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Abstract—The convolutional-based methods provide good seg-
mentation performance in the medical image segmentation task.
However, those methods have the following challenges when
dealing with the edges of the medical images: (1) Previous
convolutional-based methods do not focus on the boundary
relationship between foreground and background around the seg-
mentation edge, which leads to the degradation of segmentation
performance when the edge changes complexly. (2) The inductive
bias of the convolutional layer cannot be adapted to complex edge
changes and the aggregation of multiple-segmented areas, result-
ing in its performance improvement mostly limited to segmenting
the body of segmented areas instead of the edge. To address these
challenges, we propose the CM-MLP framework on MFI (Multi-
scale Feature Interaction) block and ACRE (axial context relation
encoder) block for accurate segmentation of the edge of medical
image. In the MFI block, we propose the cascade multi-scale MLP
(Cascade MLP) to process all local information from the deeper
layers of the network simultaneously and utilize a cascade multi-
scale mechanism to fuse discrete local information gradually.
Then, the ACRE block is used to make the deep supervision
focus on exploring the boundary relationship between foreground
and background to modify the edge of the medical image. The
segmentation accuracy (Dice) of our proposed CM-MLP frame-
work reaches 96.96%, 96.76%, and 82.54% on three benchmark
datasets: CVC-ClinicDB dataset, sub-Kvasir dataset, and our in-
house dataset, respectively, which significantly outperform the
state-of-the-art method. The source code and trained models will
be available at https://github.com/ProgrammerHyy/CM-MLP.

Index Terms—MLP, medical image segmentation, semantic
segmentation

I. INTRODUCTION

In clinical diagnosis, medical image segmentation is a pri-
mary task, which has been extensively studied by the medical
imaging community [1]–[3]. Compared with the traditional

†These authors contributed equally to this work.
*Corresponding author.

manual labelling method, the medical image segmentation
algorithm [4], [5] can help doctors quickly find the location of
lesions and reduce the workload. Therefore, the medical image
segmentation algorithm is vital in medical image processing
and analysis.

In recent years, more and more researchers have applied
convolutional layers to medical image segmentation tasks [4]–
[7]. Oktay et al. proposed a landmark work called UNet [8].
UNet [8] contains a U-shaped encoder-decoder architecture
using a pyramid-like sampling process and skip connections
to preserve the low-level semantic information. Following
UNet, many different convolutional neural networks have been
proposed, such as UNet++ [4], UNet3+ [9], 3D UNet [10],
V-Net [11], Y-Net [12], and KiUNet [13]. However, these
popular Unet-based structures focus on improving the overall
segmentation performance rather than extracting the edge of
medical image information, which is crucial for improving the
segmentation performance of the network.

Recently, MLP-based (Multilayer Perceptron based) meth-
ods [14]–[20] provide promising results in computer vision
tasks. MLP-Mixer [14] demonstrated that without convolution
layers and self-attention mechanisms, it can still provide
comparable performance to less computationally intensive
transformers-based methods [21], [22]. Maxim [19] further
applied MLPs to low-level vision tasks and achieved satis-
factory performance. MLP-based methods [14]–[20] overcome
the inductive bias of the weights and can process all the local
information of the image at same time. Therefore, these MLP-
based methods can naturally solve the problem of insufficient
edge information extraction by the recent popular network.

Inspired by these MLP-based methods [14]–[20], we pro-
pose Cascade Multi-scale MLP (CM-MLP) framework, which
is a denser design architecture with Multi-scale Feature Inter-
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action block (MFI) and axial context relation encoder (ACRE).
Using the MFI block, CM-MLP can overcome the influence of
inductive bias brought by convolution layers, simultaneously
process all local information and gradually fuse the discrete
local information. Using the ACRE block, CM-MLP can
focus on the boundary relationship between foreground and
background around the segmentation edge.

The contributions of this paper can be summarized as
follows:
• We propose a novel CM-MLP framework to extract

better edge information in medical image segmentation.
In this framework, we proposed the MFI block to capture
complex and dense edge (i.e., aggregated multiple seg-
mented regions) information. MFI block can process all
local information simultaneously and gradually fuse the
discrete local information. In addition, we also proposed
the ACRE block to make the CM-MLP framework focus
on segmenting object edges rather than bodies. With the
cooperation of the MFI block and ACRE block, CM-MLP
overcomes the influence of inductive bias brought by con-
volution layers and neglect of the boundary relationship
between foreground and background.

• Comparison results show that our proposed CM-
MLP framework outperforms the previous state-of-the-
art method on the CVC-ClinicDB dataset, sub-Kvasir
dataset, and our in-house dataset.

II. RELATED WORK

A. Convolutional model

The emergence of medical image segmentation frameworks
based on CNN (Convolutional Neural Network) models, es-
pecially Unet [8], pioneered segmentation networks with con-
volution as the main architecture. DUNet [23], based on the
U-Net framework, uses a Deformable Convolution Block [24]
as each unit of the encoder and decoder. The deformable
convolution block simulates different shapes and scales by
learning local, dense, and adaptive receptive fields. R2U-
Net [25] combines residual connections and recurrent con-
volutions to replace the original submodules in U-Net. BIO-
Net [26] proposed bi-directional skip connections to extract
more spatial information by recurrently reusing the building
blocks and then using the architecture optimization algorithm
in BIX-NAS [27] to optimize the connection in a multi-stage
network. PraNet [28] establish the relationship between areas
and boundary cues using the reverse attention (RA) module,
and then CaraNet [29] use Channel-wise Feature Pyramid
(CFP) module with A-RA(Axial reverse attention) to further
mine the boundary cues. However, in the reverse attention,
only the pixels around the segmentation result are highlighted.
The error pixels may be kept in the final result because the
pixels have been wrong segmented in the previous operation
while not fixing the error pixels.

With the continuous development of the convolutional net-
work, the performance of which is increasingly affected by
the complex edge information. However, all of the above

attempts [26]–[29] are still based on convolutional-based ar-
chitectures. It is inductive bias and neglect of the boundary
relationship between foreground and background around the
segmentation edge hindering the network’s ability to extract
edge information. Therefore, we take advantage of the ability
of MLP to process all local information simultaneously and
focus on the boundary relationship between foreground and
background around the segmentation edge, thereby improving
the network’s ability to extract complex edge information.

B. MLP-based model

MLP-Mixer [14], an MLP-based architecture that replaces
self-attention with simple token-mixing MLP, achieves com-
petitive results in image classification. gMLP [15] demon-
strated that self-attention is not necessary for NLP tasks
through gated-based MLP. CYCLEMLP [16] achieves a linear
computational complexity related to image size through Cy-
cleFC, enabling pure MLP architectures for object detection
and segmentation in larger images. MLP-3D [17] leverages
VISION PERMUTATOR [18] in the video classification task
to encode feature representations with linear projections along
the height and width dimensions, respectively. Then, giving
token-mixing MLP a temporal modelling Ability by GTM
(Grouped Time Mixing) in the temporal dimension. MAXIM
[19], as a network based on a pure MLP architecture, utilizes a
cross-gated module and a multi-axis gated MLP to achieve the
mixing of local and global spatial information. RepMLPNet
[20] merges the trained parameters of the parallel convolution
kernels into the FC kernel and merges the local prior into the
FC (Full Connect) layer utilizing local injection. Therefore,
the RepMLPNet can capture local and global information and
becomes a pure MLP-structured model in the inference stage.

When using MLP for vision tasks, we have noticed that
some appropriate designs can make MLP even more potent
than convolutions. Therefore, we propose the CM-MLP frame-
work based on the MFI (Multi-scale Feature Interaction) block
and ACRE (axial context relation encoder) block for accurate
segmentation of the edge of the medical image. The MFI
block can process all local information simultaneously by
Cascade MLP (cascade Multi-scale MLP). Then the ACRE
block can help our CM-MLP framework focus on the boundary
relationship between foreground and background around the
segmentation edge to better extract the edge information.

Note that although the computational complexity of the MFI
block is linearly related to the H×W same as [19], considering
the size of the feature map and the amount of information
contained, we only apply the MFI block in the last three layers
of the network to further reduce the amount of parameters. The
computational cost is negligible.

III. METHOD

We propose the CM-MLP framework for medical image
segmentation and adopt the MFI and ACRE blocks. Unlike
[30], which added MLP to the encoder and decoder of
Unet, MLPs are in parallel with Unet in our proposed CM-
MLP framework. In III-A, we briefly introduce the CM-MLP
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Fig. 1: Overview of the proposed CM-MLP framework, which consists of the 5-stage Encoder, the Partial Decoder, and the
Parallel Branch. The 5-stage Encoder first encodes the input image. The feature maps from the last three stages (i.e., F1,F2,F3)
are decoded by the Partial Decoder to produce the original mask M0. In the Partial Decoder, the feature maps will dot products
of each other in the same size by upsampling and generate the original mask M0 by concatenated operation, convolution
layer, and downsampling operation. In the first branch of the Parallel Branch, the MFI block takes feature map F1 as the
input to get feature map F′1. Then the ACRE block takes F′1 and M0 as input and generates the refined mask M′0. The higher
resolution mask M1 is generated from refined mask M′0 and original mask M0 by concatenated operation, convolution layer,
and upsampling operation. The other two branches go through the same operation. The final mask M is obtained by M3 using
sigmoid and upsampling operations. In Deep Supervision, after having M0, M1, M2 and M3, we upsample those results to
the same size as ground truth and calculate the total loss.

framework. In III-B, we introduce the principle of the MFI
block, which can process all local information simultaneously
and gradually fuse discrete local information. In III-C, we
introduce the principle of the ACRE block, which can focus on
the boundary relationship between foreground and background
around the segmentation edge. In III-D, we introduce the loss
function of our CM-MLP framework.

A. The main structure

Figure 1 shows our proposed CM-MLP framework, which
consists of the 5-stage Encoder, the Partial Decoder, and the
Parallel Branch. In the Parallel Branch, the MFI block can
process all local information from the deeper layer of CNN
(Convolutional Neural Network). The ACRE block can make
the CM-MLP framework focus on exploring the boundary
relationship between foreground and background. The MFI
and ACRE block of the model is explained in detail below.

B. Multi-scale Feature Interaction (MFI) block

The application of MLP in visual tasks is mainly limited to
image classification. By dividing the input image into non-

overlapping patches and merging each patch in the spatial
and channel dimensions to extract rich image information.
Maxim’s proposal [19] enables us to see that MLP has good
performance on dense prediction tasks. It divides the original
feature map into local and global branches aiming to extract
information at different scales. Inspired by Maxim [19], we
propose a cascade Multi-scale MLP (Cascade MLP) in MFI
block to encode the information and then fuse the information
into a larger receptive field through Local MLP and Global
MLP of multi-scale.

Our proposed multi-scale Feature Interaction (MFI) block
has two branches, in which the feature map F is channel-
wisely split into Fup,Fbottom. As shown in Figure 2, three
scales of Global MLP and Local MLP are connected in series
to get the enriched features map gradually.

In the Global MLP block (i.e., red block of Figure 2), the
input feature map (with size (H,W,C)) is grid into (g × g)
non-overlapping patches of size (Hg ×Wg) where H = g ×
Hg,W = g ×Wg , to obtain the feature map (g × g, Hg ×
Wg ,C).
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Fig. 2: Illustration of the Multi-scale Feature Interaction (MFI) block. The input feature map F is channel-wise split into two
branches Fup and Fbottom. After each branch processed by the multiple Cascade MLP blocks, it will be alternately multiplied to
increase information interaction and added together (F′′up = F1

up+F4
up×F4

bottom+F′′bottom,F
′′
bottom = F1

bottom+F4
bottom×F4

up).
The output of MFI block F′ is obtained by concatenating two branch features F′′up and F′′bottom and the convolution layer.
For Cascade MLP, we take the second Cascade MLP in MFI block (b2 = 4, g2 = 4) as an example. For better understanding,
we used F2

bottom (W = 8, H = 8, C) as input, where C is the size of the channel. Input feature F2
bottom will be processed

by Global MLP and Local MLP to obtain the output feature F3
bottom. In Global MLP, the feature map is first grid into 4× 4

(g2 = 4) non-overlapping patches which sizes is 2 × 2. After flattening, the FC layer is executed on the first axis (the same
colour represents the FC layer’s input and output vector) and then reshaped back and Ungrid to the original size. In Local
MLP, the feature map is first blocked into 2 × 2 non-overlapping patches which sizes is 4 × 4 (b2 = 4). After flattening, the
FC layer is executed on the second axis and then reshaped back and unblock to the original size to get F3

bottom feature map.

In the Local MLP block (i.e., orange block of Figure 2),
the feature map (with size (H,W,C)) is blocked into (Hb ×
Wb) non-overlapping patches of size (b× b) where H = b×
Hb,W = b×Wb, resulting in the feature map (Hb ×Wb, b×
b, C).

It is noted that the size of patches in Global MLP and Local
MLP (i.e., b and g) are not independent of each other. It is
specified that b × g = W = H (for example: H = W = 16,
g1 = 8, g2 = 4, g3 = 2, and corresponding b1 = 2, b2 = 4,
b3 = 8). When the size of patches in Global MLP gradually
decreases (g gradually shrinks), the size of patches in Local
MLP (b gradually increases) increases. In other words, the
distribution of the points in the FC input vector in Global

MLP will be more sparse. In Local MLP, the number of
points in the FC input vector in patches will be larger. Both of
them will gradually expand the receptive field of the Cascade
MLP. Therefore, The MFI block gradually fuses discrete local
information and can get a gradually enriched features map.

C. Axial Context Relation Encoder (ACRE) block

In order to make the MFI block focus on mining edge
information instead of the body, we propose Axial Context
Relation Encoder (ACRE) block inspired by [31]. The ACRE
block focuses on the distinction between foreground and
background boundaries so that the MFI block will extract more
edge information.
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Fig. 3: Illustration of the Axial Context Relation Encoder
(ACRE) block. The feature map F′i, i = 1, 2, 3 indicates the
output of MFI block in the Figure 1. F′i is first processed by
Axial Attention Block, which contains two self-attention oper-
ations on different dimensions (H and W) through dimension
permutation to get feature map F′′i . The original mask Mi−1 is
processed by the sigmoid function and then reproduced in two
copies, one kept as is and one processed as 1 − Mi−1. After
that, we multiply the F′′i with Mi−1 and 1−Mi−1 respectively
to get foreground Ffore and background Fback and then get
the refined information M′i−1 through concatenation of Ffore

and Fback on channel level and convolution operation.

As shown in Figure 3, each ACRE block has three main
steps: firstly, the input feature map F′i is sent into the axial
attention block, which contains two self-attention operations
on different dimensions (H and W) through dimension permu-
tation, to obtain the feature map F′′i .

Secondly, F′′i will be masked by Mi−1 to obtain the
foreground feature Ffore and the background feature Fback:

Fback = φback(F
′′
i � (1− Mi−1)), (1)

Ffore = φfore(F
′′
i � Mi−1), (2)

where φback(·) and φfore(·) represent the 3 × 3 convolutions
and � represents the dot product.

Finally, the output feature M′i−1 of the ACRE block is
obtained through the concatenation of Ffore and Fback on
the channel dimension and 3× 3 convolution.

To ensure the effect of axial attention block on the output
feature M′i−1, we do not apply the offset in [31] to the
contextual feature extraction of spatial locations. Second, the
ACRE block can also be regarded as a supplement to the axial
reverse attention in CaraNet [29].

D. Deep Supervision

To better emphasize the segmentation task of each branch,
we adopt a deep-supervised way to add the loss of each branch
to the total loss.

The loss function can be represented as ` = `IOU+`BCE by
applying weighted intersection over union (IoU) and weighted
binary cross entropy (BCE). we apply deep supervision for the
four branch results (M0, M1, M2, M3). Before calculating the
loss, we upsampled four branch results to the same size as

ground truth G as (Mup
0 , Mup

1 , Mup
2 , Mup

3 ). Thus, the total
loss can be represented as:

`total =

3∑
i=0

`(G,Mup
i ) (3)

IV. EXPERIMENTS AND RESULTS

A. Datasets and baselines

Experiments are performed on CVC-ClinicDB dataset [32],
sub-Kvasir dataset [33], and our in-house dataset. The CVC-
ClinicDB dataset [32] is a polyps segmentation dataset, which
contains 612 open-access images from 31 colonoscopy clips.
The sub-Kvasir dataset [33] is a polyps segmentation dataset,
which contains 1,000 images selected from a sub-class (polyp
class) of the Kvasir dataset. Our in-house dataset is a large
subdural hematoma segmentation dataset comprising 1049
images from 65 patients. All the three segmentation dataset is
divided into training, validation and testing sets with the ratio
of 7:1:2. We compare our proposed CM-MLP framework with
four the-state-of-art medical image segmentation methods: U-
Net [8], U-Net++ [4], PraNet [28] and CaraNet [29].

B. Implementation details

We implement our model in PyTorch. Affine transformation,
horizontal flip and vertical flip are used for data augmenta-
tion. All the input images are uniformly resized to 512×512.
LookAhead [34] optimization algorithm is used to optimize
the parameters. The entire network is trained in an end-to-
end way. Following the work CaraNet [29], We employ three
metrics (i.e., Mean Dice, Mean IoU and MAE) for quantitative
evaluation and utilize MPA metrics to evaluate pixel-level
accuracy.

TABLE I: COMPARISON OF SEGMENTATION RESULTS
ON THE SUB-KVASIR DATASET.

Methods Dice mIoU MAE MPA

U-Net [8] 0.6321 0.7704 0.0608 0.8949
U-Net++ [4] 0.8139 0.7014 0.0372 0.8362
PraNet [28] 0.9454 0.8970 0.0120 0.9508

CaraNet [29] 0.9482 0.9027 0.0113 0.9595
CM-MLP (Ours) 0.9676 0.9373 0.0087 0.9658

TABLE II: COMPARISON OF SEGMENTATION RESULTS
ON THE CVC-CLINICDB DATASET.

Methods Dice mIoU MAE MPA

U-Net [8] 0.6469 0.4858 0.0544 0.6585
U-Net++ [4] 0.7290 0.5917 0.0357 0.8443
PraNet [28] 0.9420 0.8951 0.0071 0.9582

CaraNet [29] 0.9611 0.9256 0.0060 0.9665
CM-MLP (Ours) 0.9696 0.9412 0.0048 0.9758



TABLE III: COMPARISON OF SEGMENTATION RESULTS
ON OUR IN-HOUSE DATASET.

Methods Dice mIoU MAE MPA

U-Net [8] 0.7583 0.6231 0.0035 0.6707
U-Net++ [4] 0.6997 0.5595 0.0039 0.7175
PraNet [28] 0.7949 0.6649 0.0026 0.9315

CaraNet [29] 0.8155 0.6940 0.0025 0.9249
CM-MLP(Ours) 0.8254 0.7087 0.0024 0.9378

TABLE IV: ABLATION STUDY OF OUR PROPOSED
CM-MLP FRAMEWORK ON THE CVC-CLINICDB, SUB-
KVASIR AND OUR IN-HOUSE DATASET.

settings Dice mIoU MAE MPA

su
b-

K
va

si
r CM-MLP 0.9676 0.9373 0.0087 0.9658

CM-MLP w/o MFI 0.9634 0.9295 0.0090 0.9653
CM-MLP w/o Local 0.9631 0.9290 0.0086 0.9636
CM-MLP w/o Global 0.9663 0.9350 0.0088 0.9647
CM-MLP w/o ACRE 0.9644 0.9313 0.0093 0.9653

C
V

C
-C

lin
ic

D
B CM-MLP 0.9696 0.9410 0.0048 0.9758

CM-MLP w/o MFI 0.9683 0.9387 0.00054 0.9759
CM-MLP w/o Local 0.9669 0.9361 0.0055 0.9753
CM-MLP w/o Global 0.9682 0.9385 0.0053 0.9754
CM-MLP w/o ACRE 0.9687 0.9393 0.0055 0.9725

In
-h

ou
se

CM-MLP 0.8254 0.7087 0.0024 0.9378
CM-MLP w/o MFI 0.8148 0.6925 0.0024 0.9353
CM-MLP w/o Local 0.8203 0.6992 0.0023 0.9348
CM-MLP w/o Global 0.8164 0.6964 0.0022 0.9378
CM-MLP w/o ACRE 0.8072 0.6811 0.0024 0.9235

C. Performance Comparison

We conduct the performance comparison of medical image
segmentation task on Table I , Table II, Table III. In all three
datasets, our proposed method outperforms the current state-
of-the-art methods: U-Net [8], U-Net++ [4], PraNet [28], and
CaraNet [29].

In Table I and Table II, our proposed CM-MLP framework
outperforms the current state-of-the-art models in all metrics.
In particular, the mIoU score of our proposed CM-MLP frame-
work outperforms the previous method by 3.46% and 1.56% in
the CVC-ClinicDB and sub-Kvasir datasets, respectively. The
experiment results demonstrate that our proposed CM-MLP
framework has a strong learning ability to segment polyps
images with complex edges effectively.

In Table III, we report the results of current state-of-the-
art methods with our proposed CM-MLP framework in a
more challenging in-house dataset. Our proposed CM-MLP
framework outperforms the current state-of-the-art models in
all metrics. Particularly, the mIoU score of our proposed M-
MLP framework outperforms the previous method by 1.47%.
Therefore, our proposed CM-MLP can perform better on more
complex segmentation tasks.

D. Component Analysis

We perform the following ablation studies on all used
datasets to verify the effectiveness of each component in the
CM-MLP framework: (1) CM-MLP: Our proposed CM-MLP
framework (2) CM-MLP w/o MFI: Our proposed CM-MLP

framework without MFI block; (3) CM-MLP w/o Local: Our
proposed CM-MLP framework whose MFI block without local
MLP; (4) CM-MLP w/o Global: Our proposed CM-MLP
framework whose MFI block without global MLP; (5) CM-
MLP w/o ACRE: Our proposed CM-MLP framework without
ACRE block;

We have the following observations from the results in Table
IV. First, our proposed approach CM-MLP outperforms the
method CM-MLP w/o MFI, which demonstrates it is practical
to use the MFI block to process all local information at the
same time. Second, our approach CM-MLP also outperforms
both CM-MLP w/o Local and CM-MLP w/o Global, which
indicates that it is beneficial to use both Local MLP and
Global MLP to catch the information from global to local.
Third, our proposed approach CM-MLP is better than the
method CM-MLP w/o ACRE, which demonstrates that it
is helpful to focus on exploring the boundary relationship
between foreground and background.

TABLE V: COMPARISON RESULTS OF DIFFERENT
CONNECTIONS OF MLPS ON THE CVC-CLINICDB,
SUB-KVASIR AND OUR IN-HOUSE DATASET.

settings Dice mIoU MAE MPA

sub-Kvasir
CM-MLP 0.9676 0.9373 0.0087 0.9658
MFI-PP 0.9674 0.9370 0.0088 0.9725
MFI-CP 0.9653 0.9330 0.0076 0.9640

CVC-ClinicDB
CM-MLP 0.9696 0.9410 0.0048 0.9758
MFI-PP 0.9696 0.9410 0.0050 0.9719
MFI-CP 0.9678 0.9377 0.0055 0.9725

In-house Dataset
CM-MLP 0.8254 0.7087 0.0024 0.9378
MFI-PP 0.8205 0.7002 0.0022 0.9291
MFI-CP 0.8200 0.6986 0.0024 0.9357

TABLE VI: COMPARISON OF OUR PROPOSED MFI
BLOCK WITH CFP BLOCK PROPOSED IN [29] ON THE
CVC-CLINICDB, SUB-KVASIR AND OUR IN-HOUSE
DATASET.

settings Dice mIoU MAE MPA

sub-Kvasir CM-MLP 0.9676 0.9373 0.0087 0.9658
CFP 0.9644 0.9317 0.0082 0.9658

CVC-ClinicDB CM-MLP 0.9696 0.9410 0.0048 0.9758
CFP 0.9673 0.9368 0.0053 0.9370

In-house Dataset CM-MLP 0.8254 0.7087 0.0024 0.9378
CFP 0.8206 0.7011 0.0026 0.9430

TABLE VII: COMPARISON OF OUR PROPOSED ACRE
BLOCK WITH A-RA BLOCK PROPOSED IN [29] ON THE
CVC-CLINICDB, SUB-KVASIR AND OUR IN-HOUSE
DATASET.

settings Dice mIoU MAE MPA

sub-Kvasir CM-MLP 0.9676 0.9373 0.0087 0.9658
A-RA 0.9568 0.9181 0.0120 0.9623

CVC-ClinicDB CM-MLP 0.9696 0.9410 0.0048 0.9758
A-RA 0.9561 0.9169 0.0079 0.9623

In-house Dataset CM-MLP 0.8254 0.7087 0.0024 0.9378
A-RA 0.8226 0.7030 0.0023 0.9309
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Fig. 4: Qualitative comparison of different methods in three datasets. From left to right: U-Net [8], U-Net++ [4], PraNet
[28],CaraNet [29],CM-MLP (Ours), Ground Truth image, and input segmentation image.

In Table V, we report the results when comparing the
different connections of Global MLP, Local MLP and Cascade
MLP. Our proposed method CM-MLP use Cascade MLP
in the MFI block in which Global MLP and Local MLP is
connected in series. The method MFI-PP use parallel MLP
between Local MLP and Global MLP proposed in Maxim [19]
in Cascade MLP. For method MFI-CP, those three Cascade
MLPs are paralleled with each other while keeping a series
connection of Global MLP and Local MLP in each Cascade
MLP. The comparison results demonstrate that the combined
form of the Cascade MLP in the MFI block better captures
the information when the segmentation tasks become difficult,
which contains more complex edge of the segmented images.

In Table VI, we compare the effectiveness of our proposed
MFI block with the CFP block proposed in [29]. The mIoU
score of our proposed method is 0.5%, 0.4%, and 0.7%
higher than using CFP block in the sub-Kvasir dataset, CVC-
ClinicDB dataset, and our in-house dataset respectively. The
experiments demonstrate that the MFI block can better capture
the local information using MLP than the CFP block proposed
by [29].

In Table VII, it can be seen that after replacing the ACRE
block with the axial reverse attention module (A-RA) pro-
posed in [29], the mIoU scores are significantly decreased by
1.9% and 2.4% in the sub-Kvasir dataset and CVC-ClinicDB
dataset. This shows that the ACRE block is crucial to capturing
edge information in sub-Kvasir and CVC-ClinicDB datasets.

E. Qualitative Analysis
Fig 4 shows the results of the qualitative comparison, where

our proposed CM-MLP framework provides better perfor-
mance.

In the CVC-ClinicDB dataset, we observe that the previous
state-of-the-art methods cannot capture the bump changes
when the edge of the segmented images is more complex.

In addition, the previous state-of-the-art methods and our
proposed CM-MLP framework can successfully capture the
body of the segmented images. These observations demon-
strate that our proposed CM-MLP framework provides better
performance when the edge of the segmented images is more
complex and keeps the ability to capture the body of the
segmented images simultaneously.

In the sub-Kvasir dataset, we observe that the current state-
of-the-art methods cannot capture the body of the segmented
images when the aggregation of multiple-segmented areas
occurs. This demonstrates that our proposed CM-MLP frame-
work can perform better when the aggregation of multiple-
segmented areas appear in the medical image. In addition, the
observation demonstrates that our proposed MLP-based MFI
block can process all local information at the same time.

In our in-house dataset, we can see that the edges of the
segmented images are more complex and the aggregation of
multiple-segmented areas. Our proposed CM-MLP framework
still captures the vital part of edges in the segmented image.

V. CONCLUSION

We propose a general MLP-based framework called CM-
MLP for medical image segmentation. This framework can
process all the local information of the image simultaneously.
Therefore, the CM-MLP can cope with the complex edge
information of a segmented area and the aggregation of
multiple-segmented areas. While improving network perfor-
mance minimizes the amount of computation and complexity
brought by MLP. Extensive experiments demonstrate that our
proposed CM-MLP consistently outperforms state-of-the-art
methods on three challenging medical segmentation datasets.
In the future, we will conduct our proposed CM-MLP on more
datasets and explore the impact of data types from different
modalities and sizes.
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