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Abstract—Long-term vertebral fractures severely affect the
life quality of patients, causing kyphotic, lumbar deformity and
even paralysis. Computed tomography (CT) is a common clinical
examination to screen for this disease at early stages. However,
the faint radiological appearances and unspecific symptoms lead
to a high risk of missed diagnosis, especially for the mild vertebral
fractures. In this paper, we argue that reinforcing the faint
fracture features to encourage the inter-class separability is the
key to improving the accuracy. Motivated by this, we propose a
supervised contrastive learning based model to estimate Genent’s
Grade of vertebral fracture with CT scans. The supervised
contrastive learning, as an auxiliary task, narrows the distance
of features within the same class while pushing others away,
enhancing the model’s capability of capturing subtle features of
vertebral fractures. Our method has a specificity of 99% and
a sensitivity of 85% in binary classification, and a macro-F1
of 77% in multi-class classification, indicating that contrastive
learning significantly improves the accuracy of vertebrae frac-
ture screening. Considering the lack of datasets in this field,
we construct a database including 208 samples annotated by
experienced radiologists. Our desensitized data and codes will
be made publicly available for the community.

Index Terms—deep learning, vertebral fracture, contrastive
learning, computer-aided diagnosis

I. INTRODUCTION

Vertebral fracture is a common disease that often occurs
in aged people, which could severely affect patients’ living.
Deformity and chronic pain are the major clinical manifes-
tations of vertebral fracture, and according to Cauley et al.
[L], long-term vertebral fractures can increase the mortality
rate by eight times. However, such dangerous disease is often
under-reported in clinical diagnosis. This is due to its less
specific symptoms and less obvious radiological appearances,
leading to radiologists’ neglect or misattribution[2]]. Since
early diagnosis and treatment are essential for alleviating
vertebral fractures’ impact on human health, a computer-aided
screening tool with high performance could be fairly helpful.

Currently, Genant semi-quantitative method[3] serves as
the common standard in assessing vertebral fractures, but it
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will be affected by radiologists’ experience and awareness
of scrutinizing vertebrae radiography. On the other hand,
deep learning based methods could be automatically inferred
and thus excluding radiologists’ subjectivity, makes it an
ideal method to screen vertebral fracture. Due to the slight
difference among classes, the grading of vertebrae can be
regarded as a fine-grained classification task. To address this,
we propose a supervised contrastive learning based method
to enhance the inconsistent feature among each grade. We
validated our method on a dataset collected by us and a public
dataset, both of them show improvements on classification by
a large margin.
Our contribution can be summarized as follows:

« We design an end-to-end pipeline to segment, label and
assess fracture on each vertebra of the given CT image.
Such assessment procedure is fully automatic and without
any human intervention, which excludes influence of
radiologists’ subjectivity. We believe such approach could
largely improve the under-diagnosed situation of vertebral
fracture.

« We propose to utilize supervised contrastive learning in
vertebrae fracture grading, and design series of studies to
prove that our method has a better capability of detecting
mild vertebral fracture. It can be concluded that forming
feature space by contrastive learning further drives CNN
to capture the information in the given images.

o To validate our method, we collected and arranged a
novel vertebrae dataset that contains spine CT images
of various fracture situations. Our dataset is collected
from real clinical cases, which are well aligned and have
suitable resolution for analysis. To support the research
community of medical image analysis, we will publicly
share our desensitized dataset shortly, together with the
codes of this paper.

II. RELATED WORKS

A. Vertebrae Segmentation and Labeling

Segmentation and labeling of vertebrae are the fundamental
tasks for further processing and analysis, for reliable segmen-
tation and labeling algorithm could enable multiple automatic
assessing tasks such as vertebral fracture grading or spine
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Fig. 1. Overview of our pipeline. Our pipeline is arranged in a two-stage manner. The vertebrae in the CT scans are segmented and labeled first to get the
patches of vertebrae. It followed by the grading network which consists of a feature extractor, a projection head and a classification head. The features of
patches are calculated by the feature extractor, and further clustered by fracture grade with the projection head via supervised contrastive learning. The grading
results are given by the classification head, which won’t propagate gradient to the feature extractor (marked as dotted arrow in the figure).

deformity detection. For this reason, vertebrae segmentation
and labeling keep drawing research communities’ attention.
In 2019 and 2020, The Large Scale Vertebrae Segmentation
Challenge (Verse) was held in conjunction with MICCAI,
evaluating multiple algorithms of vertebrae segmentation and
labeling. We highly suggest readers who are interesting in this
topic referring to the report of the challenges[4]. In this paper,
we utilize the algorithm of Payer et al. [3], which introduces a
U-net[6] based structure and segments vertebrae in a coarse-
to-fine manner.

B. Vertebrae Fracture Grading

On the other hand, studies about vertebrae fractures grading
are relatively insufficient. Unlike segmentation and labeling
tasks, grading of fractures is facing naturally imbalanced data
for abnormal vertebrae only account for a small portion of
overall vertebrae. This makes an enlarged data demand for
fracture grading tasks. Since vertebral fracture is direct related
to the deformity of vertebrae, conventional methods segment
vertebrae to be assessed in the CT images, and calculate its
shape statistic with the segmentation mask[7, 8} 9]. How-
ever, severe deformities like burst fractures could degrade
the segmentation algorithm, limiting its major application to
osteoporosis and compression fractures. Li et al. [10] assesses
vertebrae fracture with neighboring CT slices, and Tomita et al.
[11]] aggregates feature in CT slices with a LSTM[12]. Murata
et al. also evaluates deep learning model’s performance
of vertebral fracture detection on plain spinal radiography.
Similar to our idea, Nicolaes et al. managed to detect
vertebral fractures in CT volumes with a 3D CNN, and
referring to metric learning, Husseini et al. [15] proposed a
novel metric loss that could form a reasonable feature space. In
this paper, we further demonstrate that supervised contrastive
learning could reinforce the faint feature and form a better

clustered feature space, resulting in advanced performance for
vertebral fracture grading.

C. Contrastive Learning

Contrastive learning aims at forming a clustered feature
space to enhance feature extraction. Major contrastive learning
methods focus on self-supervised learning, for clustering could
be achieved only by appearances of given images, removing
the necessity of manual annotation. The clustering is often
made by narrowing the distance among positive samples while
enlarging that among negative samples. In self-supervised
scenario, the positive samples are two distinct views from the
same item, while the negative samples are views form the
others. MoCo[16] designed a memory mechanism to expand
the negative samples form mini-batch to a dynamic memory
bank, and SimCLR[I7] carefully researched major factors
of contrastive learning, finding the importance of projection
head, data augmentation and batchsize. After that, they shared
the idea mutually and came up with the updated version
SimCLRv2[18] and MoCov2[19].

Contrastive learning could also improve fully-supervised
learning. With fully annotated label, SupCon[20] expanding
positive samples to same-class samples, showing a better
performance as well as a more robust optimization comparing
to cross entropy loss. In this paper, we follow the idea of
SupCon[20] and further demonstrate its capability of fine-
grained classification on medical images.

II1. METHOD

A. Dataset

Generally, deep learning is a data-driven approach which
requires massive annotated data to converge. However, anno-
tating vertebral fracture of CT images is difficult and error-
prone. To overcome this issue, we use a deep learning method



to aid the annotation procedure, alleviating the workload as
well as improving the quality of the annotation. Specifically,
we first adopt Payer et al. [5] to segment and label vertebrae
in the CT volume. It could segment and label vertebrae with a
Dice coefficient at 0.93, which is suitable for our application.
By utilizing this automatic segmentation approach, radiologists
could avoid manual segmentation of each vertebra in the
CT scans. In practice, Payer et al. [S] could generally give
precise segmentation masks and labels. Its major mistake is
the occasionally mislabeling, which will be revised by our
invited radiologists later.

Another issue of annotation is the faint radiological ap-
pearances of vertebral fractures. This may lead to inconsistent
annotation, which brings ambiguous feature that dramatically
hurt the clustering of contrastive learning. To address this,
we first invited 3 junior radiologists to assess fractures of
the vertebrae we segmented. The radiologists are entrusted
to annotate each vertebra with its Ganent’s Grade, as well as
revise the segmentation or label if the algorithm[3]] gives incor-
rect output. For the disagreements in annotation, we invited a
senior radiologist to verify the voting of initial annotation and
give the conclusion. With the proposed annotation, we could
arrange a high-quality vertebral fracture dataset with rather
light workload.

Our method does not restrict to certain population, so we
make no assumption about gender or age of participants we
collected in the dataset. The generalization capability of deep
learning model could promise the model’s applicability for
broad population. We balanced the ratio of each Ganent’s
Grade in the adopted participants to relieve potential data im-
balance. Genant’s Grade classifies the fractures into 4 classes
of GO, G1, G2 and G3, which can be regarded as normal, mild,
moderate and severe. In practice, we adopt 208 CT scans in
our dataset with the ratio of G0:G1:G2:G3=1:3:3:3, including
2,423 vertebrae in total.

B. Model

Our CNN architect is designed with a two-stage manner.
Vertebrae in the CT volume are cropped to patches first with an
existing segmentation and labeling model. Then the vertebrae
patches will be fill into the grading network to estimate the
Ganent’s Grade of each vertebra with a supervised contrastive
learning manner. An overview of our pipeline is illustrated in
Fig. I} and the detailed design is stated as follows:

Segmentation and Labeling We adopt Payer et al. [5] as
the segmentation and labeling model, which we also utilized
in dataset annotation. The output segmentation masks are
expanded to bounding box first to include nearby tissue as
an additional clue for fracture grading, then the patches of
vertebrae are cropped accordingly. we choose two windows
to extract information from original CT patches: the bone
window that sets window level with 1500 HU and window
width with 400 HU, and the soft tissue window that sets
window level with 200 HU and window width with 40
HU. To our knowledge, such windowing contains sufficient
information for vertebrae fracture grading.

We also take the original segmentation mask and label
into account, by concatenating the segmentation mask to the
input patches of CNN. Label information is also helpful, for
underlying fracture-related feature of different vertebrae are
potentially varied. We modulate the original binary segmenta-
tion mask with its normalized label and concatenate it with
the two windows of CT image at channel dimension. The
combined three channel image will be used as input of the
subsequent grading network, with an additional resampling to
ensure the isotropic voxel spacing and uniform orientation.

Network Structure We follow the contrastive learning
methods[[17, 20] to design our grading network, which can
be separated into three parts. First, a backbone network acts
as the feature extractor to extracts and encodes the feature of
radiograph. Then a projection head projects the feature to a
low-dimensional space, where the optimization of contrastive
learning applied. Additionally, a classification head takes
the output of feature extractor and estimates the grading
result, with a cross entropy loss to optimize. In practice,
shallow networks like several linear layers could fulfill the
intention of projection head and classification head. Also, as
contrastive learning methods have proven that the feature space
is separable without any information of classification head, we
follow the advice of SupCon[20] to detach the classification
head so that its gradient won’t be back propagated to other part
of the network. At inference time, the projection head will be
discarded, leaving output of classification head as the grading
result. A graphic demonstration of our network is illustrated
in Fig.

We adopt 3D-SEnet50[21] as the structure of feature extrac-
tor, which adds an attention mechanism to the conventional
ResNet50[22]] model. It shows a better feature extracting
capability especially for the 3D fine-grained classification. The
projection head and the classification head both consist of
a single linear layer, with a 128-dimensional output for the
projection head, and a 4-dimensional output for the classifi-
cation head of 4-level grading. We also follow the convention
to normalize the magnitude of the 128-dimensional vector to
1 for a spherical space is better for contrastive learning.

Loss Function Contrastive learning methods augment input
sample to a pair of distinct views. For the self-supervised
manner, the clustering is conducted by taking the pair of
views as positive sample mutually while the others as negative
samples. This manner can cluster appearance-similar features
without additional labels, makes it a feasible and prevalent
solution for self-supervised learning.

On the other hand, supervised contrastive learning keeps
utilizing annotated labels to guide the clustering of feature
space, with the main assumption that samples in the same
class could vary in appearance. We keep using supervised
manner for the faint disparities among fracture grades is much
weaker than disparities in the overall appearance of vertebrae.
Cole et al. [23] also gives an observation that fine-grained
classification could degrade the self-supervised contrastive
learning. However, we argue that with the guidance of class
label, the contrastive learning method is encouraged to detect



TABLE I
QUANTITATIVE RESULT. FE, SPE, SEN ARE SHORT FOR FEATURE EXTRACTOR, SPECIFICITY AND SENSITIVITY.

Binary Classification Multi-Class Classification

FE Loss Optimizer Dataset
AUCROC SPE SEN Macro-FI =~ Macro-Precision ~ Macro-Recall
ResNet50 Cross Entropy Adam Ours 0.95 096 0.72 0.53 0.52 0.56
ResNet50 SupCon SGD Ours 0.98 099 0.83 0.67 0.67 0.65
SENet50 Cross Entropy Adam Ours 0.97 099 0.79 0.59 0.61 0.57
SENet50 SupCon Adam Ours 0.98 097 0.87 0.64 0.62 0.67
SENet50 SupCon SGD Ours 0.98 099 0385 0.77 0.78 0.77
SENet50 Cross Entropy Adam Verse 0.90 094  0.68 0.59 0.59 0.62
SENet50 SupCon SGD Verse 0.93 094 0.72 0.72 0.72 0.72
Husseini et al. [15] Grading Loss Adam Verse w/o G1 - 099 0.77 - - -
SENet50 SupCon SGD Verse w/o G1 0.99 0.99 0.88 0.86 0.84 0.85

the fine-grained disparities which contribute most to the task.
We adopt SupCon loss[20] as the loss function of our
method, with the equation in (I

sup __ -1
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It is a enhanced version of NT-Xent loss[17] which ex-
panded the positive sample set P () to same-class samples, i.e.
P(i) = {p|y, = Y;,p # i}. Here the z is the feature vector
of projection head, and the temperature parameter 7 is used to
control the intensity of loss. With SupCon loss, the disparities
among classes become the major clues of classification, and in
the radiographic diagnosis scenario, such disparities strongly
hint regions of lesion. To prove this, we use Grad-CAM][24]]
to visualize some results to check whether features of lesion
region attract high attention. The visualization can be found
in the Results section.

Data augmentation For contrastive learning, data augmen-
tation is used to generate multiple distinct views of original
training data. SImCLR[17] carefully researched the com-
binations of different data augmentations and their impact
on the contrastive learning. However, as Purushwalkam and
Gupta [25] mentioned, the detailed configuration of data
augmentation is often data-biased, especially for our task that
is distinct from classification of natural images. Intuitively,
data augmentation should try to avoid interfering the clue of
classification, but regular data augmentation cannot promise
this, for the vertebral fracture are related to global feature
like posture and shape, as well as the local feature like minor
fractures. To address this, as listed below, we design a set of
data augmentations that are specialized for vertebral fracture
grading:

+ Random Padding.

« Pre-Rotation Mask of 2 boxes with side lengths of 1-20
voxels.

o Random Zoom in 0.9-1.1x.

o Gaussian Noise with 4 = 0 and o = 0.05.

« Random Shift in 10 voxels.

« Random Rotation in +10 degrees.

o CT Value lJittering with the function
HU = (HU x p1)P?

, where pl is within 0.9-1.1 and p2 is within £2.
o Post-Rotation Mask of 2 boxes with side lengths of 1-20
voxels.

Random Padding takes an input patch and rescale its longest
side length to 128, and further randomly padding it to the
resolution of 3*128%128*128(3 are the channel dimension
introduced in section Segmentation and Labeling). The other
data augmentations are applied with possibilities of 70%.
Multi-dimensional augmentations are applied to each axis with
individual parameters. The result shows that it reaches a good
trade-off between distinct views and fracture clue reserving.

As introduced in Loss Function section, input vertebra
patches will be augmented twice individually to generate the
pair of views. The pair will be accumulated to a mini-batch
and fed into the subsequent grading network.

C. Training

We specially designed several training techniques to facili-
tate the contrastive learning. In this section, we will introduce
the details in the training procedure.

Batch Sampler Ordinary batch sampler often traverses the
dataset randomly in an epoch. However, since vertebral frac-
ture is happened occasionally, its fracture grade is naturally
facing data imbalance. And as for the supervised contrastive
learning, this issue is non-negligible for the clusters may be
optimized unevenly, causing a biased grading. To avoid this,
we design a Per-Class Sampler, which randomly sample n
patches in each class, forming a mini-batch of nC' patches
where C' is the number of classes. The sampling procedure
is without placement, and it resets every time when the least
class traversed. Less rigorously, we still call it an ’epoch’,
and giving enough epochs, the dataset could be traversed with
a data-adaptive sampling rate. This is a simple yet powerful
batch sampler, which could avoid data imbalance as well as
accelerate the converge of optimization.

Optimizer We adopt SGD as the optimizer with a weight
decay of le-4 and a momentum of 0.9. For the supervised



contrastive learning, it converges to a better minimum than
adaptive optimizers like Adam[26] in practical. The learning
rate starts at le-3, and decays by 0.1 at epoch 800 and 900.

Miscellaneous We implement our methods with Pytorch[27]
on a workstation with two RTX A6000 graphic cards. The
dataset is split into training set and test set with the ratio of
4:1, and vertebrae of individuals won’t be split into different
set. We sample 6 vertebrae patches per class at each iteration,
forming a batchsize of 24 in total. Each patch is augmented
twice to generate the pair of views. Due to the data limitation,
the batchsize we set is relatively small comparing to that on
natural images, but the result is still impressive, showing the
potential of contrastive learning on medical images. On our
workstation, the network takes about 18 hours to converge,
with approximately 1000 epochs.

(b) Corresponding CT Slices

Fig. 2. Qualitative Result. The Genant’s Grade of the CT slices are G1, G2
and G3 respectively.

IV. RESULTS
A. Quantitative Study

Metrics We mainly evaluate two aspects of our method,
which are the binary classification of Benign(G0) vs Malig-
nant(combination of G1,G2 and G3), as well as the multi-class
classification of 4 grades. The intention of evaluating binary
classification is that it’s the most sensitive metrics for missed
diagnosis.

To avoid the misleading of unbalanced test set, we use AU-
CROC as the main metrics of binary classification, and macro-
F1 score as the main metrics of multi-class classification. Note
that we always take multi-class classification as the training
target, while the evaluation of binary classification is only
happened at inference time by combining the class G1, G2
and G3 in ground truth and prediction respectively.

ROC curve Firstly, we demonstrate the binary classification
performance of our method with the ROC curve in Fig. [3] With
a specificity of 99% and sensitivity of 85%, it could improve
the diagnostic rate of vertebral fracture by a large margin.

Ablation study To prove the aforementioned benefits we
claimed about our methods, we evaluate the basic ResNet50
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Fig. 3. The ROC curve of binary classification.

models with cross entropy loss, and gradually add it to the
final version. The detailed experiments and results are listed
in Table. [l and our full model as well as the best result are
marked in bold. Note that SupCon loss largely improve the
multi-class classification result comparing to cross entropy,
which is the key contribution of our work.

Public Dataset Validation To avoid being data biased, we
also evaluate our method on a public vertebral fracture dataset
Verse[4]. As a challenge dataset, it contains more complicated
situation than our clinical dataset, e.g., more varied resolution
and orientation, as well as additional cervical vertebrae. These
situations cause degraded metrics than our dataset, however
the improvement of supervised contrastive learning is still
remarkable. Also, our dataset does not contain any vertebrae
with artificial implants, for they actually do not need screening.
To keep a reasonable comparison, we remove vertebrae with
artificial implants in Verse[28]]. The result can be found in
Table. [

Comparative study We choose Husseini et al. [15] to con-
duct the comparative study, for it was validated on Verse[28]]
as well. With the auxiliary information from fracture grade,
it managed to improve the binary classification with a novel
grading loss. Due to the difficulty in distinguishing Grade
0 and Grade 1, Husseini et al. [15] didn’t take Grade 1
fractures into account, while ours could detect the mild Grade
1 fractures and further enable multi-class classification. For
reference, we also validate our method on Verse[28] without
Grade 1 fractures. The result can be found in Table. [

B. Qualitative study

As we mentioned, supervised contrastive learning picks the
feature that strongly hints the region of lesion, and Grad-
CAM]J24] is a proper tool to visualize such region. The
volumetric Grad-CAM|24] is generated with the implement
of Gotkowski et al. [29]]. As show in Fig. |Z[, with our method,
the model could detect the regions of vertebral fractures in
multiple situations.



V. CONCLUSION

We design a pipeline of vertebral fracture grading with
supervised contrastive learning, which shows a great perfor-
mance in both binary and multi-class classification. We believe
our method could improve the diagnostic rate of vertebral
fracture in real clinical scenario. Also, we arranged a high-
quality vertebral fracture dataset with careful annotations of
Genant’s Grade, which may alleviate the data deficiency of
related research.
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