, especially for simple
datasets such as CUB dataset [28], they rarely concentrate on
the multi-level semantic consistency between the generated
images and the corresponding texts. Recent approaches can
synthesize relatively realistic images while they may fail to
generate images that are semantically consistent with the text.
For example, for a description “small bird, with white breast,
red head and black wings and back”, the images synthesized
by DMGAN [10] and AttnGAN [8] do not identify with
the description especially “red head” as well as the ground
truth image although they look realistic, as shown in the
fourth column of Figure 4. Therefore, under the condition
of photo-reality of image, text-to-image synthesis should focus
on both the textual-visual matching and visual-visual matching
simultaneously. Textual-visual matching can keep the image
content consistent with the text description. The visual-visual
matching consider the image quality and semantics of image
content.

Besides, how to fairly evaluate the performance of the
text-to-image synthesis is a significant issue that needs to be
dealt with. As mentioned before, text-to-image synthesis aims
at generating both realistic and semantic consistent image.
Therefore, the evaluation metric should also include the two
aspects, visual reality and textual-visual consistence. The pop-
ular evaluation metrics (IS [29] and FID [30]) mainly consider
the visual reality, which are widely-used in image generation
and image in-painting. To be specific, the IS calculates the KL
divergence between the generated data and the original data,
which are extracted by the pre-trained Inception-v3 model.
The FID measures the Fréchet Distance between synthetic data
and real data, which is extracted by the pre-trained Inception-
v3 model. As is known, the accepted Inception-V3 is pre-
trained by classification task on ImageNet [31] dataset, which
contains up to several million images. Besides, most images
only contain one object, which is usually located in the center.
Therefore, this a gap between the distribution of ImageNet
and the chosen datasets. Besides, the text-to-image synthesis

is a pairing translation task, which should consider the syn-
thesized image’s quality and the semantic consistency with
the text description. However, both FID and IS only consider
the synthesized images while ignoring the text description.
Thus, text-to-image synthesis needs a new evaluation metric
which takes the consistency between the description and the
synthesized image to make up for deficiencies of FID and
IS. Meanwhi, the text-to-image task is suitable for a pairing
evaluation metric that can take the two aspect into account.

Motivated by the mentioned observations, we aim to synthe-
size highly semantically consistent and photo-realistic images
from the perspective of dual visual-textual matching and eval-
uate them under both visual reality and visual-textual semantic
consistency. To this end, we first propose a novel vision-
language matching model (VLM) that can effectively explore
the similarity between image and text based on metric learning.
Then, we view the proposed VLM as an additional constraint
block and insert it into a multi-stage GANs-based text-to-
image synthesis framework. Besides, multi-level matching
between the synthesized image and the real image is also con-
sidered. Figure 1 shows the basic idea of the proposed method,
which aims to strengthen both the textual-visual matching
between the synthesized image and the text description and
the visual-visual consistency between the synthesized image
and the real photo-realistic image.

According to the basic idea, we propose a novel metric
for evaluating text-to-image synthesis performance in another
view, called Vision-Language Matching Score (VLMS). As
mentioned before, text-to-image synthesis focuses on both the
image quality and the semantic consistency between the image
contents and text description. The proposed VLMS is obtained
by a pre-trained Vision-Language Matching model, which
is trained by ground-truth image-text pair data with metric
learning. Experiments and analyses show that this metric can
consider both the visual reality and textual-visual consistency.

The critical contributions of our VLMGAN approach are
listed as follows.

1) We design a dual semantically consistent text-to-image
synthesis framework that can strengthen the textual-
visual consistency between the visual content and textual
description and the visual-visual consistency between
the synthesized image and real image. This mechanism
is plug and play, which can be applied to any other text-
to-image task.

2) We propose a novel multi-level Vision-Language Match-
ing model to learn the similarity between image and
text, which can consider the global-level matching, fine-
grained local-level matching, and general-level match-
ing. This model is optimized by metric learning, which
can push the image and text into interpretable represen-
tation space.

3) A novel evaluation metric (Vision-Language Matching
Score, VLMS) is introduced in text-to-image synthesis
to evaluate the performance. The VLMS considers both
the visual reality of generated image and the semantic
consistency between the generated image and the text
description.



We evaluate the proposed dual vision-language matching
strategy on two baselines, AttnGAN and DFGAN. The exper-
iments are conducted on two widely-used datasets, Caltech-
UCSD Birds 200 (CUB) and Microsoft Common Objects
in Context (MSCOCO). The synthesized image quality is
evaluated under the popular metrics, IS, FID, R-precision, and
the proposed VLMS. The experimental results demonstrate
that the proposed method achieves impressive performance
improvement over previous methods. The rest of this paper
is organized as follows: Section II reviews the related works
of text-to-image synthesis briefly. The methodology of our
proposed VLMGAN* is introduced in Section IIl. Then we
present and analyze the experimental results in Section IV.
Finally, we introduce the conclusion of this paper and the
future work of our study in Section V.

II. RELATED WORK

A. Text-to-Image synthesis

Text-to-Image synthesis aims at generating photo-realistic
image that is also highly semantic consistent with the text
description. For this task, many researchers present various
kinds of technical solutions, such as variational inference
[32], conditional PiexICNN [33], and conditional generative
adversarial networks [11]. Mansimov et al. [34] introduce
a soft attention mechanism into DRAW [23] method to align
the text description and the synthetic image. Originally, Reed
et al. [33] propose a conditional PixelCNN [32] based
approach to synthesize a photo-realistic image from the text
description. Generative Adversarial Networks [5] have shown
surprising performance in various generative tasks, specifically
in image synthesis [6] via adversarial learning. For text-to-
image synthesis, GAN also becomes the most popular research
direction, such as [11], [8], [15], [9], [10], [12], [21], [22],
[35], [36], [17] and so on. For instance, Reed et al. [11]
firstly decompose text-to-image synthesis into two subtasks,
encoding the text description to a unique representation and
then synthesizing images conditioned on this vector by gen-
erative adversarial networks, called GAN-INT-CLS. An im-
proved approach, named Generative Adversarial What-Where
Network (GAWWN) [37], can focus on the location where
objects should be drawn. Nguyen et al. [38] propose Plug
and Play Generative Networks (PPGN) to generate images by
interpreting activation maximization.

The multi-stage text-to-image synthesis framework, firstly
introduced in StackGAN [21], shows remarkable superiority
comparing to the one-stage strategy. This critical thought is
widely accepted and applied by many kinds of research [22],
[8], [10], [15], [9], which gradually improves the image res-
olution and quality. Specifically, StackGAN [21] adopts two-
stage GANs to synthesize high-resolution images gradually:
the first generator synthesizes 64x64 pixel images, and then
the second generator refines it to 128x128 resolution. Based
on StackGAN, a more advanced version StackGAN++ [22]
is proposed, which has three generators. Besides, HDGAN
[36] introduces a patch-wise adversarial loss into multi-stage
generative framework.

For synthesizing image conditioned on fine-grained word-
level textual features, AttnGAN [8] adopts the attention mech-
anism into a multi-stage generative framework. MirrorGAN
[12] introduces a mirror procedure in the text-to-image task,
which firstly conducts text-to-image generation and then re-
describes the synthesized image. Zhu et al. [10] propose
a Dynamic Memory Generative Adversarial Network (DM-
GAN), which can refine the generated image by a dynamic
memory block. SDGAN [20] adopts conditional batch nor-
malization to reinforce the text highly relevant elements in the
image features. DFGAN [17] fuses the text information into
the hidden visual feature by a novel deep visual-textual fusion
block in the image synthesis procedure. It should be noted that
DFGAN adopts one-stage framework rather than multi-stage
framework for text-to-image synthesis. ControlGAN [16]
introduces spatial and channel-wise attentive mechanism and
perceptual loss to synthesize high-quality image. LeicaGAN
[39] introduces multiple prior knowledge to enforce semantic
consistency. RiFeGAN [40] learns rich feature for text-to-
image generation from prior knowledge.

Obj-GAN [35] can focus on synthesizing object aware
images by object-driven attentive generative network. Besides,
its discriminator adopt Fast R-CNN with a binary cross-
entropy loss to discriminate the object information of each
bounding box. Tobias et al. [41] introduce OPGAN to focus
on individual objects in generating. CPGAN [42] adopts Yolo-
V3 [43] to design an image content-aware discriminator in
the text-to-image framework, which shows remarkable perfor-
mance. Dong et al. [44] propose a text-to-image synthesis
model in an unsupervised learning manner, which does not
rely on the human-labeled data. Wang et al. [45] propose
an end-to-end framework for text-to-image. Recently, DALLE
[46] shows amazing performance on generating image from
text with the help of pre-training on tons of data, which also
verifies the importance of data volume. However, the images
synthesized by DALLE [46] are usually cartoon style, which
may be due to the pre-training dataset containing large mount
of cartoon picture.

B. Image-text Matching

Cross-modal understanding is an attractive but challenging
task, which includes cross-modal retrieval [47], [48], image
captioning [3] and semantic grounding [49]. Specifically,
image-text matching plays a key role in cross-modal retrieval.
An image-text matching model aims to project the visual im-
age and textual description into a semantic shared space using
contrastive learning [50], [51], [52]. The heterogeneity gap
between various type of data can be bridged by the mapped
space. Specifically, visual and textual features are encoded
separately into the same subspace, where the similarity values
can be directly calculated. Methods can be divided into three
kinds: global matching methods, regional matching methods,
and multi-level matching methods.

For global matching methods, images and texts are encoded
in a global way either with a CNN [53], or an LSTM [54].
The visual features and textual features are then embedded into
the subspace, where their global similarity can be computed
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Fig. 2. Tllustration of the multi-level vision-language matching model. The Visual-Language matching model contains three sub-models: Vision Encoder, Text

Encoder and Matching Scoring Block.

and optimized by a triplet-ranking loss [55]. Since CNNs for
image feature extracting are pre-trained on ImageNet [31],
for text feature extracting, a pre-trained BERT [56] can be
used for more refined features, as did in COOKIE [57].

However, these methods fail to match the concrete objects in
the raw image and words in the sentence, which can be solved
by regional matching methods. Thus SCAN [58] uses a pre-
trained Faster RCNN [59] to detect the concrete objects and
designs a stacked cross attention mechanism to align objects
and words. Further, VSRN [60] adopts graph convolution
[61] to learn the regional relations corresponding to the textual
relations. With cross-modal pre-training and transformer-based
encoders, the similarity score of image and sentence can be
directly learned instead of distance calculation, as did in Uniter
[62].

Considering both regional and global cross-modal matching,
multi-level matching methods learn the object-word alignment
and global semantic alignment simultaneously. GSLS [63]
designs a multi-path structure to get both global and local
similarities. CRAN [64] designs a multi-path structure for
learning the global, local, and relational alignment at the same
time. Wen et al. [47] utilized GAT [65] to learn dual relations
of image objects and backgrounds in alignment with phrases
in sentences. To calculate the similarity between the generated
image and the original sentence more comprehensively, we
design a multi-level matching model VLM in our method.

ITI. VISUAL-LANGUAGE MATCHING GAN
A. Vision-Language Matching Model
The vision-language matching (VLM) model learns the
multi-level similarity of text and image modality, including
local-level matching, global-level matching, and general-level
matching. The architecture of the proposed VLM model is

shown in Figure 2. The VLM model contains three sub-
models: Vision Encoder, Textual Encoder and Matching Scor-
ing Block (MSB). The Vision Encoder and Text Encoder
aim at embedding the image and text into semantic aligned
vectors, which is a key process for connecting the domains
of vision and language. For a fair comparison, we adopt
the same backbone (Inception-v3 [66] for image and Long
Short-Term Memory [54] for text) with DAMSM [8] to
extract the semantic features. Inception-v3 [66] is a widely-
used model for visual feature extraction. LSTM [54] can
solve long distance memory problem, which is widely-used
in natural language processing. The proposed MSB plays a
role of generating a matching score for the image and text by
a transformer encoder.

Text Encoder. Embedding text language, the simplest ap-
proach is adopting bag-of-words (BOW) model, which is
widely-used in many tasks, such as cross-modal retrieval [67].
However, BOW does not consider the semantic context of the
text description, which is gradually replaced by learning-based
model, such as LSTM [54] and Skip-gram [68]. For the ¢-word
of a sentence, an embedding layer embed it into a semantic
vector w; and then feed into the LSTM. Specifically, for a
text, the word feature is denoted by the hidden states, and the
sentence feature is represented by the last hidden state.

(1)

where ¢ (matrix size:256 x Ty, Tj is the sentence length) is
the word feature matrix and P is the sentence feature.
Vision Encoder. The visual feature is extracted by a Convo-
lutional Neural Network, named Inception-v3 [66]. Following
previous works [8], the intermediate features of CNNs can
present the local regional feature of an image, while the
feature of the last layer is the global feature of an image. The

P, = FTexl—Encoder(wh wa, ..., wn),



Inception-v3 [66] model is pre-trained on ImageNet [31].
The local-regional features f (768 x 17 x 17) are denoted by
the output of the mized_6e layer and the global features f
(2048 x 1) are represented by the Mixed_7b layer. With re-
shaping and linear projection, ® (768 x 289) denotes the local-
regional feature and ¢ represents the global image feature. The
projection is shown as follows,

¢:F1><1conv(f)7$:W?7 (2)

where ¢ € RP*289 and ¢ € RP. D is the dimension of visual
and textual feature, which is equal to 256. It should be noted
that only the newly added layers are trainable.

The whole process of visual feature extraction can be
presented by the following formula,

¢>7 5 = FVision—Encoder(‘r) 3)

Matching Scoring Block. The vision-language matching
scoring block aims at producing a general matching score to
evaluate the matching degree between the image and the text.
Transformer [26] has shown promising performance in various
tasks especially in vision-language understanding, such as Bert
[56] and Uniter [62]. Self-attention in Transformer [26] can
deeply explore the semantic relations between visual feature
and textual feature. Therefore, we adopt this mechanism to
learn the matching score between image and text. Calculating
the general-level matching considers both global feature and
local features of the image and sentence feature and word
feature of text. Specifically, the vision-language united feature
is defined as

= Foat(0, 5, ¢, 0). 4)

Where F.,; mean the concat operation. Then, the united
feature is feed into the Transformer-based vision-language
encoder, as follows.

77[] = FTransformer(w)- )

After obtaining the visual-textual latent features, a fully con-
nected layer is chosen to project the features into a hidden
space.

b = Woth + by, (6)

where Wy and by are the learn-able parameters of the fully
connected layer. The final feature can be obtained by Mean
pooling.

w = Fmean_pooling(¢)- (7)

Lastly, the vision-language matching score is calculated by a
Sigmoid function after a Fully Connected layer, which projects
the feature into a 1-dimensional value.

Score = Fsigmoia(W1) + b1), ®)

where W; and b; are the learn-able parameters of the sec-
ond fully connected layer. The whole process of learning
the visual-language matching score can be denoted by the
following formula,

Score = Fysg(®, ¢, 0, D). ©)

Local-level matching. The local-level matching considers
the semantic consistence between the word features and image
local-regional features. Given a specific image with 289 local
regional features and a text description with 7, word features,
the cosine similarity for all possible image region and word
pairs are calculated by the following formula,

e ,
=—"-J _iell,2,..289],5€l,2,..,To.

&3l ll05l
(10)

Here, s(¢;, ;) is the similarity between the i-th image region
and j-th word. We adopt S be the similarity matrix between
word features and image local features. We adopt the popular
attention mechanism [26] to learn the fine-grained similarity.
The word context with respect to each image region is calcu-
lated by a weight sum of image visual feature, as following.

S((bia SDJ)

288
ci =) ayo;, (11
§=0
where
exp (718:5)
Qij = : (12)
! Zigzgo exp (’715i,k)

Here, v, is the in-versed temperature of the softmax function,
set as 4.

Following minimum classification error formulation in
speech recognition [69], the local-level matching score be-
tween the image and the text description is calculated by the
LogSumExp pooling, as following,

T-1

Slocal(Iv T) = lOg <Z ETP (725 (Ci» @1))) ’ (13)

i=1

where S(c;, ;) is the matching score between the i-th word
and the i-th region-context, calculated by cosine similarity, v
is an adjusting factor, set as 5.
crp;
S(eirpi) = - (14)
eIl
Global-level matching. The global-level matching consid-
ers the visual global feature and the global textual feature.
Similarly, for global visual feature ¢ and the sentence feature
© , the matching score is directly calculated by the cosine
similarity,
_ 99
1@lllloll

General-level matching. The general-level matching score
is produced by the pre-trained vision-language Matching Scor-
ing Block. As follows,

Sgeneral (17 T) = FMSB (QS» 57 @, E)

Sglobal (IvT) (15)

(16)

Objective function. Triplet loss is a popular ranking ob-
jective for matching task, which is widely-used in image-text
matching [47], [60], [62]. After obtaining the matching scores
of three levels, the hinge-based triplet ranking loss [55] is
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adopted to optimize the vision-language matching model. The
optimization loss for general-level matching is defined below.

Cgene'r‘al :[a + Sgeneral (I/v T) - Sgeneral (I» T)}Jr"_

, 17)
[Oé + Sgeneral (I7 T ) - Sgeneral (I7 T)]-i-a

where Sgenerar (] ' T) and Syeneral({, T,) are the general-
level matching scores of un-pairing image-text instance,
Sgenerai (I, T') are the general-level matching scores of pairing
image-text instances, and « is a margin. In our experiments, «
is set as 0.2. If the image and the text are closer to one another
in the joint embedding space than any negatives pairs, by the
margin «, the hinge loss is zero. If we substitute the general-
level matching score by local-level and global-level matching
score, we can obtain the loss of Ljocqr and Lgiopal-

Finally, the overall loss function of VLM model is defined
as

£VLM = ﬁlocal + ﬁglobal + ﬁgeneral- (18)

Optimization. The Optimization of VLM contains two
types. The first type is training for supervising text-to-image
synthesis, which is optimizing on the training dataset. The
second type is optimizing the Matching Scoring Block for
obtaining the VLMS to evaluate the performance. This type
is training on the whole dataset including the testing dataset.
The optimizer is Adam and the learning rate is 0.0002. The
training is stopped after 200 epochs.

B. Dual Matching-driven Attentive GAN

For a fair comparison and better understanding, we adopt
AttnGAN [8] as baseline, which is also chosen by many
state-of-the-art methods due to its excellent performance, to

implement the dual vision-language matching strategy. As
a example, the VLMGAN amgan The multi-stage text-to-
image synthesis architecture is stacking three generative-
adversarial blocks sequentially, as shown in the left part of
Figure 3. Given a specific text description, the sentence feature
© and word features ¢ are extracted by the text encoder in
VLM model. The synthesized image can be obtained by the
following procedures.

hO = FO(Fcat(zaFca(a)))a
hi = Fi(hi—1, Fattn,; (hi—1,9)),% € {1,2.}
T; = GZ(I’LZ),’L S {O, 1,2.}

19)

where z ~ N (0, 1) is a random noise vector, F'°* is condition-
ing augmentation (CA) [21] process, and Fyyty, 1S attentive
mechanism described in AttnGAN [8]. Due to the excellent
performance of attentive mechanism, We adopt the word-level
attentive mechanism Fg.,, to fuse the word features into
visual features. The Fytt,, has two inputs, the word features
 and previous hidden features h. Mathematically, the word-
visual fusion context can be defined as follows,

hi = Fattni(ﬁpvhifl) = (00701»' o 7CN) € RDXN; (20)

where
TO —1

¢ = E Qj,iPi-
i=0

Here, o ; is the attention weight between the j-th image
region and the i-th word feature, as follows.

2L

exp (s'5.i)

O = 71, ., <° (22)
>0 exp (57)



where s';; = h;"p; and §';; indicates the similarity between
the j-th feature in hidden feature /& and the i-th word feature.

Objective function. Each stage contains a generator and
discriminator, which are optimized alternately by a generative
loss and a discriminating loss. Specifically, the generative loss
is

2 Brer, 109(Di(20,7),

(23)
where z; is the synthesized image. In this objective function,
the former is the unconditional loss, which determines whether
the synthesized image is real or fake. The latter is the condi-
tional loss, which determines whether the image contents are
matched with the text description or not. The generative loss
function forces the model synthesize photo-realistic and text
semantic consistent images.

At the same time, the discriminator is designed to distin-
guish the generated image is both fake and semantic consistent
or not. Therefore, the discriminating loss also consists of
unconditional visual realism loss and conditional semantic
consistent loss. Mathematically, it is defined as follows.

= — 3 B, llog(Did2))] -

1 1
Lp, = —EEmiNPdam [log(Di(z;))] — 3

?))] -

Ei’i,"’PG% [log(1 — Dy(24))]+

E

—5 e~ Piata [log(Di (i,

5 B g llogl = Di60,2)))
(24)
where Pjqt, is the real data distribution and Pg, is the
generated image data distribution. The first two expressions
are unconditioned losses, which focus on distinguishing the
synthesized image is real or fake. The later two expressions
are conditioned losses, which focus on distinguishing the
synthesized image is consistent with the text description or
not. However, only adopting the discriminator to force the
synthesized image consistence is insufficient. As shown in
Equation 24, the discriminator only considers the global text
feature instead of both global feature and local feature.

To obtain more semantic consistent image, we introduce an
additional supervision part, dual multi-level vision-language
matching module. The dual multi-level vision-language match-
ing module contains two parts, textual-visual matching and
visual-visual matching. We introduce the loss function Ly s
of VLM model to strengthen the textual-visual consistency
between the generated image and the corresponding text.
Besides, the visual-visual consistency between the synthesized
image and the real image should be considered in the objective
function.

Visual-Visual Matching (VVM) also contains three parts,
local-level matching, global-level matching, and general-level
matching. We adopt the vision encoder to extract the local-
level features ¢r,ie and global-level feature afake of the
synthesized image Z, as following.

¢fake7 (bfak:e = FVision—Encoder(i) (25)

Analogously, the local-level features ¢,..,; and global-level

feature @,.,; of the real image

(brealv (breal = FVision»Encoder(x) (26)

The visual-visual global-level matching loss aims at maxi-
mizing the global matching score between the real image and
the synthesized fake image. The loss function is

L:VG(QSTP(Ila afake) =
(S(¢reaz ¢fake)/"'0)

Z o9 (S(¢real7¢fake /TO)+ZB 1 (S(¢rcaza¢fake)/7'0)

27

where B is the batch size and 7y is a hyperparameter (set
as 0.07). S(@real,@;rake) is the cosine similarity between

the paired real image and synthesized image. S(¢,.cqr; @ fare)
is the cosine similarity between the unpaired real image
and synthesized image. The loss function of Vision-Vision
global matching is the sum of fake-to-real and real-to-fake,
as following.

‘CVG = L:VG(arealaafake) + ‘CVG(afakmareal)v

The visual-visual local-level matching loss maximizes the
similarity between the regional features of real image and
synthesized image.

CVL(qsreala qsfake) =
B (S(¢real ¢fake)/T0)
lo
Z O (S (reat®}are)/70) YT S dr )7

(29)
where S(Prear, fake) is calculated by the following formula.

(28)

1
N-1

S(@reats Pfake) = log (Z exp (735 ( real’ (p{ake>>> 73 |

= (30)
Here S(-) is cosine similarity calculation formula and -3 is set
as 5. The loss function of visual-visual local-level matching
is the sum of two parts, as following.

‘CVL - LVL(¢7'eal7 ¢fake) + EVL(¢fakea ¢’r'eal)a

The visual-visual general-level matching loss is calculated
by the pre-trained MSB model, as following.

€1y

Lveen =| Fuss($reat, Prears 0, P) — Fuss(Brake; D pane: 0, P) |3 -
(

32)

The overall loss function of Visual-Visual Matching Ly v s

is the sum of local-level matching Ly ., global-level matching
Ly, and general-level matching Ly gy, as following.

Lyvy =Lve+ Ly + LvceN. (33)

Textual-Visual Matching (TVM) is presented in Section
Vision-Language Matching Model. In text-to-image model, we
feed the synthesized image 2 in the VLM model to calculate
the textual-visual matching loss Ly ;-

The adversarial generative loss, the textual-visual matching
loss and the visual-visual loss are combined in the general
loss function. Therefore, the objective function of the overall
generative model is defined as

2

¢=> La +MLvvym +XaLyiy.
i=0

(34)



where \; and Ao are two balancing factors.They are set as 5 for
VLMGAN pmncan and set as as 0.25 for VLMGAN, prgaN-
In the training process, the three generators are optimized
simultaneously and the three discriminators are optimized
independently. The parameters of vision encoder, text encoder,
and matching scoring block are not trainable.

IV. EXPERIMENTS

In this section, extensive experiments are conducted to
verify the effectiveness of the proposed method. We firstly
introduce the experimental settings and then show the quan-
titative and qualitative evaluation results. Lastly, we present
ablation studies and further discussions.

A. Datasets and Evaluation Metrics

Datasets. Two widely-used benchmarks, CUB [28], and
MSCOCO [70], are adopted to demonstrate the capability
of the proposed method. The CUB contains 11,788 images
belonging to 200 categories, which is divided into two sub-
datasets, 8,855 images for training and the remaining 2,933 for
testing. For each image, there are ten textual descriptions. The
MSCOCO dataset is a larger and more challenging benchmark.
It contains 120k images, and each image is described by five
texts. We split them into a training set with about 80k images
and a testing set with 40k images. The dataset settings are the
same as previous works.

Evaluation Metric. We quantify the effectiveness of the
proposed method in terms of Fréchet Inception Distance (FID)
[30], Inception Score (IS) [29], R-precision [8], and the
proposed VLMS.

The IS calculates the Kullback-Leibler (KL) divergence
between the class distribution of original image and the
class distribution of generated image. The class distribution is
calculated by the pre-trained Inception-v3 model. The higher
IS suggests that the synthesized images are more realistic and
more confident to a specific class. The Inception Score is
calculated by the following formula:

IS = exp(Ex~ps[Drr(Pyx(ylx))||Py(y)]),

where x is the generated fake image, and y is its correspond-
ing semantic label predicted by the pre-trained Inception-
v3 model. The distribution p (y|z) denotes the probability
distribution of image x belongs to a specific category y , and
p(y) is the probability distribution of predicted class.

The FID measures the Fréchet Distance between global
semantic feature of synthesized image and real image, which
are extracted by the pre-trained Inception-v3 model. Thus,
lower value of FID ndicates that the synthesized images are
close to the original images. Lower value is better, vice versa.
The calculation of FID is as follows.

FID = [|m — m, |2 + Tr (C+Cr —2 (CCT)%) . (36)

(35)

where (m, (') are mean and variance of the generated data,
and (m,,C,) are mean and variance of the real data.

The R-precision is to evaluate whether the synthesized
image is consistent with the corresponding description by

retrieving the text description for a given image. For a fair
comparison, we follow the evaluation settings with DMGAN
[10] and quote their results. The VLMS is calculated by a pre-
trained VLM model, considering both the image quality and
the visual-textual semantic consistency.

B. Implementations

The proposed dual vision-language matching strategy on
two baselines is implemented with 7700k CPU and 8 NVIDIA
GeForce GTX2080ti GPUs. For the vision encoder, text en-
coder and visual-language matching scoring model, the batch
size is set to 64. For the VLMGAN  p¢qngan model, the batch
size is set to 24, and the learning rate is 0.0001 for the genera-
tors and 0.0004 for the discriminators. We only apply the dual
multi-level vision-language supervision in the last generator
(256x256) due to the low-resolution images are not well
synthesized. The ADAM optimizer [71] is adopted to optimize
the proposed model. The training of VLMGAN AqmGaN 1S
stopped at 600 epochs for CUB bird dataset and at 120 epochs
for MSCOCO dataset following previous works [8], [10].
The parameters of generative networks and the discriminating
networks are optimized alternatively. For VLMGAN | AnGANs
the training process is shown in Algorithm 1. For another
baseline (DFGAN), the settings are similar with those of
VLMGAN | AtnGAN-

Algorithm 1 Training procedure of VLMGAN ; a¢nGaN

Require: Pre-trained models (Vision-Encoder, Text-Encoder, and
MSB); Batch size M ; Text-image paired instances {7T’, I }; Learn-
ing rate a.
Ensure: Generators (Go, G1, G2) and discriminators (Dg, D1, D3);
1: repeat

2: Sample image-text pairs {I;,7;} and generate random noise
vector z;;
3: Extract representation of text captions by

Y, p= FText-Encoder(wh W2y .eey wn);
4 Generate fake images by (%o, %1, %2) + G(, ¢, 2i)
5: for i€ [0,1,2] do
6: Calculate the discriminative loss Lp,:
7 Update parameters of discriminator D; by Adam opti-

mizer;
8: end for
9: for i € 0,1,2] do
10: Calculate the generative loss Lg;;
11: if 7 is equal to 2 then
12: Calculate textual-visual matching loss Lv s
13: Calculate visual-visual matching loss Lv v ar;
14: end if
15: end for
16: Calculate total loss Lg:

L+ Ley+La, +Lay, +Lvvm + Lvim;
17: Update the parameters of the generators (Go, G1, G2 ) by
Adam optimizer;
18: until VLMGAN_ aumnGan converges
19: return Go, G1, G2, Do, D1, Da.

C. Quantitative Evaluation

The proposed dual vision-language matching module can
be applied to other text-to-image synthesis architectures. In
our experiments, we apply the dual vision-language matching



TABLE I
THE INCEPTION SCORE COMPARISON OF THE PROPOSED VLMGAN* AND
THE STATE-OF-THE-ART METHODS ON THE CUB BIRD DATASET AND
MSCOCO DATASET. DFGAN* MEANS THE SCORES ARE OBTAINED BY
USING THEIR PRE-TRAINED MODEL.

Model Resolution CUB MSCOCO

GAN-INT-CLS [11] 64x64 2.88 £ 0.04 7.88 £0.07

GAWWN [37] 256x256 3.62 007 -

StackGAN [21] 256x256 370 £0.04 8.45 +0.03

StackGAN++ [22] 256x256 3.82 £0.06 -

HDGAN [36] 512x512 415 +£0.05 -

MirrorGAN [12] 256x256 456 £0.04 2647 £0.41

LeicaGAN [39] 256x256 4.62 £0.06 -

DMGAN [10] 256x256 475 £ 0.07 3049 £ 0.57

Bridge-GAN [15] 256x256 474 £ 0.04 16.40 £ 0.30

OPGAN [41] 256x256 - 28.57 £ 0.17

C4Synth [72] 256x256 407 £0.13 -

CGL-GAN [73] 256x256 3.67 £0.04 13.62 + 0.02

KTGAN [19] 256x256 4.85+0.04 31.67 £ 0.36

LD-CGAN [74] 128x128 418+ 0.06 -

SAMGAN [27] 256x256 461 £0.03 2731 +£0.23

CPGAN™ [42] 256x256 - 52.73 £ 0.61

MA-GAN [25] 256x256 476 £ 0.05 -

AttnGAN [8] 256x256 436 £0.04 2589 +£047

DFGAN [17] 256x256 486 £0.04 -

DFGAN* [17] 256x256 470 £ 0.05 18.70 £ 0.07

VLMGAN 4 AitnGAN 256x256 486 £ 0.06 31.84 £ 0.46

VLMGAN  prGan 256x256 495 £0.04 2651 +043
TABLE II

THE FID AND R-PRECISION COMPARISON OF ATTNGAN, DMGAN,
DFGAN, VLMGAN+ATTNGAN AND VLMGAN+D]:GAN ON CUB
DATASET AND MSCOCO DATASET. DFGAN* MEANS THE SCORES ARE
OBTAINED BY USING THEIR RELEASED PRE-TRAINED MODEL. THE ‘|’
MEANS THE LOWER, THE BETTER. THE ‘1’ MEANS THE HIGHER, THE

BETTER.
Methods | CUB MSCOCO
| FID | R-precision T | FID | R-precision
AttnGAN (8] 23.98 67.82+4.43 35.49 85.47+3.69
DMGAN [10] 16.09 72.31£0.91 32.64 88.56+0.28
DFGAN [17] 19.24 - 28.92 -
DFGAN* [17] 21.85 38.76+0.08 27.39 55.34+0.90
VLMGAN | amcan | 1502 7775074 | 3124  89.45:0.52
VLMGAN | prGAN 16.04 72.59+0.32 23.62 82.95+0.60

module on two popular baselines, AttnGAN and DFGAN.
They are marked as VLMGAN, angan and VLMGAN, prgaN
respectively.

The experimental results of Inception Score on CUB and
MSCOCO are reported in Table I. Table I shows that
the proposed VLMGAN,pumcan achieves 4.86 on the CUB
bird dataset, which outperforms the other methods except
for DFGAN and VLMGAN,prgan. Compared with baseline
(AttnGAN) [8], the proposed method VLMGAN, Aimcan can
improve the Inception Score from 4.36 to 4.86 and 25.89 to
31.84. This suggests that the VLMGAN, aqGan can generate
images with better diversity and image quality. It should be
noted that the IS value of the proposed VLMGAN,AunGAN
is lower than CPGAN [42], as a result of CPGAN adopts
pre-trained Yolo-v3 [43] as the discriminator. With extra in-
formation, CPGAN obtains the highest IS score on MSCOCO.

The proposed VLMGAN, anGaN Can obtain same results with
DFGAN on CUB bird daraset. In addition to AttnGAN,
we also choose DFGAN as baseline to implement the dual
vision-language matching strategy named VLMGAN,prgaN-
In original paper of DFGAN, the authors do not report the IS
and R-precision on MSCOCO dataset. Therefore, we obtain
the values by using their public available pre-trained model,
which is marked with DFGAN*. The results in Table I
indicate that VLMGAN,prgan obtain the best IS score (4.95).
However, the IS score on MSCOCO dataset is lower than other
methods. This phenomenon is also appeared in Bridge-GAN
[15]. The cause may be DFGAN only adopts the sentence
feature as condition and the diversity of synthesized images
decreases without word features. Compared with its baseline
(DFGAN), VLMGAN,prgan can improve the IS from 18.70
to 26.51. In summary, the proposed vision-language matching
strategy is beneficial to the performance of two baselines.

The FID and R-precision of AttnGAN, DMGAN, DFGAN,
VLMGAN, Atngan, and VLMGAN,prgan on CUB dataset
and MSCOCO dataset are reported in Table II. DMGAN,
DFGAN, and VLMGAN* are also improved from AttnGAN.
Compared with AttnGAN, the proposed VLMGAN, A¢nGAN
outperforms it by a large margin on both two datasets. Specif-
ically, VLMGAN, aungan improves R-precision from 67.82 to
77.75 for CUB and from 85.47 to 89.45 for MSCOCO. R-
precision evaluates whether the synthesized image is consistent
with the text description by retrieving manner. The image
feature for retrieval is obtained by the pre-trained Vision-
Encoder. The results show that the proposed dual vision-
language matching strategy makes a pivotal contribution to
improve visual-textual semantic consistency. The comparison
of the FID score indicates that the image distribution generated
by VLMGAN, ammcan 1s closer to real image distribution than
others on CUB dataset. Comparing to advanced DMGAN
and DFGAN, the proposed VLMGAN,aumcan also keeps its
superiority,which can obtain competitive results. For another
baseline (DFGAN), we can find that VLMGAN, prgan Obtains
the relatively lower FID on CUB dataset and the lowest FID
on MSCOCO dataset. The FID scores of DFGAN shows that
DFGAN have excellent performance in synthesizing photo-
realistic image. However its semantic consistency is relatively
poor in term of R-precision. This phenomenon also verifies
that some methods can not be good at both image reality
and text semantic consistency. By strengthening the vision-
language matching, VLMGAN,prgan can improve the per-
formance on both FID and R-precision.

D. Qualitative Evaluation

Visual comparisons of AttnGAN, DMGAN, DFGAN,
VLMGAN pingan, and VLMGAN prgan are shown in Fig-
ure 4. In this paper, we use ‘VLMGAN*' to denote
the dual-matching driven methods VLMGAN_pumgan and
VLMGAN, ppgan. In general, the images synthesized by
VLMGAN pingan and VLMGAN, ppgan are more realis-
tic and highly consistent with the text description because
it employs a vision-language matching model and a visual
consistency constraint. On the CUB dataset, the proposed
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Fig. 4. Examples synthesized by AttnGAN [8], DFGAN [17], DMGAN [10], VLMGAN _{ ptmgaN, and VEMGAN_ prgan. The images in the last row are
the corresponding ground truth. The images in the same column are conditioned the same description.

TABLE III
THE PERFORMANCE OF DIFFERENT COMPONENTS OF THE PROPOSED
VLMGAN ON CUB DATASET. ‘W/0’ MEANS *WITHOUT’.

TABLE IV
ABLATION STUDIES ON DIFFERENT LEVEL MATCHING ON CUB BIRD
DATASET. ‘W/O’ MEANS *WITHOUT’.

Architectures FID | IS¢ R-precision 1 Model Setting | FID | ISt R-precision 1
AttnGAN, w/o DAMSM 5373 3.89 £0.04 10.37 +5.88 Baseline 5373 389 +£0.04 10.37 +5.88
AttnGAN (baseline) 2389 436 +£0.03 67.82 +4.43 VLMGAN AtnGaN, W/o General | 17.00 4.76 + 0.07  73.41 + 0.60
VLMGAN anGaN, W/o VLM 3325 420 + 0.05 46.45 + 3.36 VLMGAN ; AunGaN, W/0 Local 2332 447 +£0.07 5740 +0.88
VLMGAN ; Auncan, W/o VVM 1623 4.73 £ 0.07 73.56 + 0.82 VLMGAN ; aunGaN, W/0 Global | 18.75 4.65 £ 0.06 67.76 = 0.56
VLMGAN AtinGAN 15.02 4.86 £0.06 77.75 £ 0.74 VLMGAN AtinGAN 1520 4.86 £0.06 77.75 £ 0.74

model can better understand the description and synthesize
a more clearly structured image. Comparing with MSCOCOQO,
the CUB is more straightforward, so that all of these methods
have relatively better performance. In terms of complex image
synthesis, the MSCOCO dataset is adopted to verify the
proposed method’s performance. The models with vision-
language matching strategy can precisely understand the text
description and generates a well-structured image. For ex-
ample, VLMGAN* well presents the shape and structure of
kites like the ground-truth, while other methods can not. The
visual comparison shows that the proposed VLMGAN* has
superiority in keeping semantic and visual consistency by
using a multi-level vision-language matching model and a
visual-consistent constraint.

E. Ablation Study

To thoroughly verify VLMGAN*’s effectiveness, we do
ablation studies on VLMGAN¥* and its variants. VLMGAN*
means the dual vision-language matching strategy based GAN
for text-to-image synthesis. We conduct this ablation study
of on VLMGAN aingan on CUB dataset. Several compara-
tive experimental results are reported in Table III. “VLM”
means the proposed vision-language matching constraint, and
“VVM” means the visual-visual matching consistent constraint
between the synthesized image and original real image. The
AttnGAN is our baseline. The comparing results show that the
vision-language matching model is fundamental in improving
the image quality. Without the VLM model, the performance



a small bird with a | ¥
tan belly, orange
Change | throat n
pairing | supercillary,

small pounte
Image | peack, " yellow
black' and * white
wings,

0.9205

a small bird with a | ¥
tan belly, orange
Changing| throat
image | sprciliy, @
i smal ounte
Quality | F0k. ellow
black" and ~ white
wings,

0.1656 0.2060

0,909 0.8577 0.3400 0.2556
a small bird with 2 small Ditd WIth 5 smal bird with
a tn  belly,

tan belly, re asmall bird with
' a yellow bird
orange throat and  throat and 2 tan  belly 2 ablue belly,

jith brown and
Change supercillary. '  supercillary,  a orange throat and Wit
Pairing Sl ounted Small - pounted  supercllary, a While wings and 0N throatan
Text beack, yellow beack, 'yellow small pounted apointed bill perciliary.
Diack and “white black and white ooy wings
wings wings

0.9205 0.8903 06781 0.2309 0.0080 0.0015

Abird witha
medium orange
bill white body
gray wings and
webbed feet

Fig. 5. Some examples of VLMS by modifying the image and text description.
The numbers under the images ( texts) are the corresponding VLMS value
between the left text (image).

TABLE V
THE VLMS VARIATION BY CHANGING THE PAIRING IMAGE QUALITY ON
CUB DATASET.

Settings VLMS 1
Ground truth 0.77£0.30
Random image 0.12+0.22
0(0.01) 0.63+0.29
c(0.1) 0.40+0.30
0(0.3) 0.23+0.23
0(0.5) 0.21£0.21
o(1) 0.18+0.20

of all evaluation metrics drop rapidly , such as the IS score
drops from 4.86 to 4.20, the FID increases from 15.02 to
33.25, the R-precison drops from 77.75 to 46.45. Comparing
“VLMGAN  AinGan, W/o VVM” to “AttnGAN”, the results
indicate that the proposed multi-level vision-language model,
which can effectively match the image content and the textual
semantic information, is better than DAMSM. Besides, the
visual consistency constraint between the synthesized and the
real image also can improve the scores by a considerable
margin. These experimental results show that the components
of the proposed method contribute to improving the image
quality.

To clarify the contribution of different level matching, we
conduct more experiments on CUB dataset. We also adopt the
AttnGAN as the baseline. The experimental results are shown
in Table IV. We can find that the local-level matching makes
the biggest contribution to the performance, which improves
the IS from 4.47 to 4.86, FID from 23.32 to 15.20. The three
kinds of matching can improve the model performance in
terms of different metrics.

The above ablation studies can verify the effectiveness of the
proposed dual multi-level vision-language matching strategy.

F. Effectiveness of VLMS

In this subsection, we firstly explain the effectiveness and
rationality of the proposed novel text-to-image evaluation met-
ric, named Vision-Language Matching Score (VLMS), which
directly measures the similarity between the synthesized image
and the corresponding text description by the pre-trained
Matching Scoring Block of the VLM model. To verify the

TABLE VI
THE VLMS VARIATION BY CHANGING THE PAIRING TEXT DESCRIPTION
ON CUB DATASET.

Settings VLMS 71
Ground truth 0.77+£0.30
Random text 0.12+0.22

mask stopwords 0.75+0.24
10% 0.67+0.26
20% 0.56+0.27
50% 0.37£0.26
70% 0.35+0.25
90% 0.10+0.22

TABLE VII
THE VLMS COMPARISON WITH DIFFERENT MODELS ON CUB DATASET.

Methods CUB MSCOCO
AttnGAN 0.49+0.20 0.36+0.28
DMGAN 0.52+0.22 0.42+0.30

DFGAN 0.53+0.27 0.44+0.23

VLMGAN; AtnGAN 0.55+0.27 0.47+0.26
VLMGAN.DFGAN 0.56+0.23 0.46+0.23

effectiveness of the proposed VLMS, we conduct experiments
with different variants, as shown in Table V and Table VI.
In Table V, ‘Random text’” means that we randomly select a
text from the dataset for a specific image, which obtains the
lowest VLMS. This result indicates that VLMS is sensitive to
the image-text semantic consistency. For changing the image
quality, we add different level white gaussian noise (standard
deviation: 0.01, 0.1, 0.3, 0.5, 1). We can find that the VLMS
decreases rapidly with the increase of noise. This phenomenon
indicates that the VLMS is sensitive to the image quality.
For changing the text description, we randomly replace or
remove words of the whole sentence by different percentage
(10%, 30%, 50%, 70%, 90%). For a specific text description,
the ground truth obtains the best VLMS score, and the
dissimilar images receive relatively low scores. Besides, we
add experiments to analyze the influence of these irrelevant
words, such as ‘the’, ‘a’ and so on. To be specific, we build
a stop words dictionary, which contains ‘and, this, a, an,
there, of’. If the words of the sentence are in the stop words,
we mask them in calculating the VLMS. We find that these
irrelevant words make little impact on the final results (from
0.77 to 0.75). The comparisons show that the lower the image
quality, the lower the score. If we modify the text description,
the VLMS scores also decrease. For better understanding, we
present some examples to explain this, as shown in Figure 5.
Therefore, from above analyses, the proposed VLMS metric is
reasonable to measure the image-text matching score, which
considers both image quality and semantic consistency. We
calculate the mean VLMS score of 30000 generated images.
Table VII shows that VLMGAN,prgan oObtains the highest
value on CUB datasets and VLMGAN,awGgan oObtains the
highest value on MSCOCO datasets.
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Fig. 7. The training loss of VLMGAN_ prGaN-

G. Convergence Analysis

Figure 6 shows the comparison between
VLMGAN  pmngan  and  AttnGAN  with the training
processing. This figure shows that VLMGANAunGaN
exceeds AttnGAN in the whole training process. Besides, the
training losses of VLMGAN_prgan are shown in Figure 7.
It should be noted that loss of generator does not include the
loss of Ly v and Ly 1. By comparing Lyyvpy and Ly g,
we can find that the decrease of Ly j; is more significant.

The model is converged after about 70000 iterations.

H. Generalization Study

In this section, we conduct more experiments to analyze
the generalization and robustness of the proposed approach.
The first experiment is modifying some attribute words when
generate the corresponding image, as shown in the top row of
Figure 8. The words in red are some key attributes when de-
scribing the bird. We randomly replace these words with other
attributes words. The results of modifying some important
words show that the synthesized images can keep consistency
with the descriptions’ variation. The second experiment is
generating a series of images by fixing the text description.
The results of some examples conditioned the same text of
CUB dataset and MSCOCO dataset are presented in the second
and three rows of Figure 8, respectively. From the second
row, we can find that the attributes of the synthesized birds
(black bill, white breast and red feathers) keep consistency
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Fig. 8. More
VLMGAN; ppGAN-

and

synthesized

examples of VLMGAN_ awnGAN

among different images. In the same time, we can observe that
these birds have rich variety of the posts, such as the direction
of body. This experimental phenomenon is also appeared on
the MSCOCO dataset. Therefore, we can conclude that the
proposed method VLMGAN* have excellent generalization
and robustness.

V. CONCLUSION

This paper addresses the text-to-image synthesis by
strengthening the semantic and visual matching between the
synthesized image and the real data. To this end, the pro-
posed dual multi-level vision-language matching considers
both textual-visual matching and visual-visual matching. By
introducing this idea into generative architecture, the VLM-
GAN* successfully exploits this idea and achieves excellent
image quality performance. In addition, the VLM can also
measure the matching score between the image and text by
considering both image quality and image semantic, which is
more consistent with our human perception. We implement
the proposed dual vision-language matching strategy on two
popular baselines, AttnGAN and DFGAN. The experimental
results of VLMGAN aingan and VLMGAN, prgan  show
that the VLMGAN* achieves state-of-the-art performance
on CUB dataset and more challenging MSCOCO dataset.
Compare with the baselines, both VLMGAN_  aqmgan and
VLMGAN  amgan can significantly improve their perfor-
mance. In the future study, we will try to explore more excel-
lent mechanisms to improve the quality of synthesized image
and semantic consistency between the synthesized image and
text.
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