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Abstract. While hematoxylin and eosin (H&E) is a standard stain-
ing procedure, immunohistochemistry (IHC) staining further serves as
a diagnostic and prognostic method. However, acquiring special stain-
ing results requires substantial costs. Hence, we proposed a strategy
for ultra-high-resolution unpaired image-to-image translation: Kernel-
ized Instance Normalization (KIN), which preserves local information
and successfully achieves seamless stain transformation with constant
GPU memory usage. Given a patch, corresponding position, and a kernel,
KIN computes local statistics using convolution operation. In addition,
KIN can be easily plugged into most currently developed frameworks
without re-training. We demonstrate that KIN achieves state-of-the-art
stain transformation by replacing instance normalization (IN) layers with
KIN layers in three popular frameworks and testing on two histopatho-
logical datasets. Furthermore, we manifest the generalizability of KIN
with high-resolution natural images. Finally, human evaluation and sev-
eral objective metrics are used to compare the performance of different
approaches. Overall, this is the first successful study for the ultra-high-
resolution unpaired image-to-image translation with constant space com-
plexity. Code is available at: https://github.com/Kaminyou/URUST.

Keywords: Unpaired image-to-image translation, ultra-high-resolution,
stain transformation, whole slide image

1 Introduction

Histological staining, highlighting cellular components with dyes, is crucial in
clinical diagnosis [1], which enables visualization of cells and extracellular ma-
trix and abnormal identification. Since specific cellular components or biomark-
ers can be distinguished when particular dyes attach specific molecules in tissues,
different staining methods are applied to diagnose various diseases and their sub-
types [15,11,4]. The standard stain (or routine stain) is hematoxylin and eosin
(H&E). While hematoxylin stains nuclei, eosin can stain cytoplasm. Immunohis-
tochemistry (IHC) protocol is further developed to detect the presence of specific
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Fig. 1. An ultra-high-resolution translated result (7,328× 8,899 pixels) from
our Kernelized Instance Normalization (KIN). The whole slide image (WSI)
was translated from source stain to target stain (on the upper left) with constant space
complexity (GPU memory) via KIN, and local appearance was preserved. On the right
side, five close-ups demonstrate the detail.

Fig. 2. Comparison of GPU memory usage among different unpaired image-
to-image translation approaches. Compared with the models using Instance Nor-
malization (IN), which has limitation (marked by the dashed line) on a 32G GPU
(NVIDIA V-100), our Kernelized Instance Normalization (KIN) approach can trans-
late an ultra-high-resolution image with constant GPU memory usage (less than 5GB).

protein markers. For example, Ki-67 and ER staining can quantify the presence
of Ki-67 and ER biomarkers, respectively. In clinical practice, high Ki-67 ex-
pression is considered a poor prognostic factor [23], while the presence of ER
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indicates the suitability of choosing specific target therapies that benefit related
disease subtypes [26].

However, compared with H&E staining, the IHC staining process is much
more expensive and requires extra biopsies, which are limited materials. With
the development of deep learning-based image-to-image translation, virtually
translating H&E into different IHC staining can be achieved. For example, de
Haan et al. . proposed a supervised deep learning approach via CycleGAN [33] to
transform stained images from H&E to Masson’s Trichrome (MT) staining [13].
While supervised pair-wise training is desirable, this approach requires perfectly
paired staining images, necessitating de-staining and re-staining processes, and
is not practically efficient in a clinical scenario. Most datasets are composed of
unpaired H&E and IHC images from consecutive sections. Several methodolo-
gies have been proposed and successfully tackled the unpaired image-to-image
translation problem [27]. Regardless of the astonishing performance, the existing
methods are limited to low-resolution images and rarely explore the images with
ultra-high-resolution. In histopathology, whole slide images (WSIs) are usually
larger than 10, 000×10, 000 pixels. The main challenge of transforming a WSI is
the limitation of GPU memory capacity. Patch-wise inference with an assembly
process can tackle ultra-high-resolution image-to-image translation, but tiling
artifacts between adjacent patches would be a critical problem. Traditionally,
overlapping windows have been leveraged to smooth the transitions but have
limited effectiveness. Considering the mean and standard deviation calculated
in instance normalization (IN) layers might influence hue and contrast, recently,
Chen et al. developed Thumbnail Instance Normalization (TIN) for both ultra-
high-resolution style transfer as well as image-to-image translation tasks [8]. Un-
fortunately, while their approach could overcome the resolution limitation, their
erroneous assumption that all patches share global mean and standard deviation
would lead to dramatically over/under-colorizing according to our comprehen-
sive experiment, which is confirmed in Section 5.3.

To compensate for all the above limitations, we proposed a Kernelized In-
stance Normalization (KIN) layer that can replace the original IN layer during
the inference process without re-training the models. With the help of KIN, im-
ages with arbitrary resolution can be translated with constant GPU memory
space (as demonstrated in Fig. 1 and 2). Moreover, utilizing the statistics of
neighboring patches instead of global ones like TIN, our approach can further
preserve the hue and contrast locally, which is especially paramount in stain
transformation tasks. Besides the translation of H&E to four IHC staining, we
additionally demonstrated the generalizability of KIN with natural images by
translating summer to autumn style. Our novel contribution can be summarized
as follows:

– To the best of our knowledge, this is the first successful study for the ultra-
high-resolution unpaired image-to-image translation with constant space com-
plexity (GPU memory), which manifests state-of-the-art outcomes in stain
transformation and can also be generalized to natural images.
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– Without re-training the models, our KIN module can be seamlessly inserted
into most currently developed frameworks that have IN layers, such as Cy-
cleGAN [33], CUT [28], and LSeSim [32].

– With the KIN module, local contrast and hue information in translated
images can be well preserved. Besides, different kernels can be further applied
to subtly adjust the translated images.

2 Related works

2.1 Unpaired image-to-image translation

Several frameworks have been proposed for unpaired image-to-image transla-
tion. CycleGAN [33], DiscoGAN [19], and DualGAN [31] were first presented
to overcome the supervised pairing constraint via cycle consistency. However,
subtle information was forced to be retained in the translated image to achieve
better reconstruction, causing detrimental effects when two domains are sub-
stantially different such as dog-to-cat translation. Besides, a reverse mapping
function might not always exist, which inevitably leads to artifacts in trans-
lated images. Recently, strategies beyond cyclic loss have been developed to
reach one-sided unpaired image-to-image translation. While DistanceGAN [3]
enforced distance consistency between different parts of the same sample in each
domain, CUT [28] leveraged contrastive loss to maximize the patch-wise sim-
ilarity between domains and achieved remarkable results. LSeSim [32] further
utilized spatially correlation to maximize structural similarity and eliminate the
domain-specific features.

2.2 Image-to-image translation for stain transformation

Transforming one stained tissue into another specific stain will dramatically save
laboratory resources and money. Hence, growing research has leveraged unsu-
pervised image-to-image translation to conduct stain transformation in several
medical scenarios. Levy et al. . translated H&E to trichrome staining via Cycle-
GAN for liver fibrosis staging [22]. Kapil et al. translated Cytokeratin to PD-L1
staining to bypass re-staining for segmentation [18]. de Haan et al. translated
H&E to Masson’s Trichrome, periodic acid-Schiff, and Jones silver stain for im-
proving preliminary diagnosis for kidney diseases via CycleGAN with perfectly
paired images [13]. Lahiani et al. further broke the limitation of 256× 256-pixel
image patches by applying perceptual embedding consistency for H&E to FAP-
CK transformation [21]. However, the lack of detailed description hampers the
implementation of their methodology.

2.3 Ultra-high resolution image-to-image translation

Ultra-high-resolution images are ubiquitous in photography, artwork, posters,
ultra-high (e.g., 8K) videos, and especially, WSIs in digital pathology (usually,
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Fig. 3. Overall framework of proposed method. An ultra-high-resolution H&E
image is passed through the caching phase and inference phase to be translated into
an ultra-high-resolution IHC image. (a) In the caching phase, all mean µ and stan-
dard deviation σ values of patches will be cached in caching tables Tµ and Tσ by the
Kernelized Instance Normalization (KIN) layer. (b) In the inference phase, a kernel
k will convolute the caching table to compute µKIN and σKIN for instance normal-
ization. Taking the neighboring statistics into account, our method can preserve local
appearance.

larger than 10, 000 × 10, 000). Due to the massive computational costs, trans-
forming these images into different styles will be difficult. Traditionally, strategies
have been proposed to address the problem of tiling artifacts created by patch-
wise-based methods, including utilizing a larger overlapping window [20] or freez-
ing IN layers during testing time [2]. By providing a patch-wise style transfer
network with Thumbnail Instance Normalization (TIN), Chen et al. performed
ultra-high-resolution style transformation with constant GPU memory usage [8].
Also, they applied their framework to an image-to-image translation task. How-
ever, according to our experiment, TIN may result in over/under-colorizing for
their fallacious assumption that all patches can be normalized with the same
global mean and standard deviation.

3 Proposed method

3.1 Overall Framework

Our framework targets one-sidedly translating an ultra-high-resolution image X
in domain X (e.g., H&E stain domain) into image Ŷ in domain Y (e.g., IHC
domain), in which X, Ŷ ∈ RH×W×C , H and W are the height and width of X,
via a mapping function, generator G.

Ŷ = G(X),G : X → Y (1)
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Collections of unpaired X in X and Y in Y would be first cropped into
patches with the size of 512× 512 pixels to train a generator G.

As our KIN module is only applied during the testing time and can be inserted
into any framework with IN layers, we followed the original training process
and hyperparameters proposed in the paper of CycleGAN [33], CUT [28], and
LSeSim [32] to train the corresponding generators with their specific designed
losses without any modification.

During the testing process, all the IN layers in G are replaced with KIN
layers. Given an image X, non-overlapped patches xi,j

p are cropped with the size

of 512×512. The coordinates i, j of each patch xi,j
p corresponding to the original

X would be recorded simultaneously. For example, an M × N image would be
cropped into ⌊M/512⌋×⌊N/512⌋ patches with coordinates of {0, 1, ..., ⌊M/512⌋}
× {0, 1, ..., ⌊N/512⌋}. Two caching tables of size ⌊M/512⌋×⌊N/512⌋×C, in which
C denotes the number of channels, would be initialized in each KIN for caching
mean and standard deviation calculated.

As illustrated in Fig 3, we divide the testing process into two phases: caching
and inference. During caching phase, each patch xi,j

p with its corresponding

coordinates i, j are the input of the generator G, and the calculated mean µ(xi,j
p )

and standard deviation σ(xi,j
p ) after passing the KIN will be cached. During the

inference phase, xi,j
p , its corresponding coordinates i, j and a kernel k are the

input of the generator G. The kernel k ∈ Rh×w, where h and w are the height
and width of k, is adjustable. When passing through the KIN layer, a region
with the same size of kernel k extended from i, j will be extracted from the
caching table and convolute with kernel k to compute mean µKIN (xi,j

p ) and

standard deviation σKIN (xi,j
p ) which are used to normalize the feature maps.

All the cropped patches will be passed to the G in the aforementioned manner
to yield translated patches ŷi,jp . Eventually, all ŷi,jp are assembled into an ultra-

high-resolution translated image Ŷ .

3.2 Kernelized Instance Normalization (KIN)

IN [29] has been widely used in GAN-based models for image generation and
dramatically improved image quality [27]. Besides, multiple styles can be ob-
tained by conditionally replacing the µ and σ in the IN layer [9]. IN can be
formulated by:

IN(X) = γ(
X − µ(X)

σ(X)
) + β (2)

For each instance in a batch, µ(X) and σ(X) are calculated in a channel-wise
manner, in which µ(X), σ(X) ∈ RB×C , B denotes the batch size and γ and β
are trainable parameters.

We hypothesize that adjacent patches share similar statistics including the µ
and σ computed in IN, and thus proposed KIN that could further alleviate the
subtle incongruity that induces the tiling artifacts when adjacent patches are
assembled. KIN is the extension of the original IN layer with extra two caching
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tables Tµ and Tσ to spatially store µ(X) and σ(X) values and additionally sup-
ports convolution operation on the caching tables with a given kernel k. During
the caching phase, KIN input a cropped patch xi,j

p with its spatial information,

i, j. µ(xi,j
p ) and σ(xi,j

p ) are computed as the original IN and cached.

Tµ[i, j] := µ(xi,j
p ), xi,j

p is cropped from Xi,j (3)

Tσ[i, j] := σ(xi,j
p ), xi,j

p is cropped from Xi,j (4)

During the inference phase, given a kernel k with the size of 2q+1, µKIN (xi,j
p )

and σKIN (xi,j
p ) are computed by convoluting k on cache tables to generate trans-

lated images. To address the boundary cases, the cache tables would be padded
initially with edge values.

µKIN (xi,j
p ) =

q∑

u=−q

q∑

v=−q

Tµ[i+ u, j + v] ·K[q + u, q + v],∀i, j (5)

σKIN (xi,j
p ) =

q∑

u=−q

q∑

v=−q

Tσ[i+ u, j + v] ·K[q + u, q + v],∀i, j (6)

KIN(xi,j
p , i, j) = γ(

xi,j
p − µKIN (xi,j

p )

σKIN (xi,j
p )

) + β (7)

4 Datasets

4.1 Automatic Non-rigid Histological Image Registration (ANHIR)

Automatic Non-rigid Histological Image Registration (ANHIR) dataset
[5,6,7,10,12,24] consists of high-resolution WSIs from different tissue samples
(lesions, lung lobes, breast tissue, kidney tissue, gastric tissue, colon adenocar-
cinoma, and mammary gland). The acquired images are organized in sets of
consecutive tissue slices stained by various dyes, including H&E, Ki-67, ER/PR,
CD4/CD8/CD68, etc., with sizes vary from 15, 000× 15, 000 to 50, 000× 50, 000
pixels. We randomly sampled three types of tissues to conduct our experiments.
Each experiment comprises H&E stain and one target IHC stain: breast tissue
(from H&E to PR), colon adenocarcinoma (COAD) (from H&E to CD4&CD68),
and lung lesion (from H&E to Ki-67).

4.2 Glioma

The private glioma dataset was collected from H&E (98, 304×93, 184 pixels) and
epidermal growth factor receptor (EGFR) IHC (102, 400×93, 184 pixels) stained
tissue microarrays, and each comprised 105 tissue samples corresponding to 105
different patients. Totally 105 H&E stained tissue images with their consecutive
EGFR counterparts were cropped from the microarrays and the image sizes vary
from 7, 000× 7, 000 to 10, 000× 10, 000 pixels. We randomly selected 55 samples
as the training set while the other 50 pairs as the testing set.
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4.3 Kyoto summer2autumn

An extra natural image dataset was used to validate the generalizability of our
methodology. We collected 17 and 20 high-resolution (3456 × 5184 pixels) un-
paired images taken in Tokyo during summer and autumn, respectively, as the
training set and additional four summer images were used as a testing set. This
Kyoto summer2autumn dataset1 was released to facilitate solving ultra-high-
resolution-related problems that most computer vision studies might encounter.

5 Experiments

5.1 Experimental settings

Three popular unpaired image-to-image translation frameworks: CycleGAN [33],
CUT [28], and L-LSeSim [32], were utilized to verify our approach. We followed
the hyperparameter settings described in the original papers during the training
process except for the model output size, which was changed from 256× 256 to
512× 512. We trained the CycleGAN, CUT, and L-LSeSim for 50, 100, and 100
epochs. Models were trained and tested on three datasets: ANHIR, glioma, and
Kyoto summer2autumn. Due to the insufficiency of WHIs in ANHIR dataset, we
could only inference on the training set (note that training was in an unsuper-
vised manner) while glioma and Kyoto summer2autumn datasets can be further
split into training and testing sets. We replaced all IN layers with KIN layers
in the generators during the inference process. One ultra-high-resolution image
would be cropped into non-overlapped patches and pass through the KIN mod-
ule. Translated patches were assembled to the final translated output. Constant
and Gaussian kernels with sizes of 3, 7, and 11 were used to generate the best
results. Translated images generated with KIN were compared with those from
IN and TIN. Due to the GPU memory limitation, translated images generated
with IN were also in a patch-wise (512×512) manner, which is the same as the
patch-wise IN in Chen et al. ’s work [8].

5.2 Metrics

In addition to the visualization of the translated images, we calculated Fréchet in-
ception distance (FID) [14], histogram correlation, Sobel gradients [16] in YCbCr
color domain, perception image quality evaluator (PIQE) [30], and natural im-
age quality evaluator (NIQE) [25] to comprehensively evaluate the quality of
translated ultra-high-resolution images.

However, due to the limitations of the available metrics that the tiling ar-
tifacts are difficult to be fairly graded and the unavailability of the perfectly

1 Kyoto summer2autumn dataset is available at: https://github.com/Kaminyou/

Kyoto-summer2autumn
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matched counterpart, we conducted two human evaluation studies with five spe-
cialists: (a) quality challenge: given one source, one reference, and three trans-
lated images generated by patch-wise IN, TIN, and our KIN methods, respec-
tively, specialists were asked to select the best among three translated images
in 30 seconds. Since the images generated by CycleGAN and L-LSeSim were
atrocious, we only chose images generated by CUT; (b) fidelity challenge: given
one real image and one translated image, specialists were asked to select the one
which is personally considered realistic in 10 seconds. We followed the protocol of
the AMT perceptual studies from Isola et al. [17] but adjusted the time limita-
tion as our images are extremely large. Since the data in ANHIR breast, COAD,
and lung lesion subdatasets are insufficient, we combined these subdatasets as
single ANHIR dataset and randomly selected pairs of real and translated WSIs
from it.

5.3 Results

Fig. 4. H&E-to-PR stain transformation results on ANHIR breast dataset
(10,205× 10,933 pixels) generated by different frameworks with IN, TIN, and KIN
layers. Red arrows indicate tiling artifacts; green arrows indicate over/under-colorizing.
CUT+KIN achieved the best performance. Zoom in for better view.

Stain transformation Figs. 4 to 6 and Fig. S5 and Fig. S6 show the translated
images for three ANHIR subdatasets (breast tissue, COAD, and lung lesion) and
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Fig. 5. H&E-to-Ki-67 stain transformation results on ANHIR lung lesion
dataset (7,336× 8,915 pixels) generated by different frameworks with IN, TIN,
and KIN layers. Red arrows indicate tiling artifacts; green arrows indicate over/under-
colorizing. CUT+KIN achieved the best performance. Zoom in for better view.

Table 1. Quantitative results for ANHIR dataset. For each experiment, the bold
shows the best performance; the underline indicates that KIN surpasses IN and TIN.

Breast COAD Lung lesion

FID↓ Corr.↑ Grad.↓ PIQE↓ NIQE↓ FID↓ Corr.↑ Grad.↓ PIQE↓ NIQE↓ FID↓ Corr.↑ Grad.↓ PIQE↓ NIQE↓

CycleGAN
IN* 98.60 -0.07 13.62 4.95 9.39 103.25 75.25 15.08 5.26 9.08 76.15 -4.49 9.92 62.69 13.14
TIN 179.14 -28.91 14.37 6.16 9.56 100.78 79.53 16.68 15.79 9.55 239.19 17.46 9.53 67.79 11.96
KIN 96.09 11.53 12.93 5.29 7.36 108.32 43.60 14.95 5.15 9.69 103.48 -2.16 9.94 63.81 12.16

CUT
IN* 71.00 35.56 14.55 3.00 12.15 95.87 74.64 14.76 4.50 8.96 54.86 -5.79 10.41 58.32 12.20
TIN 125.18 39.50 17.04 3.42 10.98 91.81 33.29 15.49 11.96 9.02 251.48 80.14 11.80 32.08 12.20
KIN 72.59 36.32 14.05 3.27 10.66 93.68 76.45 14.60 4.49 8.94 56.38 -9.63 10.58 60.13 12.08

L-LSeSim
IN* 65.82 31.57 15.04 3.03 13.36 100.42 48.15 13.64 4.23 8.45 56.30 -3.82 9.71 46.40 13.88
TIN 89.94 22.16 12.75 3.29 13.18 100.50 41.37 15.67 9.56 8.14 231.13 59.71 12.68 44.29 11.13
KIN 67.46 31.58 14.31 3.19 12.35 100.04 51.62 13.34 4.44 8.22 62.74 -4.77 9.91 47.99 13.48

IN*: Patch-wise IN; Corr.: Histogram correlation; Grad.: Sobel gradients; ↓: the lower the better; ↑: the higher the better.

glioma dataset, respectively. With only IN layers, CUT yields the images with
best quality with some tiling artifacts, while CycleGAN led to checkerboard
artifacts. L-LSeSim powerfully preserves spatial information but compromises
color information. With TIN, all the translated images showed dramatically
over/under-colorizing. With our KIN, translated images can have minor tiling
artifacts and preserve their local features. However, if the original framework
generated severe tiling artifacts, our KIN could alleviate but be hard to elim-
inate. Considering the similarity (FID and histogram correlation) and quality
metrics (Sobel gradient, PIQE and NIQE), our KIN is superior to patch-wise
IN and TIN in most cases (see Tabs. 1 and 2). Although KIN does not always
obtain the best scores, a possible reason is that no appropriate metrics can re-
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Fig. 6. H&E-to-CD4&CD8 stain transformation results on ANHIR COAD
dataset (9,816× 8,433 pixels) generated by different frameworks with IN, TIN,
and KIN layers. Red arrows indicate tiling artifacts; green arrows indicate over/under-
colorizing. CUT+KIN achieved the best performance. Zoom in for better view.

flect the performance of such unpaired WSIs stain transformation task. Thus,
we established two human evaluation studies to pertinently evaluate the image
quality and fidelity. As shown in Fig. 8, our KIN achieved the best performance
in both.

Translation for natural images Our KIN module also performed well on
natural images (as shown in Fig. 7 and Fig. S7). As described above, KIN can
alleviate the tiling artifacts generated by patch-wise IN while TIN would lead to
over/under-colorizing. However, when it comes to natural images, over/under-
colorizing would not be as obtrusive as in stain transformation cases, since peo-
ple sometimes prefer over-stylized images. For example, High-Dynamic Range
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Fig. 7. Image-to-image translation results on Kyoto summer2autumn testing
set (3,456× 5,184 pixels) generated by different frameworks with IN, TIN, and KIN
layers. Red arrows indicate tiling artifacts; green arrows indicate over/under-colorizing.
CUT+KIN achieved the best performance. Zoom in for better view.

Table 2. Quantitative results for Glioma dataset. For each experiment, the bold
shows the best performance; the underline indicates that KIN surpasses IN and TIN.

Glioma (training set) Glioma (testing set)

FID↓ Corr.↑ Grad.↓ PIQE↓ NIQE↓ FID↓ Corr.↑ Grad.↓ PIQE↓ NIQE↓

CycleGAN
IN* 136.32 0.26 11.91 21.83 13.64 142.28 0.28 10.57 23.73 13.76
TIN 220.00 0.28 5.42 39.05 12.01 207.03 0.38 4.65 41.16 11.99
KIN 157.26 0.14 7.22 27.89 11.27 150.93 0.19 6.31 29.87 11.54

CUT
IN* 105.22 0.85 14.81 23.76 13.99 105.66 0.85 13.48 24.02 14.05
TIN 214.22 0.54 10.02 34.52 13.37 200.56 0.64 8.64 35.01 13.37
KIN 108.20 0.81 12.84 31.26 13.70 100.90 0.80 11.58 31.94 13.86

L-LSeSim
IN* 107.74 0.41 11.83 21.09 10.70 105.59 0.48 10.67 21.25 10.62
TIN 203.70 0.10 8.22 24.87 10.94 191.44 0.19 7.58 23.34 10.75
KIN 113.92 0.41 8.64 26.00 10.63 106.90 0.46 7.69 26.85 10.40

IN*: Patch-wise IN; Corr.: Histogram correlation; Grad.: Sobel gradients; ↓: the lower the better;
↑: the higher the better.

(HDR) or contrast adjustment techniques are popular to beautify photographs
and render the photos more attractive. Tab. 3 and Fig. 8 provided the met-
rics evaluation results, and our KIN obtained the best performance among all
methodologies in human evaluation. Considering the FID, CUT with our KIN is
superior or competitive to other methods. Although Sobel gradients are higher in
some cases, the high contrast level of one image might also contribute to higher
gradients. On the other hand, there are only minor differences in PIQE and
NIQE between methods. However, none of the metrics can effectively evaluate
ultra-high-resolution images with tiling artifacts.
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Table 3. Quantitative results for Kyoto summer2autumn dataset. For each
experiment, the bold shows the best performance; the underline indicates that KIN
surpasses IN and TIN.

Kyoto (training set) Kyoto (testing set)

FID↓ Grad.↓ PIQE↓ NIQE↓ FID↓ Grad.↓ PIQE↓ NIQE↓

CycleGAN
IN* 79.11 18.40 43.62 12.20 171.88 16.52 37.00 11.26
TIN 87.10 12.39 54.29 12.24 180.50 10.49 52.56 11.92
KIN 93.60 17.08 44.65 12.11 192.25 15.12 39.53 11.10

CUT
IN* 77.59 17.87 43.81 13.40 157.04 18.29 37.74 11.41
TIN 98.37 17.44 43.30 12.11 181.13 15.33 40.97 11.89
KIN 75.27 18.53 40.21 12.98 167.15 17.24 38.30 12.31

L-LSeSim
IN* 178.19 14.86 19.35 11.89 248.81 13.05 14.14 11.42
TIN 178.98 11.27 19.13 12.07 253.14 9.74 12.21 11.18
KIN 192.42 16.41 19.19 12.01 265.07 16.12 13.00 10.54

IN*: Patch-wise IN; Grad.: Sobel gradients; ↓: the lower the better

(a) Quality evaluation (b) Fidelity evaluation

Fig. 8. Human evaluation results. In quality evaluation, KIN achieved the best or
competitive performance among all datasets while images generated via TIN obtained
the worst quality. For the fidelity evaluation, although real consecutive section of tissue
is easily to be distinguished from the fake ones, KIN is still the most deceptive among
all methods. It can be noticed that translated natural images are hardly to deceive
human since their complicated content are difficult to be fabricated.

5.4 Ablation study

Kernel and kernel size To elucidate the effect of different kernels and kernel
size on the translated images, we applied constant and Gaussian kernels with
the size of 1, 3, 7, 11, and ∞ in the KIN module (see Fig. S8 and S9). It is
noteworthy that when kernel size is set to 1, the KIN module will operate in a
manner of patch-wise IN, whereas it would be like TIN when kernel size is set to
∞ (bounded by the input image size). KIN is an eclectic approach that combines
the advantages of patch-wise IN and TIN and avoids extremes of single and global
features calculated in patch-wise IN and TIN. When kernel size increases from
one to ∞, the translated results gradually change from patch-wise IN to TIN.
On the other hand, the constant kernel can help generate smoother results, while
the Gaussian kernel will emphasize local features more.
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6 Discussions

Our experiments showed that KIN performed well on multiple datasets, and
unseen testing data can even be successfully inferred when sufficient training
data are available. The over/under-colorizing problem caused by TIN is also
revealed, which might be innocuous when natural images are used but would be
detrimental when targeting stain transformation. Pathological features, which
are essential for clinical judgment, would be compromised when global mean
and standard deviation are applied in the TIN.

Although KIN can be inserted into any IN-based framework, the performance
would be compromised if the original framework has amateurish performance,
such as CycleGAN, which generates results diversely among adjacent patches.
KIN can hardly eliminate all the tiling artifacts undertaking such cases. Inter-
estingly, we found that CUT can yield more consistent results among adjacent
patches, especially for the hue. On the other hand, LSeSim meticulously pre-
serves all the structure but ignores the consistency of the hue, which is reason-
able as CUT captures domain-specific features, but LSeSim focuses on spatial
features according to their loss functions. Despite KIN achieving the best per-
formance surpassing all previous approaches in human evaluation studies, its
strength cannot be manifested due to the inadequacy of appropriate metrics for
evaluating the quality and fidelity of unpaired ultra-high-resolution WSIs. Fi-
nally, ultra-high-resolution images are commonly used in daily life but there is
no public dataset available for a fair comparison. To facilitate related researches,
we released the Kyoto summer2autumn dataset.

7 Conclusion

This study presents Kernelized Instance Normalization (KIN) for ultra-high-
resolution stain transformation with constant space complexity. KIN can be eas-
ily inserted into popular unpaired image-to-image translation frameworks with-
out re-training the model. Comprehensive experiments with two WSI datasets
were conducted and evaluated by human evaluation studies and appropriate
metrics. An extra ultra-high-resolution natural image dataset was also utilized
and demonstrated the generalizability of KIN. Overall, KIN surpassed all the
previous approaches and generated state-of-the-art outcomes. Henceforth, ultra-
high-resolution stain transformation or image-to-image translation, can be easily
accomplished and applied in clinical practice.
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0.1 Analysis

(a) Mean (layer 1) (b) Std (layer 1)

(c) Mean (layer 2-6) (d) Std (layer 2-6)

Fig. S1. Comparison of mean and std calculated in IN between adjacent
patches. Mean, and standard deviation (std) of every two adjacent or nearby patches
(up to 5,000 pixels far away) were extracted from the IN in the original CycleGAN
model and compared. The CycleGAN model comprises 6 layers and each has one or
multiple IN: (1) convolutional layer; (2) down-sampling layer; (3) down-sampling layer;
(4) residual backbone; (5) up-sampling layer; (6) up-sampling layer. We analyzed mean
and std from IN in all layers except the fourth layer, which is a backbone. It can be
noticed that there is a great discrepancy in mean and std between faraway patches in
the earlier layers.
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2 Ho. et al.

Fig. S2. Distribution of cosine similarity between means of thumbnail and
patches calculated in IN. The means of patches and the thumbnail calculated in the
IN layer from layer 1 of CycleGAN’s generator are extracted and compared. Distribu-
tion of the cosine similarity is shown. An obvious discrepancy can be observed, which
indicates the inappropriateness of using thumbnail statistics for all cropped patches in
the TIN [8].

To verify our hypothesis, we extracted the µ(X) and σ(X) from all the IN
layers in G for patches cropped from one single image, in which µ(X), σ(X) ∈
R1×C , and C is the number of channels. Then, µ(X) and σ(X) were further
flattened into vectors with size C to compute the cosine similarity between every
pair. Besides, the Euclidean distances between pairs were recorded.

Fig. S1 demonstrates that cosine similarity of µ(X) and σ(X) between two
patches would dramatically decrease when two patches are farther apart, espe-
cially in the first few layer blocks.

In addition, we adopted the methodology proposed in TIN [8] and measured
the µ(X) and σ(X) between the thumbnail and other cropped patches in Figure
S2. It shows that extreme inconsistency occurs in the first few layers, implying
local contrast and hue information will diminish if µ and σ of thumbnail are
used. On the contrary, the convolution mechanism in our KIN can both alleviate
this inconsistency issue and further improve the assembly quality when adjacent
patches are combined.

0.2 Performance on the classification downstream task

As there is no well-developed metric that can evaluate unpaired ultra-high-
resolution (UHR) images, downstream classification task was experimented to
address this issue. We conducted a classification task for the ANHIR dataset
(breast, lung lesion, and COAD). A ResNet-50 model was trained on the patches
cropped from real WSIs in the IHC domain and tested on the patches cropped
from translated WSIs generated by patch-wise IN, TIN, and KIN with the CUT
framework. We deliberately cropped patches from the attached boundary to
evaluate the influence of tilting artifacts. The accuracies of patch-wise IN, TIN,
and KIN are 98.8%, 88.4%, and 99.2%, respectively. The results show that KIN
achieves the best performance, which might be due to the reduction of tilting
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artifacts that confused the classifier. TIN obtains the worst performance since
using global statistics might lead to the loss of local information.

0.3 Evaluated by SSIM and FSIM metrics

To evaluate KIN with SSIM and FSIM metrics, we experimented with pairwise
translating gray images of the ANHIR dataset into H&E. However, both SSIM
(patch-wise IN: 0.94, TIN: 0.90, KIN: 0.93) and FSIM (patch-wise IN: 0.79, TIN:
0.74, KIN: 0.78) cannot evaluate the presence of tilting artifacts in patch-wise
IN (see Fig. S3).

(a) Patch-wise IN (b) TIN (c) KIN

Fig. S3. Generated RGB WSIs by different methods. The presence of tilting
artifacts, indicated by red arrows, cannot evaluated by SSIM or FSIM metrics.

0.4 Failure modes of KIN

If the training data lack enough specific scene (e.g., the sky in Kyoto dataset),
KIN will be inferior to TIN (see Fig. S4).



4 Ho. et al.

(a) Source (b) Patch-wise IN

(c) TIN (d) KIN

Fig. S4. Failure modes. KIN will be inferior to TIN if training data lack enough
specific scene.
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Fig. S5. H&E-to-EGFR stain transformation results on Glioma training set
(7,755× 7,109 pixels) generated by different frameworks with IN, TIN, and KIN lay-
ers. Red arrows indicate tilting artifacts; green arrows indicate over/under-colorizing.
CUT+KIN achieved the best performance. Zoom in for better view.
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Fig. S6. H&E-to-EGFR stain transformation results on Glioma testing set
(8,078× 8,078 pixels) generated by different frameworks with IN, TIN, and KIN
layers. Red arrows indicate tiling artifacts; green arrows indicate over/under-colorizing.
CUT+KIN achieved the best performance. Zoom in for better view.

Fig. S7. Image-to-image translation results on Kyoto summer2autumn
training set (3,456× 5,184 pixels) generated by different frameworks with IN,
TIN, and KIN layers. Red arrows indicate tilting artifacts; green arrows indicate
over/under-colorizing. CUT+KIN achieved the best performance. Zoom in for better
view.
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Fig. S8. Ablation study for kernel types on three ANHIR subdatasets. Con-
stant and Gaussian kernels with the size of 1, 3, 7, 11, and ∞ are applied to elucidate
the effect of KIN module. When kernel size is set to 1, the KIN module will operate in
a manner of patch-wise IN, whereas it would be like TIN when kernel size is set to ∞.
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Fig. S9. Ablation study for kernel types on Glioma and Kyoto sum-
mer2autumn datasets. Constant and Gaussian kernels with the size of 1, 3, 7, 11,
and ∞ are applied to elucidate the effect of KIN module. When kernel size is set to 1,
the KIN module will operate in a manner of patch-wise IN, whereas it would be like
TIN when kernel size is set to ∞.


