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Abstract. While deep Embedding Learning approaches have witnessed
widespread success in multiple computer vision tasks, the state-of-the-art
methods for representing natural images need not necessarily perform
well on images from other domains, such as paintings, cartoons, and
sketch. This is because of the huge shift in the distribution of data from
across these domains, as compared to natural images. Domains like sketch
often contain sparse informative pixels. However, recognizing objects in
such domains is crucial, given multiple relevant applications leveraging
such data, for instance, sketch to image retrieval. Thus, achieving an
Embedding Learning model that could perform well across multiple
domains is not only challenging, but plays a pivotal role in computer
vision. To this end, in this paper, we propose a novel Embedding Learning
approach with the goal of generalizing across different domains. During
training, given a query image from a domain, we employ gated fusion and
attention to generate a positive example, which carries a broad notion of
the semantics of the query object category (from across multiple domains).
By virtue of Contrastive Learning, we pull the embeddings of the query
and positive, in order to learn a representation which is robust across
domains. At the same time, to teach the model to be discriminative
against examples from different semantic categories (across domains), we
also maintain a pool of negative embeddings (from different categories).
We show the prowess of our method using the DomainBed framework, on
the popular PACS (Photo, Art painting, Cartoon, and Sketch) dataset.

1 Introduction

Embedding Learning plays a crucial role in the success of a plethora of computer
vision applications, such as object recognition, clustering, content-based retrieval,
information extraction, question-answering, semantic understanding, to name a
few. It essentially aims at learning a vector/ feature representation (embedding)
of the raw data in question. The goal is to learn a discriminative embedding
space, where similar examples are grouped together, while pushing away the
dissimilar ones. The notion of similarity varies with an application, and usually
pertains to the semantics of the object contained in an image.

While Embedding Learning has seen remarkable success in natural images,
their success in image based applications from other domains like paintings,
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cartoons, and sketch, is yet to reach the full potential. This is mainly because
of the fact that the pixel level representation of such domains is very different
from natural images. While the latter may benefit more from properties like
color, texture, and shading, the former may benefit more from spatial and
shape information of the objects. At the same time, they may have sparse pixel
information.

In this paper, we try to address this question: “Can we learn a single,
common embedding which is good across multiple domains (be it nat-
ural photos, art paintings, cartoons, or sketch)? ” To this end, we pose
this problem as a Domain Generalization (DG) approach, wherein, the idea is to
leverage a number of labeled domains D1, · · · ,Dtr to train a model, which could
perform well on any unseen domain Dtr+1. Following are the motivations for
formulating the problem as DG: i) One may have labeled data from across a few
domains, and it would be expected that a model trained on those domains should
be able to perform well on data from any unseen domain, ii) If the domains are
related (say, containing similar semantics), then it could be beneficial to leverage
the common information present in them, to arrive at a better representation.

For example, let us assume that we have labeled data from 3 domains: natural
photos, art paintings, and cartoons, with a common set of semantic categories
among them. If we could collectively represent the global information for a
semantic category, say, dog, and force the embedding of a dog image from any
domain to lie close to that global information, then we could perhaps make our
embedding learning model robust even for an unseen domain, such as, sketch. By
global information, we refer to those attributes, which are essential to identify
a semantic category (eg, tail, nose, ears of a dog category). To achieve this, we
make use of gated-fusion and attention mechanism to form a positive example
which could capture such global information. Then, we make use of a Contrastive
Learning loss to align the embeddings of a query and the positive corresponding
to the semantic class of the query. At the same time, to ensure that examples of
different semantic categories are separated far apart, we also make use of a pool
of negative examples. We show the merits of our method for the classification task,
using the DomainBed framework, on the popular PACS (Photo, Art painting,
Cartoon, and Sketch) dataset.

2 Proposed Method

Our proposed method is illustrated in Figure 1. During training, given a query
image, we maintain a pool of positive (same semantic class as query, but different
domain) and negative examples (different semantic class, irrespective of domain).
Given an encoder (eg, ResNet) with some initial model weights, the embedding/
feature of a positive from a domain is computed while being oblivious to the
feature of the query. Thus, we call it as an irresponsible representative.

It is good if we can update this positive feature (into a responsible represen-
tative) so as to take into account the feature of the query as well, as both of
them belong to the same semantic category, albeit from different domains (hence,
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Fig. 1: An illustration of the proposed approach. The figure is best viewed in color.

these features must share some common semantic attribute as well, for instance,
a natural image and a sketch image of a dog should contain nose, ear, tail, etc).

We propose a learnable (based on the end loss) gated-fusion mechanism
to address this. Specifically, the gated-fusion learns what percentage of
original domain information of an irresponsible positive to keep, and
what percentage of new information from the domain of the query to
be learnt, so as to update and obtain a responsible positive .

Now that we have a set of responsible representatives for a query feature, we can
use them to attend the query feature, and use the corresponding attention weights
to fuse them together with a linear combination to obtain a final augmented
positive feature. Intuitively, this augmented positive may be interpreted as
containing global semantic information of the category/ class of the query,
towards which the query embedding should be pulled closer, to make our encoder
robust to domains. This is done with Contrastive Learning. We also push the
embeddings for the negative examples away from the query embedding.

Hence, the focus of our work is the contrastive learning based training of a
feature Encoder fθ(.), that is discriminative enough, of semantically dissimilar
content, while being domain robust, so that the generated features could directly
be utilized by a classifier gϕ(.) to correctly predict the class label of an input
image. In our method, we employ a Student-Teacher framework to learn such a
feature Encoder. The overall architecture of our method is illustrated in Figure 2.

Let us denote an arbitrary example/ raw image from class c, and domain d
as xd

y=c, and its corresponding embedding/ feature vector obtained using our

(Student/ Query) Encoder fθ(.), as fθ(x
d
y=c) (Figure 2). Here, y = c denotes the

semantic class label for the example, and θ denotes the learnable parameters
of the Query Encoder fθ(.). Our objective is to learn θ in such a way that
the embeddings fθ(x

d
y=c) and fθ(x

d′

y=c) for a pair (xd
y=c, x

d′

y=c) of semantically
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Fig. 2: Architecture of our method.
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similar examples (i.e., y = c) from two different domains d and d′ are grouped
together, with the end goal of correctly predicting their class labels with a
classifier gϕ(.), with parameters ϕ. In other words, fθ(.) should be domain robust
(or generalizable).

We maintain a copy of fθ(.), denoted as fθ̃(.), which we call as the (Teacher/

Key) Encoder. Here, θ̃ is obtained as an Exponential Moving Average (EMA) of θ,
i.e., we first initialize θ̃ as θ̃ = θ, and then iteratively update it as: θ̃ = µθ̃+(1−µ)θ,
µ > 0. In order to make fθ(.) domain robust, the focus of our method is to
leverage fθ̃(.) to obtain an augmented feature (positive) fa

θ̃
(xd

y=c) corresponding

to fθ(x
d
y=c), and pull the embeddings fθ(x

d
y=c) and fa

θ̃
(xd

y=c) closer to each other.

We obtain fa
θ̃
(xd

y=c) in such a way that it could capture a broad notion of

the semantics of the class y = c, to which xd
y=c belongs. To do so, we maintain

a pool/ set Qcd
+ =

⋃
d′ ̸=d Q(xd′

y=c), such that Q(xd′

y=c) = {fθ̃(xd′ ̸=d
y=c )} is a set of

embeddings of examples from the same class as xd
y=c, but from domain d′ ̸= d.

The detailed blocks of the Augmentation Network from Figure 2 are shown in
the Figure 3. The Augmentation Network takes as input the query embedding
fθ(x

d
y=c) and the embeddings of Qcd

+ , to produce fa
θ̃
(xd

y=c). It consists of two

major components: i) gated fusion, and ii) attention network, which we discuss
next.
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2.1 Gated Fusion for Representative Refinement

Qcd
+ is treated as a set of positive representatives which take the responsibility of

refining their own initial representations (via the Key Encoder) {fθ̃(xd′ ̸=d
y=c )} into

Qcdr
+ = {fr

θ̃
(xd′ ̸=d

y=c )} (we consolidate/abuse the notation by using a single set of

same class examples from other domains, to denote the union of sets of examples).
This refinement is done by taking into account the representation fθ(x

d
y=c), using

a gated fusion mechanism (Figure 4). By considering one representative fθ̃(x
d′ ̸=d
y=c )

from Qcd
+ at a time, the refined/ fused representative fr

θ̃
(xd′ ̸=d

y=c ) is obtained as:

fr
θ̃
(xd′ ̸=d

y=c ) = z ⊙ tanh(fθ(x
d
y=c)) + (1− z)⊙ tanh(fθ̃(x

d′ ̸=d
y=c )) (1)

Here, z is a learnable gate vector obtained as: z = σ(fθg ([fθ(x
d
y=c), fθ̃(x

d′ ̸=d
y=c )])),

such that θg represents parameters of the gated fusion network. Also, ⊙, σ(.),
tanh(.) and [, ] are the element-wise product, sigmoid, tanh and concatenation
operations respectively.
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2.2 Attention-based Query Embedding Refinement and
Augmentation for Positive Generation

The refined features from Qcdr
+ are then attended by fθ(x

d
y=c), one representative

at a time (Figure 5), to obtain attention weights:
{w(fr

θ̃
(xd′ ̸=d

y=c )) = softmax(fϕ1
(fθ(x

d
y=c))

⊤fϕ1
(fr

θ̃
(xd′ ̸=d

y=c )))}. Here, softmax(.) is
used to normalize the attention weights across the representatives. Using these
weights, a linear combination of the (refined) representatives in Qcdr

+ is performed

to obtain a single positive representative py=c =
∑

w(fr
θ̃
(xd′ ̸=d

y=c ))fϕ1
(fr

θ̃
(xd′ ̸=d

y=c )),
which is then used to obtain the final augmented feature as:

fa
θ̃
(xd

y=c) = relu(fθ(x
d
y=c)+

fϕ3(relu(fϕ2([fϕ1(fθ(x
d
y=c)), py=c])))).

(2)

fa
θ̃
(xd

y=c) now captures the accumulated semantic information of the class y = c
from across all the domains, and serves as a positive for the query embedding.
Here, θa = {ϕ1, ϕ2, ϕ3} represents parameters of the attention network.

2.3 Student-Teacher based Contrastive Learning

The Student-Teacher framework arises in our method due to the fact that
the Key Encoder serves as a Teacher to provide a positive embedding (as a
target/ guidance), with respect to which the query/ anchor embedding fθ(x

d
y=c)

obtained by the (Student/ Query) Encoder needs to be pulled closer. The notions
of (anchor/ query, positive/ key) are quite popular in the embedding learning
literature, where, in order to group similar examples, triplets of examples in the
form of (anchor, positive, negative) are sampled. Usually, the anchor and positive
are semantically similar (and thus, need to be pulled closer), while the negative
is dissimilar to the other two (and thus, needs to be pushed away).

Now, although we have obtained an augmented feature to serve as the positive
for the query encoding fθ(x

d
y=c), we also need to push away embeddings of

dissimilar examples, in order to learn a robust, yet semantically discriminative
embedding. For this purpose, corresponding to each xd

y=c, we also maintain a pool/

set of negatives denoted as Qcd
− =

⋃
∀d′:d′ ̸=d,d′=d{

⋃
c′ ̸=c Q(xd′

y=c′)} = {fθ̃(xy ̸=c)}
(abusing the notation to concisely represent the entire pool of negatives as a
single set). Essentially, this pool contains embeddings of example images from
other classes, across all the domains (including the same domain as xd

y=c). It

should be carefully noted that the embeddings in the pools Qcd
+ and Qcd

− are
obtained using the Key Encoder fθ̃(.).

Keeping in mind the computational aspects, we maintain a dynamically
updated queue Qc′d′ ≈ Q(xd′

y=c′) of fixed size queue sz, for each class c′, from

across all domains d′. While training, for each considered example xd
y=c, the

pools Qcd
+ and Qcd

− are obtained using union from the collection of queues Qc′d′
.

During the network updates, the examples present in a mini-batch are used to
replace old examples from the collection Qc′d′

.
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Now, for a given xd
y=c, in order to pull its embedding closer to the augmented

feature fa
θ̃
(xd

y=c) while moving away the negatives from Qcd
− , we compute an

adapted Normalized Temperature-scaled cross entropy (NT-Xent) loss [3] as
follows:

LCL(x
d
y=c) =

− log
exp(fθ(x

d
y=c)

⊤fa
θ̃
(xd

y=c)/τ)∑
fθ̃(xy ̸=c)∈Qcd

−
exp(fθ(xd

y=c)
⊤fθ̃(xy ̸=c)/τ)

.
(3)

Algorithm 1 Pseudocode of RCERM

1 de f enQ deQ( queue , data emb ) :# enqueue+dequeue
2 queue=torch . cat ( ( queue , data emb ) , 0)
3 i f queue . s i z e (0 ) > queue sz :
4 queue = queue[−queue sz : ]
5

6 ’ ’ ’ In a lgor i thms . py ’ ’ ’
7 c l a s s RCERM(Algorithm ) :
8 de f i n i t ( s e l f ) :# i n i t i a l i z e networks
9 # f e a t u r i z e r , c l a s s i f i e r , f gated , f a t t n

10 key encoder=copy . deepcopy ( f e a t u r i z e r )
11 # optim .Adam( f e a t u r i z e r , c l a s s i f i e r , f gated , f a t t n )
12 de f update ( s e l f , minibatch ) :
13 # minibatch : domainbed s t y l ed minibatch
14 l o s s c l , a l l x , a l l y =0,None , None
15 f o r i d c in range ( n c l a s s ) :
16 f o r id d in range ( ndomains ) :
17 #data t enso r : minibatch ( id c , id d )
18 q = f e a t u r i z e r ( da ta t en so r )
19 a l l x = torch . cat ( ( a l l x , q ) , 0)
20 a l l y = torch . cat ( ( a l l y , l a b e l s ) , 0)
21 pos Q , neg Q=get posneg queues ( id c , id d )
22 # Using f ga t ed+f a t t n obta in :
23 k=s e l f . get augmented batch (q , pos Q )
24 # . detach ( ) k and l 2 normal ize q , k
25 l o s s c l += l o s s f u n c (q , k , neg Q )
26 data emb=key encoder ( da ta t en so r )
27 #. detach ( )+l2 normal ize data emb
28 enQ deQ( queues [ i d c ] [ i d d ] , data emb )
29 a l l p r e d=c l a s s i f i e r ( a l l x )
30 l o s s c e=F. c r o s s en t r opy ( a l l p r ed , a l l y )
31 l o s s = l o s s c e+lambda∗ l o s s c l
32 optim . ze ro g rad ( )
33 l o s s . backward ( )
34 optim . s tep ( )
35 f o r th t i l d , tht in ( key encoder . params ( ) , f e a t u r i z e r . params ( ) ) :
36 t h t i l d=mu∗ t h t i l d + (1 − mu) ∗ tht

Here, τ > 0 denotes the temperature parameter. LCL(x
d
y=c) in (3) is summed

over all the examples from across all classes c and all domains d to obtain the
following aggregated contrastive loss:

LCL =
∑
c

∑
d

∑
xd
y=c

LCL(x
d
y=c). (4)

Now, assuming that we have a classifier gϕ(.) that predicts the class label of
an example xd

y=c, using the embedding obtained by the domain robust Query
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Encoder fθ(.), the Empirical Risk Minimization (ERM) can be approximated by
minimizing the following loss:

LCE =
∑
d

∑
c

lCE(gϕ(fθ(x
d
y=c)), y = c). (5)

Here, lCE(.) is the standard cross-entropy loss for classification. Then, the total
loss for our method can be expressed as:

Ltotal = LCE + λLCL. (6)

Here, λ > 0 is a hyperparameter. Thus, the overall optimization problem of our
method can be expressed as:

min
θ,ϕ,θg,θa

Ltotal. (7)

Here, θ, ϕ, θg, θa respectively denote the parameters of the (Query) Encoder fθ(.),
classifier gϕ(.), gated-fusion network fθg(.) and the attention network fθa(.). It
should be noted that as the Key Encoder fθ̃(.) is obtained as an EMA of the
Query Encoder, we do not backpropagate gradients through it. In Algorithm 1,
we provide a pseudo-code, roughly outlining the integration of our method into
the PyTorch-based DomainBed framework. We call our method as the Refined
Contrastive ERM (RCERM), owing to its refinement based feature augmentation,
for positive generation in Contrastive learning.

3 Related Work and Experiments

Dataset: To evaluate the prowess of our proposed method, we make use of
the Photos, Art, Cartoons, and Sketches (PACS) dataset. It consists of
images from 4 different domains: i) Photos (1,670 images), ii) Art Paintings (2,048
images), iii) Cartoons (2,344 images) and iv) Sketches (3,929 images). There are
seven semantic categories shared across the domains, namely, ‘dog’, ‘elephant’,
‘giraffe’, ‘guitar’, ‘horse’, ‘house’, ‘person’. It is a widely popular dataset to test the
robustness of Domain Generalization (DG) models. In particular, in this work,
we are specifically interested in figuring out how our proposed method
performs in the domains containing drawings and abstract imagery,
such as, Art, Cartoons, and Sketches domains. The images contained
in these domains are significantly different from that of the Photos domain
containing natural scene images.

Baseline/ Related Methods: Contrary to the traditional supervised
learning assumption of the training and test data belonging to an identical
distribution, Domain Generalization (DG) methods assume that training data is
divided into a number of different, but semantically related domains, with an
underlying causal mechanism, and test data could be from a different distribution.
To generalize well in unseen data from a different distribution, and account for
real-world situations, they try to learn invariance criteria among these domains.

Following are some of the related DG methods that have been used as baselines
in this paper:
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Table 1: Performance of SOTA methods on PACS using the training-domain validation
model selection criterion

Method A C P S Avg

ERM 84.7 ± 0.4 80.8 ± 0.6 97.2 ± 0.3 79.3 ± 1.0 85.5
IRM 84.8 ± 1.3 76.4 ± 1.1 96.7 ± 0.6 76.1 ± 1.0 83.5
GroupDRO 83.5 ± 0.9 79.1 ± 0.6 96.7 ± 0.3 78.3 ± 2.0 84.4
Mixup 86.1 ± 0.5 78.9 ± 0.8 97.6 ± 0.1 75.8 ± 1.8 84.6
MLDG 85.5 ± 1.4 80.1 ± 1.7 97.4 ± 0.3 76.6 ± 1.1 84.9
CORAL 88.3 ± 0.2 80.0 ± 0.5 97.5 ± 0.3 78.8 ± 1.3 86.2
MMD 86.1 ± 1.4 79.4 ± 0.9 96.6 ± 0.2 76.5 ± 0.5 84.6
DANN 86.4 ± 0.8 77.4 ± 0.8 97.3 ± 0.4 73.5 ± 2.3 83.6
CDANN 84.6 ± 1.8 75.5 ± 0.9 96.8 ± 0.3 73.5 ± 0.6 82.6
MTL 87.5 ± 0.8 77.1 ± 0.5 96.4 ± 0.8 77.3 ± 1.8 84.6
SagNet 87.4 ± 1.0 80.7 ± 0.6 97.1 ± 0.1 80.0 ± 0.4 86.3
ARM 86.8 ± 0.6 76.8 ± 0.5 97.4 ± 0.3 79.3 ± 1.2 85.1
VREx 86.0 ± 1.6 79.1 ± 0.6 96.9 ± 0.5 77.7 ± 1.7 84.9
RSC 85.4 ± 0.8 79.7 ± 1.8 97.6 ± 0.3 78.2 ± 1.2 85.2
AND-mask 85.3 ± 1.4 79.2 ± 2.0 96.9 ± 0.4 76.2 ± 1.4 84.4
SAND-mask 85.8 ± 1.7 79.2 ± 0.8 96.3 ± 0.2 76.9 ± 2.0 84.6
Fishr 88.4 ± 0.2 78.7 ± 0.7 97.0 ± 0.1 77.8 ± 2.0 85.5

1. ERM [17]: Naive approach of minimizing consolidated domain errors.
2. IRM [1]: Attempts at learning correlations that are invariant across domains.
3. GroupDRO [14]: Minimizes the worst-case training loss over the domains.
4. Mixup [18]: Pairs of examples from random domains along with their labels

are interpolated to perform ERM.
5. MLDG [8]: MAML based meta-learning for DG.
6. CORAL [16]: Aligning second-order statistics of a pair of distributions.
7. MMD [9]: MMD alignment of a pair of distributions.
8. DANN [4]: Adversarial approach to learn features to be domain agnostic.
9. CDANN [10]: Variant of DANN conditioned on class labels.
10. MTL [2]: Mean embedding of a domain is used to train a classifier.
11. SagNet [11]: Preserves the image content while randomizing the style.
12. ARM [19]: Meta-learning based adaptation of test time batches.
13. VREx [6]: Variance penalty based IRM approximation.
14. RSC [7]: Iteratively discarding challenging features to improve generalizability.
15. AND-mask [12]: Hessian matching based DG approach.
16. SAND-mask [15]: An enhanced Gradient Masking strategy is employed to

perform DG.
17. Fishr [13]: Matching the variances of domain-level gradients.

Evaluation Protocol: The presence of multiple domains, the numerous
available choices to construct a fair evaluation protocol, due to the multiple ways
of forming the training data from across multiple domains makes model selection
in DG a non-trivial problem. Inconsistencies in evaluation protocol, network
architectures, etc, also makes a fair comparison among the plethora of available
approaches difficult. To address this, the recently proposed framework DomainBed
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Table 2: Performance of SOTA methods on PACS using the leave-one-domain-out
cross-validation model selection criterion

Method A C P S Avg

ERM 83.2 ± 1.3 76.8 ± 1.7 97.2 ± 0.3 74.8 ± 1.3 83.0
IRM 81.7 ± 2.4 77.0 ± 1.3 96.3 ± 0.2 71.1 ± 2.2 81.5
GroupDRO 84.4 ± 0.7 77.3 ± 0.8 96.8 ± 0.8 75.6 ± 1.4 83.5
Mixup 85.2 ± 1.9 77.0 ± 1.7 96.8 ± 0.8 73.9 ± 1.6 83.2
MLDG 81.4 ± 3.6 77.9 ± 2.3 96.2 ± 0.3 76.1 ± 2.1 82.9
CORAL 80.5 ± 2.8 74.5 ± 0.4 96.8 ± 0.3 78.6 ± 1.4 82.6
MMD 84.9 ± 1.7 75.1 ± 2.0 96.1 ± 0.9 76.5 ± 1.5 83.2
DANN 84.3 ± 2.8 72.4 ± 2.8 96.5 ± 0.8 70.8 ± 1.3 81.0
CDANN 78.3 ± 2.8 73.8 ± 1.6 96.4 ± 0.5 66.8 ± 5.5 78.8
MTL 85.6 ± 1.5 78.9 ± 0.6 97.1 ± 0.3 73.1 ± 2.7 83.7
SagNet 81.1 ± 1.9 75.4 ± 1.3 95.7 ± 0.9 77.2 ± 0.6 82.3
ARM 85.9 ± 0.3 73.3 ± 1.9 95.6 ± 0.4 72.1 ± 2.4 81.7
VREx 81.6 ± 4.0 74.1 ± 0.3 96.9 ± 0.4 72.8 ± 2.1 81.3
RSC 83.7 ± 1.7 82.9 ± 1.1 95.6 ± 0.7 68.1 ± 1.5 82.6

Table 3: Performance of SOTA methods on PACS using the test-domain validation
model selection criterion

Method A C P S Avg

ERM 86.5 ± 1.0 81.3 ± 0.6 96.2 ± 0.3 82.7 ± 1.1 86.7
IRM 84.2 ± 0.9 79.7 ± 1.5 95.9 ± 0.4 78.3 ± 2.1 84.5
GroupDRO 87.5 ± 0.5 82.9 ± 0.6 97.1 ± 0.3 81.1 ± 1.2 87.1
Mixup 87.5 ± 0.4 81.6 ± 0.7 97.4 ± 0.2 80.8 ± 0.9 86.8
MLDG 87.0 ± 1.2 82.5 ± 0.9 96.7 ± 0.3 81.2 ± 0.6 86.8
CORAL 86.6 ± 0.8 81.8 ± 0.9 97.1 ± 0.5 82.7 ± 0.6 87.1
MMD 88.1 ± 0.8 82.6 ± 0.7 97.1 ± 0.5 81.2 ± 1.2 87.2
DANN 87.0 ± 0.4 80.3 ± 0.6 96.8 ± 0.3 76.9 ± 1.1 85.2
CDANN 87.7 ± 0.6 80.7 ± 1.2 97.3 ± 0.4 77.6 ± 1.5 85.8
MTL 87.0 ± 0.2 82.7 ± 0.8 96.5 ± 0.7 80.5 ± 0.8 86.7
SagNet 87.4 ± 0.5 81.2 ± 1.2 96.3 ± 0.8 80.7 ± 1.1 86.4
ARM 85.0 ± 1.2 81.4 ± 0.2 95.9 ± 0.3 80.9 ± 0.5 85.8
VREx 87.8 ± 1.2 81.8 ± 0.7 97.4 ± 0.2 82.1 ± 0.7 87.2
RSC 86.0 ± 0.7 81.8 ± 0.9 96.8 ± 0.7 80.4 ± 0.5 86.2
AND-mask 86.4 ± 1.1 80.8 ± 0.9 97.1 ± 0.2 81.3 ± 1.1 86.4
SAND-mask 86.1 ± 0.6 80.3 ± 1.0 97.1 ± 0.3 80.0 ± 1.3 85.9
Fishr 87.9 ± 0.6 80.8 ± 0.5 97.9 ± 0.4 81.1 ± 0.8 86.9

[5] was introduced, that ensures an uniform evaluation protocol to inspect and
compare DG approaches, by running a large number of hyperparameter and
model combinations (called as a sweep) automatically.

It also introduces 3 model selection criteria:
1. Training-domain validation: The idea is to partition each training domain
into a big split and a small split. Sizes of respective big and small splits would
be the same for all training domains. The union of the big splits is used to train
a model configuration, and the one performing the best in the union of the small
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splits is chosen as the best model for evaluating on the test data.
2. Leave-one-out validation: As the name indicates, it requires to train a
model on all train domains except one, and evaluate on the left out domain. This
process is repeated by leaving out one domain at a time, and then choosing the
final model with the best average performance.
3. Test-domain validation: A model is trained on the union of the big splits
of the train domains (similar to Training-domain validation), and the final epoch
performance is evaluated on a small split of the test data itself. The third criterion
though not suited for real-world applications, is often chosen only for evaluating
methods.

Performance of State-Of-The-Art (SOTA) approaches on PACS:
Following the standard sweep of DomainBed, in Table 1, Table 2 and Table
3, we respectively report the performance of the SOTA DG methods on PACS
dataset (in terms of classification accuracy, meaning that a higher value is better).
The domains Art painting, Cartoons, Photos (natural images), and Sketches are
shown as columns A, C, P and S respectively, along with the average performance
of a method across these as column Avg. As also claimed by the DomainBed
paper, we observed that no single method outperforms the classical ERM
by more than one point, thus making ERM a reasonable baseline for
DG. Very recently, the Fishr method [13] has been proposed which performs
competitive to ERM, on average. The most important observation is the fact that
none of the methods performs the best across all the domains, showcasing the
difficult nature of the dataset, and the problem of generalization in particular.

3.1 Comparison of our method RCERM against the SOTA ERM
and Fishr methods:

Due to the SOTA performances of the ERM and the Fishr methods, we now
compare our proposed method against them. In Table 4, we report the comparison
of our method against the ERM method (best method for a column, within a
selection criterion, is shown in bold). For the first two model selection crite-
ria (train domain validation and leave-one-out) our proposed method
outperforms the ERM method on all the domains, except on Cartoons .
While the performance gain on natural scene Photos domain is not large, we found
that on Arts and Sketches, our method performs better than ERM by
a large margin (upto 2% point). In the sketch domain, our method
performs better by 3.7% point over ERM using the leave-one-out cri-
terion . Our method also performs better on Cartoons than ERM, when feedback
from the test set is provided. However, in all other cases, ERM in itself performs
quite competitive, in the first place.

We also compare our method with the most recently proposed Fishr approach
in Table 5, and observe that our method outperforms Fishr on the Sketch
domain by 3.6% points using train-domain validation criterion, and
the Cartoons domain by 2.4% points using test-domain validation cri-
terion (NOTE: Results of Fishr on leave-one-out have not been evaluated by
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Table 4: Comparison of our proposed method against the state-of-the-art ERM method.

Model Selection train-domain validation

Method A C P S Avg

ERM 84.7 ± 0.4 80.8 ± 0.6 97.2 ± 0.3 79.3 ± 1.0 85.5
RCERM 86.6 ± 1.5 78.1 ± 0.4 97.3 ± 0.1 81.4 ± 0.6 85.9

Model Selection leave-one-domain out

Method A C P S Avg

ERM 83.2 ± 1.3 76.8 ± 1.7 97.2 ± 0.3 74.8 ± 1.3 83.0
RCERM 84.9 ± 1.7 70.6 ± 0.1 97.6 ± 0.8 78.5 ± 0.2 82.9

Model Selection test-domain validation set

Method A C P S Avg

ERM 86.5± 1.0 81.3 ± 0.6 96.2 ± 0.3 82.7± 1.1 86.7
RCERM 85.0 ± 0.7 83.2 ± 1.4 96.6 ± 0.2 80.8 ± 2.0 86.4

Table 5: Comparison of our proposed method against the state-of-the-art Fishr method.

Model Selection train-domain validation

Method A C P S Avg

Fishr 88.4± 0.2 78.7± 0.7 97± 0.1 77.8 ± 2.0 85.5
RCERM 86.6 ± 1.5 78.1 ± 0.4 97.3 ± 0.1 81.4 ± 0.6 85.9

Model Selection test-domain validation set (oracle)

Method A C P S Avg

Fishr 87.9± 0.6 80.8± 0.5 97.9± 0.4 81.1± 0.8 86.9
RCERM 85.0 ± 0.7 83.2 ± 1.4 96.6 ± 0.2 80.8 ± 2.0 86.4

the authors). In fact, on average, we outperform Fishr using the train-
validation criterion by 0.4% points, which despite being a low looking value,
is actually quite significant in the DG problem for the PACS dataset.

3.2 Ablation/ Analysis of our method:

While DomainBed frees the user of the hyperparameter searches automatically,
we perform an ablation analysis of our method by removing the gated-fusion com-
ponent of our method, and call it as RCERM with No Gated fusion (RCERMNG).
The results are reported in Table 6. We found that RCERM by virtue of
its gated fusion component indeed performs better than RCERMNG
without the gated fusion . This is because the positives update their represen-
tation by taking into account a query. This helps in contributing to the alignment
of the embeddings of semantically similar objects from across domains.

3.3 Key takeaways:

1. The DG methods when compared in a fair, uniform setting using the Do-
mainBed framework, perform more or less similar to the classical ERM
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Table 6: Ablation studies showing role of the gated-fusion component

Model Selection train-domain validation

Method A C P S Avg

RCERMNG 86.5 ± 0.8 80.4 ± 0.2 96.3 ± 0.4 77.1 ± 1.4 85.1
RCERM 86.6 ± 1.5 78.1 ± 0.4 97.3 ± 0.1 81.4 ± 0.6 85.9

Model Selection leave-one-domain out

Method A C P S Avg

RCERMNG 82.9 ± 3.4 75.4 ± 1.5 96.5 ± 1.3 76± 0.7 82.7
RCERM 84.9 ± 1.7 70.6 ± 0.1 97.6 ± 0.8 78.5 ± 0.2 82.9

Fig. 6: Illustration of PACS type images.

Fig. 7: Illustration of a few Cartoon images with abnormal semantics.

method on the PACS dataset. The recently proposed Fishr method performs
competitive to ERM.

2. On the PACS dataset, for all methods in general, the classification perfor-
mance is the best for the Photos domain containing natural scene images
(∼ 97% using training-domain validation), because, the underlying backbone
(eg, ResNet50) has been pretrained on the ImageNet dataset which contains
natural scenes. The models perform relatively well on the Art paintings
domain (∼ 84− 88% using training-domain validation), as the distribution of
art images is relatively closer to that of natural images (in terms of texture,
shades, etc). The performance is poorer on both Sketches and Cartoons
(∼ 73 − 80% using training-domain validation), which have greater distri-
bution shift compared to that of natural images, and where attributes like
shape play a prominent role than texture, color etc. Figure 6 illustrates PACS
type of images.

3. Despite the challenging nature of the Art and Sketches domains,
our proposed method outperforms/ performs competitive against
SOTA methods like ERM and Fishr . This validates the merit of our
work, to be a suitable alternative to address images with drawings and
abstract imagery, while being robust across different domains. The promise of
our method lies on the fact that we are able to learn a single, common
embedding which performs well on domains like art and sketches.

4. Regarding the Cartoons domain, by inspecting certain images qualitatively,
we suspect the very nature of the images to be the hurdle in obtaining a
better performance. This is because of the fact that Cartoon images very
often violate the semantics of objects as observed in real life, by virtue of
abnormal attributes (Figure 7). For instance, a house having eyes, an animal
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Table 7: Ranking of all the SOTA methods (including our RCERM) using two model
selection criteria, on the Art (A) and Sketch (S) domains. Avg (A, S) denotes the
average ranks across these two domains. A lower value indicates a better rank.

Training-domain validation
Leave-one-domain-out cross-validation

Method A S Avg (A, S)

SagNet 4 2 3

CORAL 2 5 3.5 Method A S Avg (A, S)

RCERM 6 1 3.5 RCERM 5 2 3.5
ARM 5 3 4 MMD 4 4 4
Fishr 1 8 4.5 Mixup 3 8 5.5
MTL 3 10 6.5 MTL 2 9 5.5
VREx 10 9 9.5 GroupDRO 6 6 6
ERM 16 4 10 ARM 1 11 6
RSC 13 7 10 CORAL 14 1 7.5
MMD 8 13 10.5 ERM 9 7 8

SAND-mask 11 11 11 SagNet 13 3 8
GroupDRO 18 6 12 MLDG 12 5 8.5

MLDG 12 12 12 DANN 7 13 10
DANN 7 17 12 VREx 11 10 10.5
Mixup 9 16 12.5 IRM 10 12 11

AND-mask 14 14 14 RSC 8 14 11
IRM 15 15 15 CDANN 15 15 15

CDANN 17 18 17.5

having extremely large/small eyes relative to the size of the entire head of
the animal, or, even unusually large head. We believe, that a separate study
could be dedicated to such cartoon images.

5. Based on the results from Table 1, Table 2 and Table 3, in Table 7 we
additionally report the rankings of the performances of all the SOTA methods,
including our RCERM, using two model selection criteria, on the Art (A)
and Sketch (S) domains. It can be concluded that across all DG methods,
for Art and Sketches, RCERM obtains the second best average
rank using train-domain validation, and best average rank using
leave-one-out criterion.

4 Conclusion

In this paper, we propose a novel Embedding Learning approach that seeks to
generalize well across domains such as Drawings and Abstract images. During
training, for a given query image, we obtain an augmented positive example
for Contrastive Learning by leveraging gated fusion and attention. At the same
time, to make the model discriminative, we push away examples from different
semantic categories (across domains). We showcase the prowess of our method
using the DomainBed framework, on the popular PACS (Photo, Art painting,
Cartoon, and Sketch) dataset.
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