
Multilayer deep feature extraction for visual texture
recognition

Lucas O. Lyraa,∗, Antonio Elias Fabrisa, Joao B. Florindob

aInstitute of Mathematics and Statistics - University of São Paulo
Rua do Matão, 1010 - Butantã, CEP 05508-090, São Paulo, SP, Brasil

bInstitute of Mathematics, Statistics and Scientific Computing - University of Campinas
Rua Sérgio Buarque de Holanda, 651 - Barão Geraldo, CEP 13083-859, Campinas, SP,

Brasil

Abstract

Convolutional neural networks have shown successful results in image classifica-

tion achieving real-time results superior to the human level. However, texture

images still pose some challenge to these models due, for example, to the limited

availability of data for training in several problems where these images appear,

high inter-class similarity, the absence of a global viewpoint of the object repre-

sented, and others. In this context, the present paper is focused on improving

the accuracy of convolutional neural networks in texture classification. This is

done by extracting features from multiple convolutional layers of a pretrained

neural network and aggregating such features using Fisher vector. The reason

for using features from earlier convolutional layers is obtaining information that

is less domain specific. We verify the effectiveness of our method on texture

classification of benchmark datasets, as well as on a practical task of Brazilian

plant species identification. In both scenarios, Fisher vectors calculated on mul-

tiple layers outperform state-of-art methods, confirming that early convolutional

layers provide important information about the texture image for classification.

Keywords: Texture recognition, Convolutional neural networks, Fisher vector,

Image descriptors.

∗Corresponding author
Email addresses: lucas.oliveira.lyra@alumni.usp.br (Lucas O. Lyra), fabris@usp.br

(Antonio Elias Fabris), jbflorindo@ime.unicamp.br (Joao B. Florindo)

Preprint submitted to Elsevier August 23, 2022

ar
X

iv
:2

20
8.

10
04

4v
1

 [
cs

.C
V

]
 2

2
A

ug
 2

02
2

1. Introduction

Texture is one of the most important image attributes in computational

vision. It provides information on the spatial arrangement of the pixel intensities

in an image. Textures can be useful for recognition of material properties,

specially when other image attributes, like shape, are not useful. They play

an important role in remote sensing [3], material science [26], medicine [32],

agriculture [17] and many other fields.

The problem of recognizing a texture can be divided into two tasks: the

first is extracting features from an image; the second one is training a classifier

for feature recognition. Given the way those tasks are performed, techniques

can be divided into two groups. In the first case, features are extracted by

a computer vision method and used by a classical machine learning algorithm

for classification. In the other one, both feature extraction and classification

are performed by a deep neural network, usually Convolutional Neural Network

(CNN). In that case, parameters are learned by an optimization algorithm.

Although CNNs have been quite successful for image classification, textures

are still challenging. This is a consequence of the limited availability of data

for training in areas of application, such as medicine, for example, and other

characteristics such as the high inter-class similarity and the lack of a global

viewpoint over the analyzed object. Even if we consider transferring knowledge

from large databases, like ImageNet, there can be significant domain shift be-

tween those large databases and the field of research interest. In this context,

the literature has presented a growing number of studies combining CNNs with

classical texture descriptors [11, 41, 22].

When using classical texture features, the performance classification of al-

gorithms rely heavily on how well the extracted features describe the image.

Features extracted from the last convolutional layer of CNNs tend to be better

than features extracted by classical filter banks [8]. However, given the domain

shift mentioned in the previous paragraph, features from the last convolutional

layer might be too specific to the training database.

2

In this context, we propose a method that combines generalist local fea-

tures with specific ones into a single set of features. In order to evaluate such

method, we compute Fisher Vectors on this set of features and classify them

using Support Vector Machine (SVM). The major contributions of this paper

are the following:

1. Up to our knowledge, this is the first time Fisher Vectors are associated

with features extracted from multiple layers of a CNN;

2. We propose the application of normalization on descriptors extracted from

fully-connected layers and evaluate the impact of the proposed normaliza-

tion in classification accuracy;

3. We obtain results competitive with other methods available in litera-

ture, establishing, up to our knowledge, new state-of-the-art performance

in Flickr Material Database (FMD) [34], Describable Textures Dataset

(DTD) [7] and in Brazilian plant species 1200Tex database [5].

In Section 2, we mention and briefly describe some related works. In Sec-

tion 3 the theoretical background necessary for the presentation of the proposed

method is described, with Section 3.1 giving a brief general description of CNNs

and Section 3.2 focusing on how Fisher Kernels can be used in texture descrip-

tors. In Section 4 we present the proposed method for visual texture classifica-

tion. Section 5 shows our procedures to test and validate the performance of

our method. In Section 6 we present and discuss the obtained results. Finally,

Section 7 presents the general conclusions of our research. The code will be

available at https://github.com/lolyra/multilayer.

2. Related works

Earlier works on texture recognition were based on using handcrafted fea-

tures that are invariant to scale, illumination and translation. Scale Invariant

Feature Transform (SIFT) [23], Local Binary Patterns (LBP) [27] and variants

[12, 30] are prominent examples in this regard in the literature.

3

https://github.com/lolyra/multilayer

On top of those handcrafted feature extractors, an encoder is needed to com-

bine features into a single descriptor vector that can be used in a discriminative

classifier. Traditional encoders include Bag-of-Visual Words and its variations

[24, 19, 44, 33], Vector of Locally Aggregated Descriptors (VLAD) [2] and Fisher

Vectors (FV) [28, 29].

However, in recent works, a shift has been made from handcrafted feature

extractors to deep neural networks. Since texture recognition databases are

frequently very small to train deep neural networks from scratch, most of the

proposed methods use pretrained CNNs on large databases, like ImageNet. This

is the case of Cimpoi et al. [8]. They proposed a method combining CNNs

with traditional encoders that achieved state-of-the-art results. However, its

good performance requires the use of multiple scales in the input image, which

implies using CNNs several times.

More recently, improvements on the association of CNNs with traditional

encoders have been proposed. Song et al. [37] proposed a method that consists

of optimizing the Fisher Vector for classification by applying a simple neural

network on top of the FV descriptor and training it from scratch. Lin et. al. [21]

avoid the use of generative models such as GMM, applying outer product to

features extracted from two neural networks, thus obtaining second-order image

features that are used to calculate FV or VLAD.

Given the overall good performance of SIFT even when compared to CNNs,

a step towards a hybrid model was taken by Jbene et al. [18]. They calculate

Fisher Vectors on features extracted by CNN and on features extracted by SIFT,

later combining for classification purposes.

In addition, another source of features that can contribute to a good perfor-

mance for classification are those extracted from other layers of a CNN rather

than only the last convolutional layer. Such approach is presented by Chen et

at. [6] where encoding is performed by calculating statistical self-similarity us-

ing a soft histogram of local differential box-counting dimensions of cross-layer

features.

More recent works have focused on alternatives to traditional encoders, like

4

FV, either to create an end-to-end trainable model or reduce computational

costs. Florindo et al. [9] performs aggregation by joining two different fully-

connected layers output . The first one calculated over original image and the

other one calculated over an entropy measure of the original image. In other

work [10], encoding is performed by visibility graphs.

In the scope of end-to-end training, Mao et al. [25] obtain a fully trainable

model by performing encoding with an aggregation module, which consists of

convolutions and average pooling. In Xu et al. [43], encoding is performed by

a local-global hierarchical fractal analysis.

3. Background

In this section, we describe the concepts needed to understand the proposed

model. In Section 3.1, we set the basic theory and describe the functioning of

Convolutional Neural Networks (CNN), detailing some frequently used layers.

In Section 3.2, we present a concise summary of Fisher Vector (FV).

3.1. Deep Convolutional Features

A CNN is a neural network usually developed to handle images. Nodes in

each layer can be organized in a multi-dimensional space. Using three dimen-

sions, for example, it is possible to explore relations among neighbor pixels and

among color channels.

This type of neural network can be decomposed into two main parts. The

first one is used for extracting features from images. It is usually composed by

convolutional, pooling, activation and normalization layers. The second part is

composed by fully-connected layers whose purpose is classification.

Classical extraction of features is performed by applying convolutional filters

to the input image [20]. In this context, the feature extraction part of a CNN

can be seen as a bank of filters, where each channel from each convolutional

layer is a particular filter.

5

3.1.1. Convolution Layer

A convolutional layer is an appropriate mechanism to reduce the number of

parameters and explore relationships between neighbor pixels. It is composed

by multiple 2-dimensional kernels Kc(i, j) = wi,j . Given a 2-dimensional input

I(i, j), each output Sc(i, j) is the convolution of I by Kc, which is given by:

Sc(i, j) =

d−1∑
m=0

d−1∑
n=0

I(i · s−m, j · s− n)Kc(m,n). (1)

The parameter d is called kernel size and s is the stride. Note that, generally,

kernels have width equals height. Stride is the convolution step size.

Let W and H be, respectively, the width and height of I. As i, j are not

defined outside the set [0,W − 1] × [0, H − 1], S has dimensions smaller than

I. In order to increase output size, a parameter p, called padding, can be

introduced. In such a case, we define I(i, j) = 0 for i ∈ [−p, 0]∪ [W,W + p] and

j ∈ [−p, 0] ∪ [H,H + p]. Thus, the output dimension Dout is given by

Dout =
Din − d+ 2p

2
− 1, (2)

where Din can be either W or H. An activation function f : R → R is usu-

ally applied to S in order to introduce non-linearity to the objective function

estimator. One of the most popular activation function is called rectifier linear

unit and is given by

f(x) = max(0, x). (3)

3.1.2. Pooling Layer

A pooling layer is used to reduce the number of parameters to be learned

and the computational cost of the network. This is performed by reducing the

input dimensions and helps preventing overfitting. In this layer, the input I is

reduced by merging a set of m × n pixels into a single one. In general, pixels

are combined by retrieving their maximum value. Thus the output S is given

by

S(i, j) = max
0≤k≤m

(max
0≤l≤n

(I(i ·m+ k, j · n+ l))). (4)

6

3.1.3. Dropout Layer

Dropout is a regularization technique used to avoid overfitting. It was in-

troduced by Srivastava, et al. in [38] and consists of avoiding the update of

randomly selected neurons during one epoch. In the introductory paper, it is

shown that the use of this technique has increased the accuracy of supervised

learning tasks in areas such as computer vision, voice recognition and compu-

tational biology.

3.1.4. Normalization Layer

In neural network training, updates to the weights in early layers can change

data distribution significantly in later layers. This phenomenon is called internal

covariate shift and can make the training process very slow. In order to avoid

it, a normalization layer is introduced. Using this layer, input data distribution

can be imposed to have mean 0 and variance 1. Normalization can not only

speed up the training process, but also act as a regularization layer, dismissing

the need of a Dropout layer.

As noted in [15], normalizing all data can be costly and a better approach

would be batch normalization of the data. Thus let m be the batch size and d

the dimension of the input. Let xij denote the j-th coordinate of the i-th input

data from a batch. The normalization is given by

x̂ij =
xij − µj√
σj + ε

, (5)

where µj and σj denote, respectively, the mean and variance of the j-th com-

ponents of the batch and ε is a positive constant to assure numerical stability.

3.1.5. Fully-Connected Layer

A fully-connected (FC) layer explores relations among all the components

of the input data. In such layer, the multi-dimensional data from the previous

one is rearranged into a one-dimensional vector V . The layer’s output S is also

a one-dimensional vector and is given by

sj =

d−1∑
i=0

wi,jvi, (6)

7

where sj is the j-th component of S and vi is the i-th component of V , d is the

number of components of V and w’s are the weights of the layer.

The FC layer is generally placed on top of the network to accomplish the

classification task. Softmax function is normally used as an activation function

after the last layer. The objective function guiding the optimization of the net-

work is called loss function. Some commonly used loss functions in classification

task are cross-entropy and Hinge loss.

3.2. Fisher Vector

Let X = {xd, d = 1 · · ·D} denote a sample of D observations, xd ∈ RN . As-

sume that the generation process of X can be modeled by the probability density

function uλ with parameters λ. Then one can characterize the observations in

X by the following gradient vector

GXλ = ∇λ log uλ(X). (7)

The gradient vector given by Equation (7) can be classified using any classifica-

tion algorithm. In [16], the Fisher information matrix Fλ is suggested for this

purpose:

Fλ = EX [GXλ G
X
λ

′
]. (8)

From this observation, a Fisher Kernel (FK) to measure similarity between two

samples X and Y was proposed. Such kernel is defined by:

KFK(X,Y) = GXλ
′
F−1λ GYλ . (9)

As F−1λ is positive semi-definite, so is Fλ. Using the Cholesky decomposition

F−1λ = Lλ
′Lλ, the FK can be re-written as:

KFK(X,Y) = GXλ
′GYλ (10)

where

GXλ = Lλ∇λ log uλ(X). (11)

8

Input Image
(3 channels 512x512)

Local features
(512 channels 16x16)

Local features
(176 channels 32x32)

PCA

Reduced local features
(176 channels 16x16)

Combined features
(1280 descriptors,
176 dimensions)

Neural Network
(Convolutional Layers)

Figure 1: Feature extraction with the proposed method. From left to right we have the input

texture, convolutional layers and local features extracted from the last two layers.

The vector GXλ is called Fisher Vector (FV). We have that FV GXλ and GXλ

have the same dimensionality [31]. Therefore, we can conclude that performing

classification with a linear kernel machine using an FV as feature vector is

equivalent to performing a non-linear kernel machine using KFK as kernel.

4. Proposed method

Here we propose an approach to use information from multiple layers of a

CNN and Fisher vector encoding to perform classification. The current section is

divided into two subsections. In Subsection 4.1, we show the proposed strategy

to build feature vectors. In Subsection 4.2, we show the classification process

using such vectors.

4.1. Feature Extraction

In the first stage of our methodology, we are interested in using Fisher vec-

tors to describe information extracted from multiple layers of a convolutional

neural network. Initially, we take a CNN architecture pretrained on ImageNet

9

and use it as a feature extractor. We present the texture image as input to the

pretrained CNN and collect the outputs of the last and penultimate convolu-

tional layers. Both layers contain feature information about the image, the last

layer presenting more high-level information than the previous one.

Definition 1. Let the set Xn = {xt, t = 1 · · ·Tn | xt ∈ RDn} denote the output

of the n-th convolutional layer, where Tn = Wn ×Hn is the resolution of each

channel and Dn is the number of channels. We call x ∈ Xn a local feature and

Xn a set of local features extracted from the n-th convolutional layer.

Let N denote the number of convolutional layers in a CNN. Our method

takes the local feature sets XN−1 and XN . We are interested in creating a single

set X of local features, but we usually have TN−1 > TN and DN−1 ≤ DN . Thus,

in order to combine XN−1 and XN , we apply Principal Component Analysis

(PCA) [1] to each element x ∈ XN , so that the element with reduced dimension

x′ is such that x′ ∈ RDN−1 . We end up with a set X = {xt, t = 1 · · ·T |

xt ∈ RD}, where D = D1 and T = T1 + T2. The proposed schema for feature

extraction is exemplified in Figure 1, where the neural network architecture used

is EfficientNet-B5 [39].

Once we have a set of local features, we calculate the Fisher vector. In order

to do so, we assume that the local features xl are generated independently by

the distribution uλ. Thus Equation (11) becomes:

GXλ = Lλ
1

T

T∑
t=1

∇λ log uλ(xt). (12)

We choose uλ to be a Gaussian Mixture Model (GMM) composed by K

Gaussian distributions, that is,

uλ(x) =

K∑
i=1

wiui(x), (13)

where λ = {wi, µi,Σi, i = 1, · · · ,K} and wi, µi, Σi denote, respectively, the

weight, mean and covariance matrix associated with Gaussian ui.

10

Let γt(i) denote the probability of an observation xt to be generated by the

Gaussian ui:

γi(xt) =
wiui(xt)∑K
j=1 wjuj(xt)

. (14)

We assume that covariance matrices are diagonal given that any distribution can

be approximated with an arbitrary precision by a weighted sum of Gaussians

with diagonal covariances [28]. We denote σ2
i = diag(Σi). Using the values of

Lλ and ∇λ log uλ(X) derived in [28], we can rewrite Equation (11) as:

GXwd
i

=
1

T
√
wi

T∑
t=1

(γi(xt)− wi) , (15)

GXµd
i

=
1

T
√
wi

T∑
t=1

γi(xt)

(
xdt − µdi
σdi

)
, (16)

GXσd
i

=
1

T
√

2wi

T∑
t=1

γi(xt)

[
(xdt − µdi)2

(σdi)2
− 1

]
. (17)

4.2. Classification

In our second stage, we extract information from fully-connected layers by

removing the classification layer of the CNN. We are left with a feature vector

that we call FC.

Before doing classification, we perform a transformation over both FV and

FC features. Let x be a feature vector and let x denote an element of x. We

apply power and L2 normalization to x, which can be written as:

x←sign(x)
√
|x|, (18)

x← x

‖x‖
. (19)

These transformations were proposed in [29] as a way to improve classification

with Fisher vectors. We noticed that those transformations are also beneficial

for classification in the case of FC. Once we have normalized feature vectors, we

perform classification with Support Vector Machine (SVM), using a modified

version of Bhattacharyya coefficient given in Definition 2 as kernel.

11

Convolutional Layers Fully-Connected
Layers

CNN

Feature Extraction GMM Algorithm FV descriptor

FC descriptor SVM

SVM

Image

Label

Figure 2: Summary of our proposed method for classifying a given image. Normalization is

applied to FC and FV descriptors before classification with SVM.

Definition 2. Let x,y ∈ RN , the modified Bhattacharyya coefficient is given

by the following measure of distance:

K(x,y) =

N∑
i=1

sign(xiyi)
√
|xiyi|. (20)

Note that the modified Bhattacharyya coefficient can be rewritten as

K(x,y) = φ(x)Tφ(y), (21)

where φ(x) is a vector whose coordinates are given by

φ(x)i = sign(xi)
√
|xi|. (22)

Thus, we apply the transformation given by Equation (22) to the normalized

feature vectors and proceed to classification with a linear SVM.

Finally, we combine classification with SVM trained on FC and FV data by

applying soft assignment. Let fFC denote the decision function of SVM trained

on FC and fFV the decision function of SVM trained on FV. Given FC x and

FV y calculated on the same sample, we assign a class c to the sample by:

c = argmax(fFC(x) + fFV(y)). (23)

The proposed method for classification is summarized in Figure 2.

5. Experiments

In this section we describe how we evaluate our proposed methodology. We

start by evaluating the effects of hyperparameters on classification accuracy.

12

Our base model uses the EfficientNet-B5 architecture [39] with pre-trained Im-

ageNet weights, input image resolution of 512× 512 and 64 Gaussian distribu-

tions to model uλ. Any hyperparameter change keeps the remaining parameters

constant.

Fisher Vector accuracy can be affected by the number of Gaussian distribu-

tions that we use to model uλ. Thus, using our base model, we tested the effect

of this variation by reducing the number of Gaussian distributions. Another

hyperparameter of our model is the input image resolution. We tested its effect

on accuracy by downsampling the image in our base model. Also, we change

the CNN architecture to see how our method behaves on other architectures.

Afterwards, we evaluated the effects of normalization of FC by comparing it

with a model without normalization. Finally, we compare our base model with

alternative state-of-art approaches. We conclude our experiments by applying

our model to a practical task that consists in the identification of Brazilian plant

species based on the scanned image of the leaf surface.

The databases used for method evalution are KTH-TIPS2-b, FMD, DTD,

UIUC, UMD. The database used in our practical task is 1200Tex. All these

databases are described in the following paragraphs.

KTH-TIPS2-b [4], here referred to as KTH-TIPS, consists of 4 samples of

images from 11 materials. Each sample is presented in 9 different scales, 3 poses

and 4 lighting conditions. This represents a total of 108 images of 200x200 size

per material per sample. In each round, we use 1 sample for training and 3

samples for testing.

FMD [34] consists of 10 classes containing 100 images each. Each image has

a size of 512x384. We run 10 training/testing rounds, each randomly selecting

half of the database for training and using the other half for testing.

DTD [7] consists of 5640 images with varying sizes divided into 47 categories.

This results in 120 images per class, which are divided into three equal parts:

training, validation and testing. The database contains 10 splits of the data.

For each one, we use training and validation parts for adjusting our model and

the remaining part for testing.

13

UMD [42] consists of 25 classes containing 40 images each. All images have

a dimension of 1280x960. We evaluated our model 10 times in this dataset,

each time randomly choosing 20 images from each class for training and the

remainder for testing, following the same protocol as FMD.

UIUC [19], as UMD, consists of 1000 images evenly divided in 25 classes.

Each image has resolution of 640x480. In order to evaluate our method in this

dataset, we use the same protocol applied to FMD.

1200Tex [5] consists of 1200 leaf surface images of 20 Brazilian plant species

(classes). Each class contains 60 samples. We applied the same protocol followed

in FMD to choose training and testing datasets.

6. Results and Discussion

In this section we present the results obtained from the experiments de-

scribed in Section 5. We show how they accomplished to verify the effectiveness

of the proposed methodology in texture classification. As mentioned in Sec-

tion 5, the accuracy of our method can be affected by the number of Gaussian

distributions that we choose to model uλ. Those distributions are also called

number of kernels or visual words. In our tests, we call this hyperparameter

number of kernels. We used 16, 32, 48 and 64 kernels in benchmark tests. The

results are show in Figure 3. We observed very little variation of accuracy in

the case of FMD and UMD, but a significant increase in accuracy as we increase

the number of kernels for KTH-TIPS and DTD. Thus, using 64 kernels seems

to be a good choice for all the databases tested. An improvement with increas-

ing kernels is expected, as the greater the number of Gaussian distributions, the

better it can model the underlying distribution that generates the local features.

However, the number of Gaussian distributions should not be very large given

the limited availability of data to train the GMM algorithm and computational

costs.

The second hyperparameter of our model is the resolution of the input image.

This resolution is directly proportional to the number of local features, which

14

KTH-TIPS FMD

20 30 40 50 60
Number of kernels

0.80

0.81

0.82

0.83

0.84

Ac
cu

ra
cy

FV
FC+FV

20 30 40 50 60
Number of kernels

0.84

0.86

0.88

0.90

Ac
cu

ra
cy FV

FC+FV

DTD UMD

20 30 40 50 60
Number of kernels

0.770

0.775

0.780

0.785

0.790

0.795

Ac
cu

ra
cy

FV
FC+FV

20 30 40 50 60
Number of kernels

0.96

0.98

1.00

1.02

1.04

Ac
cu

ra
cy

FV
FC+FV

UIUC

20 30 40 50 60
Number of kernels

0.993

0.994

0.995

0.996

0.997

0.998

0.999

Ac
cu

ra
cy

FV
FC+FV

Figure 3: Variation of accuracy of our method according to the number of Gaussian distri-

butions (kernels) used in GMM. Line colors describe which information was used for training

the classifier. Error bars indicate the standard deviation of classification accuracy.

15

is linked to the performance of the GMM algorithm. We evaluated our model

on the benchmark databases starting with 224× 224, the size used by the CNN

architecture for training. We increase the resolution linearly up to 512 × 512

to show its effect on GMM algorithm. The results of this variation are shown

in Figure 4. As expected, the increase in image resolution improved accuracy

across all databases. This improvement is not only due to the number of local

features, but also to how specific a local feature is. If the resolution is too small,

information from small regions in an image may be lost. A condition for the

use of generative models to be beneficial for accuracy is that local features must

describe small regions rather than large ones.

In our third experiment, we show how our method behaves in different net-

work architectures. We chose architectures that result in local features with

similar dimensions. We tested our method in

• EfficientNet-B5, where local feature dimension D = 176;

• EfficientNetV2-s [40], where D = 160;

• ResNet34 [13], where D = 256.

As shown in Table 1, the best accuracy for KTH-TIPS2-b was achieved in

EfficientNet-B5 while EfficientNetV2-s achieved better accuracy in FMD and

DTD. Very deep ResNet, VGG [36], DenseNet [14] would increase greatly local

feature dimensions and consequently the computational cost of GMM algorithm.

For example, in DenseNet-161 local feature dimension is D = 2048.

Moreover, we verify the impact of the power and L2 normalization applied

to FC. All FC features used for evaluation are extracted from the architecture

EfficientNet-B5. In Figure 5 we show the impact of the normalization of the

distribution of FC elements for DTD database. For the other databases, the

effect is similar. The normalization affects the format of the distribution and

increases data sparsity. In Table 2 we show the effect of normalization on accu-

racy considering exclusively FC classification. In general, it helped increasing

accuracy mean or reducing standard deviation. Most notorious result can be

16

KTH-TIPS FMD

250 300 350 400 450 500
Input width and height

0.74

0.76

0.78

0.80

0.82

0.84

Ac
cu

ra
cy

FV
FC+FV

250 300 350 400 450 500
Input width and height

0.750

0.775

0.800

0.825

0.850

0.875

0.900

Ac
cu

ra
cy

FV
FC+FV

DTD UMD

250 300 350 400 450 500
Input width and height

0.70

0.72

0.74

0.76

0.78

Ac
cu

ra
cy

FV
FC+FV

250 300 350 400 450 500
Input width and height

0.992

0.994

0.996

0.998

1.000

Ac
cu

ra
cy

FV
FC+FV

UIUC

250 300 350 400 450 500
Input width and height

0.985

0.990

0.995

Ac
cu

ra
cy

FV
FC+FV

Figure 4: Accuracy of our method according to the resolution of the image used as input to

the CNN. Line colors describe the feature vectors used for training the classifier. Error bars

indicate the standard deviation of classification accuracy.

17

Table 1: Behavior of our proposed method in different CNN architectures. Column “Method”

describes the feature vectors that were used to train the classifier.

Dataset Method EfficientNet-B5 EfficientNetV2-s ResNet34

KTH-TIPS FV 82.9± 1.2 80.6± 1.3 79.2± 1.7

FV+FC 81.7± 1.1 79.5± 1.5 77.3± 3.7

FMD FV 83.8± 0.9 85.7± 1.2 82.2± 1.4

FV+FC 88.7± 0.9 88.9± 1.0 83.5± 1.2

DTD FV 78.9± 0.6 79.3± 0.6 76.2± 0.3

FV+FC 78.3± 0.6 77.8± 1.1 71.3± 0.7

UMD FV 100± 0.0 100± 0.0 99.9± 0.1

FV+FC 100± 0.0 100± 0.0 99.9± 0.1

UIUC FV 99.8± 0.1 99.8± 0.1 99.8± 0.1

FV+FC 99.6± 0.2 99.7± 0.2 99.7± 0.3

seen in DTD database, where both effects are present, while normalization had

no impact in UMD.

FC without normalization FC with normalization

0 1 2 3 4
Features

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Nu
m

be
r o

f f
ea

tu
re

s

1e6

0.02 0.00 0.02 0.04 0.06 0.08 0.10
Features

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Nu
m

be
r o

f f
ea

tu
re

s

1e6

Figure 5: Histograms of FC calculated for DTD database before and after applying normal-

ization given by Equations (18) and (19).

For all the following results, the architecture used is the EfficientNet-B5, the

input image resolution is 512×512 and the number of kernels is 64. In Figure 6

we detail how our method behaves in the benchmark databases by showing how

much confusion is presented in each database.

18

Table 2: Normalization impact on accuracy for benchmark databases. In this experiment,

SVM was used to classify FC, in the first case with no transformation applied, in the second

case, applying the normalization proposed in Section 4.2.

Database Without Normalization With Normalization

KTH-TIPS 78.8± 1.9 79.1± 1.9

FMD 86.6± 1.2 86.8± 0.9

DTD 72.9± 0.8 73.3± 0.7

UMD 100± 0.0 100± 0.0

UIUC 99.3± 0.3 99.2± 0.2

In KTH-TIPS, most noticeable problems are the classification of examples

from class 5 (cotton) and class 11 (wool). In the case of cotton, its mostly

confused with class 8 (linen), although there are certain confusion also with

classes 3 (corduroy), 10 (wood) and 11. In the case of wool, its mostly confused

with linen, but there is also confusion with classes 1 (aluminium foil) and 3.

Interestingly, most part of the confusion is among textile textures, which are

indeed challenging to classify, given that they can have a similar pattern.

In FMD, our model had most problems distinguishing class 5 (metal) from

other classes, confusing it with classes 3 (glass), 7 (plastic), 8 (stone) and 10

(wood). The presence of confusion in this case could be explained by the fact

that objects made out from these materials can present a similar shape or color

to metallic objects.

In DTD, the most notorious classification problem of our model is perceived

in class 2 (blotchy), where less than 50% of samples are correctly classified.

These samples are mostly mistaken by classes 38 (stained) and 43 (veined).

The confusion between blotchy and stained was expected, as images from both

classes are very similar. Also, the edges between botched and non-blotched

regions in an image can be mistakenly interpreted as veins, what could explain

confusion with class 43. No significant confusion can be observed in UIUC and

UMD databases.

In Table 3, we list the accuracy of several methods in the literature of texture

19

KTH-TIPS FMD

1 2 3 4 5 6 7 8 9 1011
Predicted label

1
2
3
4
5
6
7
8
9

10
11

Tr
ue

 la
be

l

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10
Predicted label

1
2
3
4
5
6
7
8
9

10

Tr
ue

 la
be

l

0

100

200

300

400

DTD UMD

1 7 13 19 25 31 37 43
Predicted label

1
7

13
19
25
31
37
43

Tr
ue

 la
be

l

0

100

200

300

1 4 7 10 13 16 19 22 25
Predicted label

1
4
7

10
13
16
19
22
25

Tr
ue

 la
be

l

0

50

100

150

200

UIUC

1 4 7 10 13 16 19 22 25
Predicted label

1
4
7

10
13
16
19
22
25

Tr
ue

 la
be

l

0

50

100

150

200

Figure 6: Confusion matrices computed with our classifier trained with FV, which encodes

information from multiple convolutional layers. These matrices show the number of images

that were assigned to certain class. No confusion means all images are labeled their true class,

i.e., all diagonal elements are black and the remaining elements are white.

20

recognition compared with the proposed approach. Our proposed method using

only FV outperforms other modern deep learning approaches in KTH-TIPS,

DTD and UMD. The accuracy we achieved in DTD is, as far as we know,

the best result available in the literature. Furthermore, our proposed method

combining FC and FV is able to, to the best of our knowledge, achieve state-

of-art performance in FMD database.

Table 3: Accuracy comparison with other methods in literature. Our proposed method is

named here Multilayer-FV and Multilayer-FV+FC. All results shown are obtained directly

from the original paper of each method. Non-published results are represented by dashes.

Method KTH-TIPS FMD DTD UMD UIUC

FV-VGGVD [8] 81.8 79.8 72.3 99.9 99.9

SIFT-FV [8] 81.5 82.2 75.5 99.9 99.9

LFV [37] 82.6 82.1 73.8 - -

VisGraphNet [10] 75.7 77.3 - 98.1 97.6

Non-Add Entropy [9] - 77.7 - 98.8 98.5

Xception + SIFT-FV [18] - 86.1 75.4 -

Residual Pooling [25] - 85.7 76.6 - -

FENet [43] - 86.7 74.2 - -

CLASSNet [6] - 86.2 74.0 - -

Multilayer-FV 82.9 83.8 78.9 100.0 99.8

Multilayer-FV+FC 81.7 88.7 78.3 100.0 99.6

Finally, we apply our model to the classification task of Brazilian plant

species. We first evaluate the impact of hyperparameter change on the database.

In Figure 7, we show that the increase in number of kernels affects negatively

the accuracy of classification. This is probably caused by the low availability

of data in order to train the GMM algorithm for a greater number of Gaussian

distributions. We can also see that increasing the resolution of the input image

affects accuracy positively as in all other databases tested.

For the particular task of evaluating and comparing the behavior of our

model in 1200Tex database, we use 16 Gaussian distributions to model uλ.

21

Kernel variation Image resolution variation

20 30 40 50 60
Number of kernels

0.95

0.96

0.97

0.98
Ac

cu
ra

cy

FV
FC+FV

250 300 350 400 450 500
Input width and height

0.92

0.94

0.96

Ac
cu

ra
cy

FV
FC+FV

Figure 7: Accuracy of our proposed method for different number of kernels (Gaussian distri-

butions in GMM) and different resolutions of the image provided to the CNN.

This is done because, as shown in Figure 7, our method behaves better with

few distributions in this case. In Figure 8 we note that there is not much

confusion when classifying the plant species. The classes that our model has

most problems classifying are 8, wrong labelling around 14.5% of samples, and

5 and 6, in both around 8.5% of samples are confused with other classes. Class

8, which presents a green leaf mostly dotted with few veins, is confused with

classes 6, which is also veined, and 18, which is dotted and veined. Confusion

is this case can be generated when examples from 8 have more veined areas

than dotted, being wrongly labelled according to the proportions between those

areas. Class 6 is mostly confused with class 8, which could be due to image

or leaf imperfection in some examples from class 6 being interpreted as dotted

regions. Class 5, which is mostly smooth with few grained areas, is confused

with class 19, which is mostly grained. This confusion can be generated when

focus is given to grained areas in images from class 5.

In Table 4 we list the accuracy of the best previous results on 1200Tex

database that we found in literature, in comparison with our proposal. Here,

the usage of our methodology made a huge difference in accuracy, scoring a

result 9% better than the second best method (Non-Add Entropy). In fact,

up to our knowledge, this result sets a new state-of-the-art accuracy on this

database.

22

1 3 5 7 9 11 13 15 17 19
Predicted label

1
3
5
7
9

11
13
15
17
19

Tr
ue

 la
be

l

0

50

100

150

200

250

300

Figure 8: Confusion matrix for our method in 1200Tex. This matrix was computed using a

classifier trained exclusively with information from FV descriptors.

Table 4: Comparison of accuracy in 1200Tex database with other methods in literature. Our

method is presented as Multilayer-FV. All results were obtained directly from the literature.

When results were not found in the original paper, additional reference was given to where

the result was taken from.

Method Accuracy (%)

SIFT+BOVW [8] 86.0 [35]

FV-VGGVD [8] 87.1 [9]

Fractal [35] 86.3

VisGraphNet [10] 87.4

Non-Add Entropy [9] 88.5

Multilayer-FV 97.4

23

7. Conclusions

In this work, we proposed and investigated the use of local features extracted

from multiple convolutional layers and how this improves classification using

Fisher Vector. More precisely, we computed the Fisher Vector on local features

extracted from the last two convolutional layers and used it as texture descriptor.

We evaluated the performance of our method in visual texture classification,

both in benchmark databases and in a practical problem of identifying plant

species. In both situations, our method presented a significant improvement

over other methods in the literature and reached competitive accuracy with the

state-of-the-art. This good performance can be explained by some points. One

of them is the use of a mixture of more generalist features extracted from ear-

lier convolutional layers and more domain-specific features extracted from later

layers. The second factor is the adjustment of the input image to a resolution

higher than the CNN standard, which affects both the number of local features

and the specificity of a local feature to a given area of the input image. A

last point is the use of normalization in the FC descriptor, which resulted in

improvement of the method by combining the FV and FC descriptors.

The results expressed here also suggest that a combination of outputs from

previous layers might be beneficial for classification accuracy. Also, different

ways of combining local features from multiple layers may help to preserve

better information from later layers and is a topic for future investigation.

Acknowledgements

L. O. L. gratefully acknowledges the financial support of Coordination for the

Improvement of Higher Education Personnel, Brazil (CAPES) (Grant #1796018).

J. B. F. gratefully acknowledges the financial support of São Paulo Research

Foundation (FAPESP) (Grant #2020/01984-8) and from National Council for

Scientific and Technological Development, Brazil (CNPq) (Grants #306030/2019-

5 and #423292/2018-8).

24

References

[1] Abdi, H., Williams, L.J., 2010. Principal component analysis. Wiley inter-

disciplinary reviews: computational statistics 2, 433–459.

[2] Amato, G., Bolettieri, P., Falchi, F., Gennaro, C., 2013. Large scale image

retrieval using vector of locally aggregated descriptors, in: International

Conference on Similarity Search and Applications, Springer. pp. 245–256.

[3] Ansari, R.A., Buddhiraju, K.M., Malhotra, R., 2020. Urban change de-

tection analysis utilizing multiresolution texture features from polarimetric

sar images. Remote Sensing Applications: Society and Environment 20,

100418.

[4] Caputo, B., Hayman, E., Mallikarjuna, P., 2005. Class-specific material

categorisation, in: Tenth IEEE International Conference on Computer Vi-

sion (ICCV’05) Volume 1, IEEE. pp. 1597–1604.

[5] Casanova, D., de Mesquita Sá Junior, J.J., Bruno, O.M., 2009. Plant

leaf identification using Gabor wavelets. International Journal of Imaging

Systems and Technology 19, 236–243.

[6] Chen, Z., Li, F., Quan, Y., Xu, Y., Ji, H., 2021. Deep texture recognition

via exploiting cross-layer statistical self-similarity, in: Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.

5231–5240.

[7] Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., Vedaldi, A., 2014. De-

scribing textures in the wild, in: Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 3606–3613.

[8] Cimpoi, M., Maji, S., Kokkinos, I., Vedaldi, A., 2016. Deep filter banks for

texture recognition, description, and segmentation. International Journal

of Computer Vision 118, 65–94.

25

[9] Florindo, J., Metze, K., 2021. Using non-additive entropy to enhance con-

volutional neural features for texture recognition. Entropy 23, 1259.

[10] Florindo, J.B., Lee, Y.S., Jun, K., Jeon, G., Albertini, M.K., 2021. Vis-

graphnet: A complex network interpretation of convolutional neural fea-

tures. Information Sciences 543, 296–308.

[11] Gibert, D., Mateu, C., Planes, J., Vicens, R., 2018. Classification of mal-

ware by using structural entropy on convolutional neural networks, in: Pro-

ceedings of the AAAI Conference on Artificial Intelligence.

[12] Hafiane, A., Palaniappan, K., Seetharaman, G., 2015. Joint adaptive me-

dian binary patterns for texture classification. Pattern Recognition 48,

2609–2620.

[13] He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image

recognition, in: Proceedings of the IEEE conference on computer vision

and pattern recognition, pp. 770–778.

[14] Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q., 2017. Densely

connected convolutional networks, in: Proceedings of the IEEE conference

on computer vision and pattern recognition, pp. 4700–4708.

[15] Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. arXiv preprint

arXiv:1502.03167 .

[16] Jaakkola, T., Haussler, D., 1998. Exploiting generative models in discrim-

inative classifiers. Advances in neural information processing systems 11.

[17] Jana, S., Basak, S., Parekh, R., 2017. Automatic fruit recognition from

natural images using color and texture features, in: 2017 Devices for Inte-

grated Circuit (DevIC), IEEE. pp. 620–624.

[18] Jbene, M., El Maliani, A.D., El Hassouni, M., 2019. Fusion of convolu-

tional neural network and statistical features for texture classification, in:

26

http://arxiv.org/abs/1502.03167

2019 International Conference on Wireless Networks and Mobile Commu-

nications (WINCOM), IEEE. pp. 1–4.

[19] Lazebnik, S., Schmid, C., Ponce, J., 2005. A sparse texture representa-

tion using local affine regions. IEEE transactions on pattern analysis and

machine intelligence 27, 1265–1278.

[20] Leung, T., Malik, J., 2001. Representing and recognizing the visual appear-

ance of materials using three-dimensional textons. International journal of

computer vision 43, 29–44.

[21] Lin, T.Y., RoyChowdhury, A., Maji, S., 2017. Bilinear convolutional neural

networks for fine-grained visual recognition. IEEE transactions on pattern

analysis and machine intelligence 40, 1309–1322.

[22] Liu, P., Zhang, H., Lian, W., Zuo, W., 2019. Multi-level wavelet convolu-

tional neural networks. IEEE Access 7, 74973–74985.

[23] Lowe, D.G., 2004. Distinctive image features from scale-invariant keypoints.

International journal of computer vision 60, 91–110.

[24] Malik, J., Belongie, S., Leung, T., Shi, J., 2001. Contour and texture

analysis for image segmentation. International journal of computer vision

43, 7–27.

[25] Mao, S., Rajan, D., Chia, L.T., 2021. Deep residual pooling network for

texture recognition. Pattern Recognition 112, 107817.

[26] Nurzynska, K., Iwaszenko, S., 2020. Application of texture features and

machine learning methods to grain segmentation in rock material images.

Image Analysis & Stereology 39, 73–90.

[27] Ojala, T., Pietikainen, M., Maenpaa, T., 2002. Multiresolution gray-scale

and rotation invariant texture classification with local binary patterns.

IEEE Transactions on pattern analysis and machine intelligence 24, 971–

987.

27

[28] Perronnin, F., Dance, C., 2007. Fisher kernels on visual vocabularies for

image categorization, in: 2007 IEEE conference on computer vision and

pattern recognition, IEEE. pp. 1–8.

[29] Perronnin, F., Sánchez, J., Mensink, T., 2010. Improving the fisher kernel

for large-scale image classification, in: European conference on computer

vision, Springer. pp. 143–156.

[30] Ruichek, Y., et al., 2018. Local concave-and-convex micro-structure pat-

terns for texture classification. Pattern Recognition 76, 303–322.

[31] Sánchez, J., Perronnin, F., Mensink, T., Verbeek, J., 2013. Image classi-

fication with the fisher vector: Theory and practice. International journal

of computer vision 105, 222–245.

[32] Scalco, E., Rizzo, G., 2017. Texture analysis of medical images for radio-

therapy applications. The British journal of radiology 90, 20160642.

[33] Sharan, L., Liu, C., Rosenholtz, R., Adelson, E.H., 2013. Recognizing mate-

rials using perceptually inspired features. International journal of computer

vision 103, 348–371.

[34] Sharan, L., Rosenholtz, R., Adelson, E., 2009. Material perception: What

can you see in a brief glance? Journal of Vision 9, 784–784.

[35] Silva, P.M., Florindo, J.B., 2021. Fractal measures of image local features:

an application to texture recognition. Multimedia Tools and Applications

80, 14213–14229.

[36] Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556 .

[37] Song, Y., Zhang, F., Li, Q., Huang, H., O’Donnell, L.J., Cai, W., 2017.

Locally-transferred fisher vectors for texture classification, in: Proceedings

of the IEEE International Conference on Computer Vision, pp. 4912–4920.

28

http://arxiv.org/abs/1409.1556

[38] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.,

2014. Dropout: a simple way to prevent neural networks from overfitting.

The Journal of Machine Learning Research 15, 1929–1958.

[39] Tan, M., Le, Q., 2019. Efficientnet: Rethinking model scaling for convolu-

tional neural networks, in: International Conference on Machine Learning,

PMLR. pp. 6105–6114.

[40] Tan, M., Le, Q., 2021. Efficientnetv2: Smaller models and faster train-

ing, in: International Conference on Machine Learning, PMLR. pp. 10096–

10106.

[41] Wan, W., Chen, J., Li, T., Huang, Y., Tian, J., Yu, C., Xue, Y., 2019. In-

formation entropy based feature pooling for convolutional neural networks,

in: Proceedings of the IEEE/CVF International Conference on Computer

Vision, pp. 3405–3414.

[42] Xu, Y., Ji, H., Fermüller, C., 2009. Viewpoint invariant texture description

using fractal analysis. International Journal of Computer Vision 83, 85–100.

[43] Xu, Y., Li, F., Chen, Z., Liang, J., Quan, Y., 2021. Encoding spatial

distribution of convolutional features for texture representation. Advances

in Neural Information Processing Systems 34.

[44] Zhang, J., Marsza lek, M., Lazebnik, S., Schmid, C., 2007. Local features

and kernels for classification of texture and object categories: A compre-

hensive study. International journal of computer vision 73, 213–238.

29

	1 Introduction
	2 Related works
	3 Background
	3.1 Deep Convolutional Features
	3.1.1 Convolution Layer
	3.1.2 Pooling Layer
	3.1.3 Dropout Layer
	3.1.4 Normalization Layer
	3.1.5 Fully-Connected Layer

	3.2 Fisher Vector

	4 Proposed method
	4.1 Feature Extraction
	4.2 Classification

	5 Experiments
	6 Results and Discussion
	7 Conclusions

