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Multi-task Learning for Monocular Depth and 
Defocus Estimations with Real Images 

Renzhi He, Student Member, IEEE, Hualin Hong, Boya Fu, Fei Liu 

Abstract—Monocular depth estimation and defocus estimation are two fundamental tasks in computer vision. Most existing 

methods treat depth estimation and defocus estimation as two separate tasks, ignoring the strong connection between them. In 

this work, we propose a multi-task learning network consisting of an encoder with two decoders to estimate the depth and 

defocus map from a single focused image. Through the multi-task network, the depth estimation facilitates the defocus 

estimation to get better results in the weak texture region and the defocus estimation facilitates the depth estimation by the 

strong physical connection between the two maps. We set up a dataset (named ALL-in-3D dataset) which is the first all-real 

image dataset consisting of 100K sets of all-in-focus images, focused images with focus depth, depth maps, and defocus maps. 

It enables the network to learn features and solid physical connections between the depth and real defocus images. 

Experiments demonstrate that the network learns more solid features from the real focused images than the synthetic focused 

images. Benefiting from this multi-task structure where different tasks facilitate each other, our depth and defocus estimations 

achieve significantly better performance than other state-of-art algorithms. The code and dataset will be publicly available at 

https://github.com/cubhe/MDDNet. 

Index Terms—depth estimation, defocus estimation, All-in-3D dataset, multi-task learning, point spread function 

——————————   ◆   —————————— 

1 INTRODUCTION

epth and defocus are two useful physical information 
for the computer to perceive the environments. Many 

depth estimation [4], [5], [6], [18] and defocus estimation 
[7], [8], [9], [10] methods are proposed to solve the prob-
lems. However, most methods treat the depth and defo-
cus estimations as two separate tasks. From the perspec-
tive of computational photography, the depth map and 
defocus map are encoded into the focused images by the 
point spread function (PSF) [1], [2], [3]. Theoretically, the 
depth and defocus map can be decoded from a focused 
image.  

Monocular depth estimation (MDE) is considered to be 
an ill problem, but deep learning-based methods show 
impressive results. The previous methods are considered 
to learn geometric features or perspective relationships in 
the image [4], [5]. Many methods [3], [12], [27] use other 
physical information to assist the process of depth estima-
tion where the amount of defocus is a strong cue for an 
object’s depth which provides rich physical information.  

Depth from defocus (DFD) methods [6], [12], [17] are 
proposed to obtain depth maps from focused images. 
DFD is supposed to acquire more depth information from 
the defocus cue. [3] is based on phase-coded aperture. [6] 
uses the physical information between the depth and de-
focus map. The focused images with different depths of 
field are used in [17], [43]. The predicted depth map is 
used in generating the focused images and computing the 
loss on the focused images [18]. 

Defocus map estimation (DME) is also of great signifi-
cance for image processing. DME is applied to obtain ad-

vanced image features and be used in many scenarios, 
such as deblurring [7], [8], image segmentation [9], etc. 
Some methods achieve defocus estimation by using par-
ticularly designed hardware, for example, light field cam-
eras [10], custom lenses [11], and special apertures [12]. 
We discuss the focused images taken by conventional 
cameras. Some existing methods [13], [14] first estimate 
the defocus blur of the edges in the image and then 
spread it to the whole image. Recently deep learning 
methods are used to estimate defocus maps. Lee et al. [14] 
propose a defocus map estimation method using domain 
adaptation to learn defocus blur from multi-scale features, 
Tang et al. [16] find a more accurate defocus map by fus-
ing and refining discriminative multi-scale deep features. 

Intuitively, a focused image is supposed to contain 
more information about depth than a clear image. This is 
because the depth is implicitly encoded in the focused 
image. Using the focused image, we can estimate both the 
depth map and the defocus map. There is also a strong 
physical connection between the two maps [2], [3]. 

However, most methods treat defocus and depth esti-
mation as two separate tasks. Without depth, it is hard to 
estimate the defocus of non-textured areas. Without 
properly handling the defocus cues, defocus may be 
treated as noise for depth estimation [5], but this noise 
contains strong physical information [6], [12]. We aim to 
make the neural network understand this ambiguous in-
formation to facilitate depth and defocus estimations. 

Thus, based on the depth estimation network [5], we 
introduce a defocus map estimation subnet to form a mul-
ti-task learning structure [19], [20], [21]. Our network uses 
an encoder based on vision transformer [22] with two 
decoders based on selective features fusion (SFF) struc-
ture [5]. Because of the high correlation between the defo-
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cus map and the depth map, this multi-task structure 
learns transferable features during the training process, 
which facilitates the network to learn more valid features 
and the physical relationship between the two tasks. In 
addition, we derive a physical consistency loss function [6] 
between the depth map and the defocus map based on 
PSF. 

Additionally, the new network structure imposes re-
quirements for a dataset that contains the focused images, 
depth maps, and defocus maps. However, there is no dataset 
that contains these data. Most existing depth-related datasets, 
such as NYU [24], Make3d [4], and KITTI [25], consisting of 
only clear images and depth maps, do not contain defocus 
maps and focus depth. For datasets containing defocused 
images, such as CUHK [26], Lightfield [27], these datasets do 
not contain depth and focus depth.  

Many DFD methods [6], [11], [18] assume a focus depth 
and then use this focus depth and the PSF to synthesize fo-
cused images for the datasets that only contain the depth 
maps and clear images. But the PSF models they used do not 
accurately synthesize realistic focused images, where only 
defocus is taken into account, diffraction, aberrations, etc. are 
not taken into account. For focused images generated from 
datasets such as NYU-V2 and KITTI, which may not have 
realistic counterparts lenses with large field of view (FOV) 
with small depth of field (DOF) in the real world. 

Thus, we setup a high-precision ground-truth dataset 
called the All-in-3D dataset, consisting of all-in-focus 
images, focused images with focus depth, depth maps, 
and defocus maps.  

Our experiments are conducted with real focused im-
ages and highly accurate and dense depth maps. Our goal 
is to enable the network to learn the real defocus features 
through real data to achieve highly accurate depth and 
defocus estimations. Our contributions are as follows: 
⚫ We propose a multi-task learning network for depth 

and defocus estimation, which efficiently unites the 
depth and defocus map estimation. 

⚫ We set up the ALL-in-3D dataset which is the first 
all-real image dataset consisting of all-in-focus imag-
es, focused images with focus depth, depth maps, 
and defocus maps. The ALL-in-3D dataset is high 
resolution and precision and contains 100K sets of 
images. 

⚫ We explore the implied defocus and the depth in-
formation in the focused images with the All-in-3D 
dataset and the new network structure. The experi-
ment results demonstrate that the depth and defocus 
map promote each other by the multi-task architec-
ture.   

2 RELATED WORK 

2.1 Depth Estimation 

Monocular depth estimation is a challenging area. There are 
many methods proposed for monocular depth estimation. 
Saxena et al. [28] used a discriminatively-trained Markov 
Random Field to incorporate multiscale local- and global-
image features. Then, with the development of CNNs, Li et 
al. [29] proposed CRF-based end-to-end networks. Recently, 

Eigen et al. [30] used multi-scaled depth estimation. This 
method was inherited by many methods because it was well 
integrated with the encoder-decoder structure [31], [32]. 
More recently, thanks to the development of the vision trans-
former (VIT) [7], this method was applied to depth estima-
tion [34], [35], [36], [5], e.g., Xie et al. proposed a VIT-based 
method and enlarged the size of receptive field [36]; based 
on this, Doyeon et al. developed a hierarchical transformer 
encoder and used skip connection to fuse features of differ-
ent scales [5]. 

2.2 Depth from Defocus 

Some methods used the defocus cue to facilitate depth esti-
mation. Zhang et al. [6] proposed two networks to estimate 
the depth map and the defocus map separately and evaluat-
ed the depth and defocus maps using a physical consistency-
based loss function. However, this physical consistency loss 
requires an accurate PSF. Shir Gur et al. [18] proposed a new 
neural network structure where the network estimates a 
depth map from a clear image. In the training phase, instead 
of calculating the loss directly on depth, a focused image 
was generated on the depth map and then computed the 
loss based on the focused image. Ikoma et al. [3] proposed a 
depth from defocus method, where they first made a learned 
phase-coded aperture and generated the focused image by a 
corresponding phase-coded method. By this encoding 
method, the depth information implied in the focused image 
was better retrieved. Song et al. [17], [43] proposed a depth 
estimation network based on two focused images. Lu et al. 
[44] proposed a self-supervised depth estimation method. 

2.3 Defocus Estimation 

The defocus map is usually considered as consisting of the 
degree of defocus blur per pixel of the focused image or the 
CoC size per pixel of the focused image [38]. For the former 
approach, many algorithms were dedicated to estimating the 
amount of edge blur accurately, for example, Karaali et al. 
proposed a CNN-based feature learning method [37], Jun-
yong et al. proposed an algorithm based on domain adapta-
tion [38]. Shi et al. developed a multi-scale solution for blur 
perception and build a CUHK dataset [26]. There were also 
shape from focus-related algorithms that were proposed for 
defocus analysis based on image quality [39], [40]. For the 
second approach, which was often used in the field of com-
putational photography, the CoC size calculation formula 
was mentioned in [26], [6], [18], [41]. However, many param-
eters in the formula, such as focus depth and aperture pa-
rameters, were difficult to measure [42].  

2.4 Related Dataset 

The existing datasets related to “all-in-focus image, defocus 
image and focus depth, depth map, defocus map” can be 
roughly divided into two categories. The first category is the 
“clear image, depth image” dataset. For example, NYU-v2 
[24], Make3D [4], KITTI [25], FlyingThings3D [45]. The sec-
ond category is “focused image, defocus map” datasets, 
such as CUHK [26], DUT [46]. No datasets obtain “all-in-
focus image, defocus image, depth map, defocus map, focus 
depth” for the same viewpoint in the same scene, mainly 
because of the hardware limitation. Thus, many people have 
to synthetic focused images based on the first category da-
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tasets. As listed in Table 1, there is no higher quality dataset 
available given the current information gathering capabili-
ties of the authors. Our dataset in the last row of Table 1 con-
tains the highest resolution of the images and depth maps 
and contains ground-truth data rather than synthetic. The 
dataset will be introduced in detail in Sect. 4. 

3 PROPOSED METHOD 

3.1 Overview 

The goal of our model is to predict a depth map and a defo-
cus map from a focused image. To this specialized problem, 
a Multi-task learning network structure is adopt to estimate 
the Depth and Defocus map called MDDNet.  

As shown in Fig. 1, this network is based on encoder-

decoder architecture, which is used in depth estimation and 
semantic segmentation. More specifically, we encode the 
image with 4 encoder blocks and generate the depth map 
and the defocus map using two decoders, respectively. The 
GLPNet is adopted as our backbone network which achieves 
state-of-the-art performance over the NYU Depth V2. We 

detail the proposed architecture in the following subsections. 
This multi-task architecture is supposed to learn the trans-
ferable features between depth and defocus map to make the 
neural network more stable and efficient in processing each 
task. 

3.2 The Circle of Confusion (CoC) 

First, a formula for the size of the CoC is derives to calculate 
the ground-truth defocus map and the physical consistency 
loss, as detailed in the Sect. 3.4.  

 

Fig. 1. MDDNet structure overview. Our network consists of one encoder and two decoders, which are connected by skip-connections. The 
encoder consists of four vision transformer modules and the decoders consist of three SFF modules.   

TABLE 1 
COMPARISON OF EXISTING DATASETS WITH OUR DATASET. 

Name Number Resolution1 Clear image2 Depth map Focused image Defocus map 

NYU-v2 [24] 120K 640×480 Kinect Kinect \ \ 

Make3D [4] 534 460×345 Camera Laser \ \ 

KITTI [25] 93K 370×1226 Stereo camera LiDAR  \ \ 

FlyingThings3D [45] 30K 960×540 Synthetic Synthetic \ \ 

CUHK [26] 1K 640×427 \ \ Camera Human labeled  

DUT [46] 1.1K 320×320 \ \ Synthetic Binary 

CTCUH [16] 150 480×320 \ \ Camera Binary 

SYNDOF [38] 8231 640×480 \ \ Synthetic using PSF Synthetic CoC map 

Song et al. [17] 299 640×480 \ LiDAR Camera \ 

DSLR [47] 110 654×432 \ 3D sensor Camera \ 

Ikoma et al. [3] 30K 960×540 FlyingThings3D  FlyingThings3D  Synthetic \ 

D²Dataset [6] 1449 640×480 NYU-v2 NYU-v2 Synthetic  using PSF Synthetic CoC map 

Our dataset (All-in-3D) 100K 2452×2056 
Camera  

(All-in-focus) 
Camera with projector Camera 

Ground-truth  

CoC map 

1 The resolution is the lower one between the image and the depth map. The RGB images usually need to down-sample to be aligned with the depth map. 
2 clear image means an image with a large DOF; all-in-focus image means the diffuse circle size at each point is theoretically 0. 
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Considering the symmetrical lens as illustrated in Fig. 2, 
the focal length 𝐹, the distance from the optical lens to sen-
sor plane 𝑣  and the focus depth 𝐷𝑓  satisfy the following 
equation: 

1

𝐷𝑓

+
1

𝑣
=

1

𝐹
 . (1) 

As seen in Fig. 2, the diameter of the CoC can be written as:  

𝐶𝑝𝑖𝑥 =
𝐶𝑚𝑚

𝜌 ∙ 𝑠
=

𝑎

𝜌 ∙ 𝑠

|𝐷𝑔𝑡 − 𝐷𝑓|

𝐷𝑔𝑡

𝐹

𝐷𝑓 − 𝐹
(2) 

where 𝐷𝑔𝑡 is the distance between an object and the lens, and 
𝑎 = 𝐹 𝑁⁄  where 𝑁 is the f-number of the camera. While CoC 
is usually measured in millimeters (𝐶𝑚𝑚), we transform its 
size to pixels by considering a camera pixel-size 𝜌, and a 
camera output scale 𝑠.  

3.3 Multi-task Network for Depth and Defocus 
Estimation (MDDNet)  

In order to combine depth estimation with defocus estima-
tion, we first investigate the relationship between depth and 
defocus in (2), which are two different physical quantities 
but share many common features. Based on the physical 
properties of the depth and defocus maps, the multitask 
structure network is used to estimate the two maps, which is 
a learning paradigm in machine learning. It is expected to 
learn the common features of these two physical quantities 
to improve the generalization performance of the two tasks. 

Specifically, one encoder and two decoders are used to 
achieve this multi-task structure, where the two decoders 
share the same encoder and separately estimate the depth 
map and defocus map. Between the encoder and each de-
coder, a skip connection is used to make the encoder recover 
extracted features to the maps. 

In the encoder, a multi-scale structure is used to encode 
the images to ensure that the network learns the features at 
different scales. More specifically, we use 4 serially connect-
ed vision transformer modules to form the encoder to gener-
ate features of 1/4, 1/8, 1/16, and 1/32 of the original image 
size. These features are fed to the decoder via skip connec-
tion. In the decoder, we up-sample the features obtained 
from the encoder to get the depth map and defocus map of 
the original image size. The SFF module is used to fuse the 
local and global features during each up-sampling process. 
Finally, the depth map and the defocus map are generated 
with two decoders respectively. 

3.4 Training Loss 

Since our network has two outputs, it is necessary to cal-
culate the distance between predicted depth and ground-
truth depth, and the distance between the predicted defo-
cus map and ground-truth defocus map. 

For depth estimation, scale-invariant log scale loss pro-
posed by Eigen et al. [30]. has been widely used. For defo-
cus map evaluation, many people use SSIM and MSE [54]. 
We use structural similarity loss and scale-invariant log 
scale loss. 

ℒ𝑑𝑒𝑝𝑡ℎ =
1

𝑁
∑ [𝜆1

1 − 𝑆𝑆𝐼𝑀(𝐷̂, 𝐷)

2
+ 𝜆2 (𝑑𝑑𝑝

2 −
∑ 𝑑𝑑𝑝

2

2𝑁
)] , (3) 

ℒ𝑑𝑒𝑓𝑜𝑐𝑢𝑠 =
1

𝑁
∑ [𝜆3

1 − 𝑆𝑆𝐼𝑀(𝐽, 𝐽)

2
+ 𝜆4 (𝑑𝑑𝑓

2 −
∑ 𝑑𝑑𝑓

2

2𝑁
)] (4) 

where 𝐷̂  and 𝐷  is the predicted depth and the actual 
depth, 𝐽 and 𝐽 is the predicted defocus map and the actual 
defocus map. 𝑑𝑑𝑝 = log 𝐷 − log 𝐷̂, 𝑑𝑑𝑓 = log 𝐽 − log 𝐽. 

For the two outputs of the network, physical consisten-
cy loss is used. This loss can decrease the network overfit-
ting, and improve the results of both networks. 

ℒ𝑝𝑐 = 𝜆5

1

𝑁
‖𝐽 − 𝐴

|𝐷̂ − 𝐷𝑓|

𝐷̂

𝐹

𝐷𝑓 − 𝐹
‖

2

(5) 

where 𝐴 ∶=  𝑎 (𝜌 ∙ 𝑠)⁄ . 

So the loss function of the whole network can be writ-
ten as: 

ℒ = ℒ𝑑𝑒𝑝𝑡ℎ + ℒ𝑑𝑒𝑓𝑜𝑐𝑢𝑠 + ℒ𝑝𝑐. (6) 

4 THE ALL-IN-3D DATASET 

In Table 1 the existing datasets are discussed, which cannot 
meet the demand of high precision focused image, depth 
map, defocus map in the same view. Thus, we build a da-
taset containing all-in-focus image, focused image with fo-
cus depth, depth map and defocus map, called the All-in-3D 
dataset. In addition, we derive the synthetic focused image 
generation algorithm and generate focused images on our 
dataset for the subsequent comparison experiments. Com-
pared to the existing datasets, listed in Table 1, the main ad-
vantages of our dataset are as follows: 
A. The high-resolution RGB images and depth maps with 
the size of 2452 × 2056 are provided.   
B. The depth maps in our dataset do not require extra 
alignment or interpolation with the RGB images, since the 
depth is solved by pixel [53]. Compared to the depth maps 
obtained by laser, the depth maps in our dataset are dense 
and have the same FOV as the RGB images.  
C. It provides pixel-level annotated defocus maps where the 
defocus is calculated by the CoC size (2). See Table 1, [16], [46] 
provide the binary defocus map labeled by subjective per-
ception or clearness analysis, and [38], [6] use the simulated 
focus depth to calculate the CoC size of the defocus maps. 
D. More general. The dataset can be applied in SFF/SFDF 
and optical deblur domain. 

4.1 Data Collection for Our Dataset 

The All-in-3D dataset contains 500 scenes. Each scene is 
focused 200 times to generate 200 focused images with 
different focus depths, where the focused images share 

 

Fig. 2. A simple model of lens. The yellow line represents the focus 
point. The green line represents the defocus point with a CoC. 
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the same depth map and all-in-focus image. Our dataset 
contains 100K (500×200) sets of data. A set of data con-
sists of an all-in-focus image, a focused image with focus 
depth, a depth map and a defocus map.  
Focused image is obtained by direct camera photography. 
The resolution of the image is 2452 × 2056. The maximum 
aperture of our lens is #1.4 and the focal length is 50mm 
when shooting focused images. At the maximum aperture, 
focused images are obtained with a small DOF. For each 
scene, 200 focused images are taken with different focus 
depths. 
All-in-focus image is obtained by two methods. It can be 
obtained by compositing the focus images. Similar to the 
SFF algorithm [40], a focus stack is generated from 200 
images, from which the clearest sequence of each pixel 
position is selected to form an all-in-focus image. The al-
gorithm is shown in Table 2. Another method is to set the 
lens aperture to the minimum #16 and use the camera to 
take an image of a large DOF.  
Depth map is obtained by the fringe projection profilom-
etry method (FPP) [53] based on the structured light sys-
tem. Using the FPP method, the depth map is solved by 
pixel. Thus, the resolution and the FOV of the depth map 
are the same as the focused images and all-in-focus imag-
es. The depth map does not require extra calibration or 
interpolation to be aligned with the focused images.  
Depth map refinement 𝑫𝒈𝒕. However, the projector and 
camera in the structured light system are a binocular sys-
tem, with parallax. As shown in Fig. 4 (a)(c), the shad-
owed or reflective parts cannot be solved by the FPP 
method. Firstly, the area that cannot be solved by struc-

tured light to generate a mask is identified, as shown in 
Fig. 4 (b). The unsolvable area is identified and filled by 
the depth 𝐷𝑠𝑓 solved by the SFF algorithm, see Table 2. Fig. 
4 (c) is the original depth map solved by the FPP method. 
Fig. 4 (d) is the refined depth map. 
Focus depth 𝐷𝑓. The distance from the camera CCD (or 
CMOS) to the lens plane is measured by the infrared sen-
sor. The resolution of the infrared sensor is 3µm and it is 
calibrated in [2] to achieve high accuracy of the distance 
from the camera CCD to the lens plane. After obtaining 
the distance 𝑣, the focused depth 𝐷𝑓 can be calculated by 
(1) 

 

Fig. 3. Examples of the All-in-3D dataset. The first column is the all-in-focus images. The second column is the focused images that every 
point is out-of-focus. The third and fourth columns are the focused images that focused on the front and the back. The fifth and sixth columns 
are the defocus maps corresponding to columns the third and fourth columns. The seventh column is the corresponding depth maps. 

TABLE 2 
ALL-IN-FOCUS IMAGE AND DEPTH MAP GENERATION ALGO-

RITHM 

Algorithm 1: All-in-focus image generation 

Input: Focused image stack [𝐼1 𝐼2 … 𝐼𝑇 , ] ∈  𝑅𝐻×𝑊×𝐶×𝑇  , 

focus depth 𝑓𝑑 ∈  𝑅𝑇  

Output: Depth map 𝐷𝑠𝑓, all in focus image 𝐼𝑐 

1. Apply Laplace operation to each image to generate La-

place stack 
[𝜎1 𝜎2 … 𝜎𝑇 , ] ∈  𝑅𝐻×𝑊×𝑇 

2. Search for the index of the maximum value on the La-

place stack 
𝑖𝑑𝑠(𝑖, 𝑗) = 𝑎𝑟𝑔𝑚𝑎𝑥([𝜎1(𝑖, 𝑗), 𝜎2(𝑖, 𝑗) … 𝜎𝑇(𝑖, 𝑗)]) 

3. Compose an all-in-focus image and depth map 
𝑓𝑜𝑟 𝑖 = 0 𝑡𝑜 𝐻 𝑑𝑜  

 𝑓𝑜𝑟 𝑗 = 0 𝑡𝑜 𝑊 𝑑𝑜  
  𝐼𝑐(𝑖, 𝑗) = 𝐼𝑖𝑑𝑠(𝑖,𝑗)(𝑖, 𝑗) 

  𝐷𝑠𝑓(𝑖, 𝑗) = 𝑓𝑑[𝑖𝑑𝑠(𝑖, 𝑗)] 
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Defocus map is calculated by the value the CoC size fol-
lowing (5):  

𝐽(𝑖, 𝑗) = 𝐴
|𝐷𝑔𝑡(𝑖, 𝑗) − 𝐷𝑓|

𝐷𝑔𝑡(𝑖, 𝑗)

𝐹

𝐷𝑓 − 𝐹
(7) 

where A in (7) is 800, solved in [2]. 

4.2 Synthetic Focused Image Generation  

In addition, focused images are synthesized based on our 
dataset for the comparison experiments. First, a PSF func-
tion is derived using the Gaussian function [5], [6] and 
used to compute a CoC for each point of the image and 
then superimpose all the CoCs. 

𝐺(𝑥, 𝑦, 𝐶𝑝𝑖𝑥) =
1

2𝜋𝑟2 𝑒𝑥𝑝 (−
𝑥2 + 𝑦2

2𝐶𝑝𝑖𝑥
2 ) , (8) 

𝐼𝑏(𝑥, 𝑦) = ∑ ∑ 𝐼𝑐(𝑖, 𝑗)

𝑦+
𝑘
2

𝑗=𝑦−
𝑘
2

𝑥+
𝑘
2

𝑖=𝑥−
𝑘
2

∙ 𝐺 (𝑥 − 𝑖, 𝑦 − 𝑗, 𝐶𝑝𝑖𝑥(𝐷(𝑖, 𝑗))) , (9) 

where the 𝐼𝑏 is the synthetic focused image, 𝐼c is the all-in-
focus image in our dataset. Unlike the convolution meth-
od [6], [38], this approach is closer to the physical process 
of the focused images. The whole process is implemented 
on the GPU, using NVIDIA Cuda toolkits. Fig. 5 shows 
the real focused images and synthetic focused images. 

5 EXPERIMENTAL ASSESSMENT 

This section discusses the performance of our network in 
defocus and depth map estimations. First, the experimental 
setting is introduced. Then the effect of the real and synthetic 
focused images on the network is discussed. Then our net-
work MDDNet is used to generate the depth and defocus 
maps and compare our defocus and depth estimations re-
sults with other methods. The MDDNet contains two decod-
ers. The network is trained only using the defocus decoder 
called Defocus subnet and the network is trained only using 
the depth decoder called Depth subnet. The two subnets are 

tested in the ablation study to show the effectiveness of each 
component's contribution.  

5.1 Experimental Configuration 

The network is implemented with PyTorch framework 
and trained using Adam [52] optimizer with learning rate 
10−4. For the encoder, the GLP pre-trained weights [5] are 
used, and for decoders, the initial weights are used. The 
whole Batch size is 4. All the experiments are conducted 
with two Nvidia RTX 3090 24G.  

5.2 Real Images or Synthetic Images? 

As shown in Table 1, many methods [3], [6], [38], [46] use 
synthetic images to train the network. To figure out the 
effect of synthetic focused images and real focused imag-
es on the network. The synthetic focused images are syn-
thesized based on the all-in-focus images with (11). The 
MDDNet is trained and tested on synthetic images and 
real focused images. 

First, the MDDNet is trained on the synthetic focused 
images, then tested on the synthetic images and the real 
images. The results are listed in the first 4 rows in Table. 3. 
Second, the network is trained on the real focused images 
and then tested on the synthetic images and the real im-
ages. The results are listed in the last 4 rows in Table. 3. 
Fig. 5 shows the difference between our synthetic focused 
images and the real focused images.  

For the defocus estimation, the network gets the best 
result when trained on the synthetic focused image tested 
on the synthetic focused images which is 0.2054 under the 
𝛿 < 1.05 metric but gets the worst result when the net-
work is trained on the synthetic images and tested on the 
real focused images which is 0.1499 under the 𝛿 < 1.05 
metric. When tested on the real images, as shown in Fig. 6 
(c)(e), the network trained on the real images gets a better 
result of 0.1912 which is 5% higher than the network trained 

on the synthetic images. It means that the network trained 
on the synthetic focused images cannot transfer to the real 
focused images and the real focused images make the 

 

Fig. 4. Process of depth refinement. (a). The RGB image. (b) The 
mask consisted of unsolvable points. (c) The depth map solved by 
FPP method. (d) The depth map refined by SFF. 

 

 

Fig. 5. Comparison of real and synthetic focused images. The real 
focused images (a) (c) and the synthetic focused images (b) (d) 
where (a) (b) focus on the front, (c) (d) focus on the back. 

i. 
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network learn the real defocus features.  
For the depth estimation, the network gets the best re-

sult of 0.8850 under the 𝛿 < 1.05 metric when trained and 
tested on the real focused images, which is 5% higher 
than the trained on synthetic and tested on real images 
(0.8427). It means the real defocus features learned from 
the real focused images, better improve the depth estima-
tion than the synthetic focused images, as shown in Fig. 6 
(c)(e).  

The synthetic focused images face two problems. First, 
it is difficult to synthesize an accurately focused image. 
Most Gaussian-based focused image generation methods 
are linear and only take into account defocus blur, while 
realistic focused images have longitudinal and lateral 
chromatic aberrations etc. Second, the parameters used in 
the defocus PSF are not realistic. Take NYU-v2 for exam-
ple, the depth map in NYU-v2 contains data up to ten 

meters, it is difficult to manufacture such a lens that 
maintains a small DOF and a large FOV at such a distance. 

The experiments prove that the synthetic focused im-
ages have some limitations compared to the real focused 
images. The synthetic images are hard to make the net-
work learn the real features of focus and hard to assist the 
depth estimation. Therefore, our network is trained on the 
real focused images. 

5.3 Defocus Estimation 

We implement three algorithms, Xu et al. [51], DMENet 
[14], and Zhang et al. [6]. Our method estimate the defo-
cus map based on the size of CoC, while other datasets 
are based on image quality evaluation [26], [46]. Thus, the 
defocus maps are normalized to the same scale before 
comparing. To evaluation the defocus maps, some use the 
F-measure scores [16], [46], or MAE [14], [16], [46].  

TABLE 3 
DEPTH AND DEFOCUS ESTIMATION RESULTS OF MDDNET TRAINED AND TESTED ON SYNTHETIC AND REAL FOCUSED IMAGES. 

Train set Test set Output 𝛿 < 1.05 ↑* 𝛿 < 1.15 ↑ 𝛿 < 1.25 ↑ Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ Log 10 ↓ 

Synthetic 

Synthetic 
Depth 0.8455 0.9988 1.0000 0.0273 0.0012 0.0301 0.0320 0.0120 

Defocus 0.2054 0.4580 0.6078 0.4420 0.052 0.0849 0.4028 0.1264 

Real 
Depth 0.8427 0.9982 1.0000 0.0280 0.0013 0.0307 0.0325 0.0123 

Defocus 0.1499 0.3403 0.4700 0.7471 0.134 0.1184 0.5482 0.1869 

Real 

Synthetic 
Depth 0.8578 0.9973 1.0000 0.0239 0.0011 0.0267 0.0291 0.0105 

Defocus 0.1610 0.3779 0.5106 0.8192 0.1719 0.115 0.5477 0.183 

Real 
Depth 0.8850 0.9979 1.0000 0.0213 0.0008 0.0239 0.0263 0.0093 

Defocus 0.1912 0.4195 0.5484 0.6412 0.1104 0.0998 0.5168 0.1716 

*We use the same metrics [34] for depth and defocus estimations. The up arrow indicates the larger value achieved the better performance is, while the down 
arrow indicates the smaller, the better. 

 
Fig. 6. Depth and defocus estimation results of the MDDNet with trained and tested on real or synthetic focused images. Results of MDDNet 
trained on the synthetic focused image then tested on the synthetic focused image (b) and real focused images (c). Results of MDDNet 
Trained on the real focused image then tested on the synthetic focused images (d) and real focused images (e). The ground-truth defocus 
maps (f) row 1, 3 and depth maps (f) row 2, 4.  
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Fig. 7. shows the defocus map estimation for different 
focus depths on the same scene. It can be seen that the 
defocus estimation results of our algorithm are visually 
more sensitive to the defocus and focus areas.  
Seeing the apple wrapped in a bubble grid in the bottom 
half of Fig. 7, where the texture changes drastically, but 
the depth changes slightly, the defocus estimation meth-
ods [51], [14], [6] cannot handle this area properly. These 
methods pay much attention to the edges. But our meth-
od benefits from the depth estimation, it helps the defo-
cus decoder to handle the place where the texture chang-
es drastically, but the depth changes slightly. Similarly, 
benefiting from the depth estimation, our algorithm han-
dles the weakly textured part properly, like the back-
ground. Fig. 8 further demonstrates the accuracy of our 
algorithm. Seeing the keycaps on the keyboard, our algo-
rithm can distinguish each keycap. Compared to [51], the 
MDDNet avoids the impact of letters on keycaps. 

Table. 4 shows the quantitative analysis of our algo-

TABLE 4 
DEFOCUS ESTIMATION RESULTS OF MDDNET AND OTHER METHODS*. 

Methods 𝛿 < 1.05 ↑ 𝛿 < 1.15 ↑ 𝛿 < 1.25 ↑ Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ Log 10 ↓ 

Xu et al. [51] 0.0247 0.0709 0.1139 492.3822 488.9422 0.423 2.4087 0.6609 

DMENet [14] 0.1309 0.3215 0.4681 0.822 0.1521 0.1232 0.5516 0.1832 

Zhang et al. [6] 0.1493 0.3527 0.4853 0.7228 0.1238 0.1000 0.5662 0.1921 

MDDNet (synthetic) 0.1610 0.3779 0.5106 0.8192 0.1719 0.115 0.5477 0.183 

MDDNet (real) 0.1912 0.4195 0.5484 0.6412 0.1104 0.0998 0.5168 0.1716 

* Only the MDDNet (synthetic) is trained on synthetic focused images other methods are trained on real focused images. 

 
Fig. 8. The defocus estimation results. (a) The focused images. 
(b) Defocus maps generated by [51]. (c) Defocus maps generat-
ed by MDDNet. (d) The ground-truth defocus maps. 

 
Fig. 7. The defocus estimation results. (a) The focused images focused on the front, middle, and back. (b)-(d) Defocus maps generated by 
[51], [38], [6] (trained on real images). (e) Defocus maps generated by MDDNet (trained on synthetic images). (f) Defocus maps generated 
by MDDNet (trained on real images). (G) The ground-truth defocus maps. 
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rithm. For the 𝛿 < 1.05 metrics, MDDNet(ours) is 0.1912, 
while Zhang’s method [6] and DMENet [14] method are 
0.1493 and 0.1309, respectively. Our method is larger than 
those methods in [6] (5%) and [14] (6%), which means our 
defocus estimation algorithm achieves higher accuracy 
compared to other neural networks and is less affected by 
the edges.  

5.4 Depth Estimation 

Several monocular depth estimation algorithms are im-
plemented to compare with our MDDNet, including [6], 
[23], and [5], as shown in Fig. 9 (b)(c)(d). The result of our 
algorithm is shown in Fig. 9(e).  

As shown in row 5 of Fig. 9, other algorithms have dif-
ficulty recovering the tail of the Charmander, while our 
algorithm can estimate the unsolvable part of the original 
depth. Table. 5 shows the quantitative analysis of our al-
gorithm with other algorithms. For the 𝛿 < 1.05 metrics, 
our method is 0.8850, while Zhang’s [5] method is 0.7594, 

Adabins is 0.8667, and GLP is 0.8159. Our methods 
achieves higher accurate than [5] (13%), [23] (2%),and [5] 
(7%). It means that our network learns more valid accu-
rate depth information from the focused images. The 
most difference between our depth estimation method 
and the previous methods is that the defocus estimation 
is introduced to help the depth estimation.  

Then ablation experiments are conducted to further 
demonstrate the effectiveness of Depth subnet and Defo-
cus subnet and explore how they facilitate each other. 

5.5 Single Task or Multi-task? 

In this subsection, first, the validity of the network struc-
ture is verified, where the depth maps are estimated us-
ing the encoder with a single depth decoder called Depth 
subnet, and the defocus map is estimated using the en-
coder and a single defocus decoder called Defocus subnet. 
Then the validity of the physical consistency loss is veri-
fied. 

 
Fig. 9. The depth estimation results. (a) The focused images. (b)-(e) Depth maps generated by [6], [23], [5]. (f) Depth maps generated by 
MDDNet. (G) The ground-truth depth maps. 
 

TABLE 5 
DEPTH ESTIMATION RESULTS OF MDDNET AND OTHER METHODS. 

Methods 𝛿 < 1.05 ↑ 𝛿 < 1.15 ↑ 𝛿 < 1.25 ↑ Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ Log 10 ↓ 

Zhang et al. [6] 0.7594 0.9794 0.9999 0.0369 0.0022 0.0374 0.0420 0.0156 

Adabins [23] 0.8667 0.9912 1.0000 0.0257 0.0013 0.0282 0.0307 0.0112 

GLP [5] 0.8159 0.9797 0.9999 0.0320 0.0018 0.0325 0.0368 0.0135 

MDDNet (Ours) 0.8850 0.9979 1.0000 0.0213 0.0008 0.0239 0.0263 0.0093 
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Depth subnet. Fig. 10 (f) shows the result of depth esti-
mation without Defocus subnet. Compared to Fig. 10 (h), 
the Defocus subnet improves the depth estimation at the 
edges and the shadows. Table 6 lists the quantitative 
analysis of the improvement, the depth estimation results 
of the Depth subnet and MDDNet under the 𝛿 < 1.05 
metric are 0.8160 and 0.8850, which means the Defocus 
subnet improves the accuracy of depth estimation by 5%. 
Defocus subnet. As discussed in Sect. 5.3, the defocus 
networks have difficulty in estimating the parts without 
texture and pay much attention to the edges. This prob-
lem is also present in our Defocus subnet. This problem is 
effectively solved by adding a depth estimation network 
shown in Fig. 10 (b)(d). For the results of MDDNet, the 
defocus map is smoother, and the background is clearer 
than the result of Defocus subnet. The defocus estimation 
results of the defocus subnet and MDDNet under the 𝛿 <
1.25 metric are 0.5106 and 0.5484, which means the Depth 
subnet improves the accuracy of defocus estimation by 
3%. 
Physical consistency loss. We use this loss function, as 
shown in Fig. 10 (c)(g)(d)(h), to reduce overfitting, and 
improve the performance of the network. Table. 6, lists 
the effect of this loss function on the network, the result of 
MDDNet trained without physical consistency loss for 
depth and defocus estimations are 0.8661 and 0.1830 un-
der the 𝛿 < 1.25 metric while the MDDNet with the loss 

are 0.8850 and 0.1912 which means the physical con-
sistency loss improves the depth estimation by 2% and 
improves the defocus estimation by 1%. 

6 CONCLUSION 

The MDDNet proposed in this paper is demonstrated to be 
highly competitive, by comparing it with other methods. 
The multi-task structure encoder can effectively learn the 
valid information related to depth as well as defocus from 
the focused image. Moreover, it is more generalized com-
pared to the specially manufactured lenses since we acquire 
the focused images from the conventional lens. 

We setup a dataset consisting of the all-in-focus image, fo-
cused image with focus depth, depth map and defocus map 
that has high precision annotation and containing 100k sets 
of data. As far as we know, it is the only and the largest da-
taset that contains focused images with corresponding high 
accuracy depth maps and precision pixel annotation defocus 
maps. We believe that this dataset will facilitate the devel-
opment of defocus/depth estimation and optical deblurring 
etc. The form of focused images is closer to the way humans 
perceive objects, and we hope that our dataset and the 
method proposed in this paper will facilitate the ability of 
computers or robots in visual perception. For the deficiencies 
in the dataset, such as partial unsolvable depth, we are 
working to complement these with neural networks or a 

TABLE 6 
ABLATION STUDY. RESULTS OF DEPTH SUBNET, DEFOCUS SUBNET, MDDNET WITHOUT PHYSICAL CONSISTENCY LOSS  

AND MDDNET WITH PHYSICAL CONSISTENCY LOSS. 

Methods Output 𝛿 < 1.05 ↑ 𝛿 < 1.15 ↑ 𝛿 < 1.25 ↑ Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ Log 10 ↓ 

Depth subnet Depth 0.8160 0.9986 1.0000 0.0269 0.0013 0.0296 0.0323 0.0117 

Defocus subnet Defocus 0.1610 0.3779 0.5106 0.8192 0.1719 0.1150 0.5477 0.1830 

MDDNet 
without physical  
consistency loss 

Depth 0.8661 0.9978 1.0000 0.0235 0.001 0.0261 0.0284 0.0102 

Defocus 0.1830 0.4213 0.5542 0.7116 0.1312 0.1022 0.4997 0.1641 

MDDNet 
Depth 0.8850 0.9979 1.0000 0.0213 0.0008 0.0239 0.0263 0.0093 

Defocus 0.1912 0.4195 0.5484 0.6412 0.1104 0.0998 0.5168 0.1716 

  
Fig. 10. Ablation study. (a) The focused image. (b)-(e) are the corresponding defocus maps. (f)-(i) are the corresponding depth maps. (b) (f) 
are generated by two subnets. (c) (g) are generated by MDDNet trained without using the physical consistency loss. (d) (h) are generated by 
MDDNet trained using the physical consistency loss. (e) (i) are the ground-truth defocus map and depth map. 
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multi-view system. 
In future work, we will improve the network structure 

and use more physical information to make the network 
obtain more accurate depth and defocus maps. We hope to 
take more insight into the focused images and fully take the 
advantage of our dataset. 
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