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Abstract

Feature matching and finding correspondences between endoscopic images

is a key step in many clinical applications such as patient follow-up and genera-

tion of panoramic image from clinical sequences for fast anomalies localization.

Nonetheless, due to the high texture variability present in endoscopic images,

the development of robust and accurate feature matching becomes a challenging

task. Recently, deep learning techniques which deliver learned features extracted

via convolutional neural networks (CNNs) have gained traction in a wide range

of computer vision tasks. However, they all follow a supervised learning scheme

where a large amount of annotated data is required to reach good performances,

which is generally not always available for medical data databases. To over-

come this limitation related to labeled data scarcity, the self-supervised learning

paradigm has recently shown great success in a number of applications. This

paper proposes a novel self-supervised approach for endoscopic image matching

based on deep learning techniques. When compared to standard hand-crafted

local feature descriptors, our method outperformed them in terms of precision

and recall. Furthermore, our self-supervised descriptor provides a competitive

performance in comparison to a selection of state-of-the-art deep learning based

supervised methods in terms of precision and matching score.
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deep learning, image key-points matching.

1. Introduction

Bladder cancer is the sixth most common cancer and the ninth cancer caus-

ing mortality for men, and it is the fifteenth cancer causing mortality for both

sexes worldwide (Sung et al., 2020). Endoscopy remains the gold standard vi-

sual examination for detecting bladder cancer in its early stages. It consists

in inserting an endoscope (A lighted, tubular instrument) through the urethra

into the bladder. The doctor explores the bladder’s inner walls by navigating

the endoscope to scan the organ for lesions. Despite this being easy to perform,

the endoscopic examination has several limitations. The main one being the

very limited field of view, in addition to the reduced maneuverability inside the

bladder. Because bladder malignancy (e.g., lesions) is multi-focal and typically

spreads over larger areas than the endoscope field of view, lesion partitions are

divided across multiple video frames. As a result, this makes it time consuming

and difficult for the doctor to locate and determine the spatial distribution of

the lesions. Furthermore, finding an image of interest for diagnosis within a few

minutes of the sequence is also a tough task. An intuitive solution to these limi-

tations is to provide the doctor with a panoramic image of the clinical sequence

instead of the image sequence. In this case, the extraction of discriminative local

features for accurate image matching is a fundamental step in the construction

of a panoramic image.

Despite extensive research into panoramic image generation for endoscopy,

the development of a robust and accurate feature matching between endoscopic

images is particularly difficult due to the specificity of such images. In fact,

the texture of the inner surfaces of the bladder varies greatly between patients.

Endoscopic images are also typically reddish with a weak texture. This is in
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addition to the scarcity of data due to ethical concerns and the personal data

protection regulations.

There are three basic approaches to endoscopic image matching that are cur-

rently being used in the literature: motion-based methods, global image match-

ing methods, and local image matching methods. For motion based methods,

we can cite (Hernandez-Mier et al., 2010; Sharib et al., 2013; Sharib et al., 2016;

Chu et al., 2020; Zenteno et al., 2022) who used optical flow based approaches to

find key-point correspondences between bladder images. Despite their efficiency

in registering consecutive image frames, motion-based matching methods are

still sensitive to challenging situations such as lighting changes, weak textures,

and large view-point changes. As a result of this, these methods are limited to

matching consecutive image frames and cannot be used for images separated in

time, such in case of patient follow-up or the closing loop in a same endoscopic

video.

Global image matching strategies ensure the global coherence of the obtained

panoramic images and penalize discontinuities by using the entire image con-

tent (e.g., contours, color, graph, etc.) and specific smoothness constraints. For

example, Miranda-Luna et al. (Miranda-Luna et al., 2008) proposed a mosaic-

ing algorithm for endoscopic images based on the maximization of the mutual

information using the entire image frames. Weibel et al. (Weibel et al., 2012)

used instead graph-cuts to minimize a global energy function computed on the

entire image pixels. Global matching methods are memory-intensive and time-

consuming since the energy function is usually computed over the entire image

pixels. Furthermore, they are better suited to consecutive image matching with

minor changes as they are sensitive to the initial geometric transformation be-

tween the input images. It is also worth noting that the strong assumption on

the planarity of organ surfaces is not usually verified.
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Local image matching methods, on the other hand, find the correspondence

between image key-points by extracting discriminative features from local im-

age data. These methods are computationally efficient, making them suitable

for real-time applications. They usually begin by detecting image key-points

and then compute a feature vector for each detected key-point using descriptor

techniques such as SIFT (Lowe, 2004) and SURF(Bay et al., 2008).

Deep learning techniques have gained traction in the field of local feature

description and matching in the recent years. In the domain of endoscopy, to

the best of our knowledge, no previous work has been proposed to build dis-

criminative local feature descriptors for endoscopic images using deep learning

techniques. Nevertheless, we can find deep learning studies focusing on other

purposes like endoscopic images denoising (Zou et al., 2019), polyp classifica-

tion (Kim et al., 2021), and bleeding zone semantic segmentation (Ghosh et al.,

2018). They are all based on supervised learning schemes that rely heavily on

the availability of annotated data.

Unsupervised learning, in contrast to supervised learning, does not require a

labeled dataset, which increases its popularity, particularly in the medical imag-

ing field (Li et al., 2020; Chen & Frey, 2020). Recently, the research community

has become increasingly interested in self-supervised learning, a new subset of

unsupervised methods. Basically, it consists in training neural networks with

automatically generated labels known as pseudo labels (Jing & Tian, 2019), and

without any manual annotation. Self-supervised learning paradigm contributes

to overcome the barrier of labeled data scarcity by leveraging the availability of

large amounts of unlabeled data.

In this article, we deal with local image matching methods to find corre-

spondences between image key-points for the purpose of generating panoramic

images in endoscopy. In particular, we propose the first self-supervised approach
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for endoscopic image key-points matching based on deep learning techniques.

We designed a convolutional neural network (CNN) as a local feature descriptor

to transform patches extracted around key-points into a discriminative embed-

ding space for an effective key-points matching. Our main contribution is the

design of a training procedure for the proposed CNN model without need of any

labeled data. Indeed the training requires only raw video frames. The source

code related to this study is released on https://github.com/abenhamadou/Self-

Supervised-Endoscopic-Image-Key-Points-Matching.git

The remainder of this paper is organized as follows: First, an overview on

existing local handcrafted and learning-based feature descriptors as well as their

applications in the medical field is provided in section 2. Then, section 3 presents

the proposed self-supervised endoscopic image key-points matching approach.

After that, experiments and results are presented and discussed in section 4.

Finally, section 5 gives some conclusions and perspectives.

2. Related works

In this section, we provide an overview on state-of-the-art local feature de-

scriptors, focusing on the trendy shift from handcrafted to deep learning based

feature descriptors. Furthermore, we discuss the use of local feature descriptors

in the medical field, emphasizing the labeled data scarcity issue.

2.1. Handcrafted Local Feature Descriptors

According to (Ma et al., 2021), handcrafted local feature descriptors can be

classified into floating and binary descriptors based on the discriminative vector

type. One of the well-known floating descriptors is SIFT (Lowe, 2004), origi-

nally calculated based on image gradients. Inspired by SIFT, (Bay et al., 2008)

proposed later the SURF descriptor which is much faster than SIFT. SURF used

integral images and Haar wavelet responses in a circular neighborhood around
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the SURF key-points, which allows to reduce computational costs and speed up

the descriptor extraction. (Alcantarilla et al., 2012) proposed KAZE algorithm

whose detection pipeline is similar to SURF. However, it used the MU–SURF

method (Agrawal et al., 2008) to create a non-linear scale space after apply-

ing a non-linear diffusion filter. Despite the efficiency of floating descriptors,

they are still not suitable for real time applications because of their important

computational time. Hence, the rise of binary descriptors. The main benefits

of these descriptors are their ease of implementation, simplicity and efficiency.

The key idea behind is to generate a binary feature vector by comparing and en-

coding the intensity of each pixel relatively to its neighbors (Pietikäinen et al.,

2011). Among these methods, we cite BRIEF (Calonder et al., 2010), ORB

(Rublee et al., 2011), an extended version of BRIEF with rotation invariance

and AKAZE (Alcantarilla et al., 2013), an accelerated method of KAZE algo-

rithm. Another example is BRISK (Leutenegger et al., 2011), which exploits a

concentric circles pattern and presents an optimization of BRIEF and ORB.

When it comes to the medical context, handcrafted local feature descriptors

are widely used for image matching (Saha et al., 2016; Du et al., 2011). In

(Hernandez-Matas et al., 2017), the authors proposed a retinal image registra-

tion method which combined local feature descriptors with vascular bifurcation.

They tested SIFT, SURF and Harris-PIIFD (Chen et al., 2010) as feature de-

scriptors and showed that the combination of SIFT with vascular bifurcations

outperforms other combinations. For retinal image mosaicing, Jalili et al. (Jalili

et al., 2020) used SIFT descriptor to extract local features and then selected opti-

mal features based on a Voronoi diagram. In fluorescence endoscopy, Behrens et

al. (Behrens et al., 2011, 2009) proposed a real-time bladder mosaicing method

based on SURF feature descriptor. Du et al. (Du et al., 2011) designed a

SIFT-based zone matching approach for endoscopic images. This approach im-
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proves matching results especially with regards to computing time. Also, the

work of (Liu et al., 2022) proposed an improved feature point pair purification

algorithm for endoscopic image matching based on the SIFT descriptor. In the

same vein, Zhang et al. (Zhang et al., 2022) proposed to improve the standard

ORB-oriented algorithm using the Gaussian Pyramid method for endoscopic

image mosaicing purposes. It should be noted that the design of a suitable local

feature descriptor plays a critical role in this family of methods.

2.2. Deep Learning based Local Feature Descriptors

Among the first successful learning-based image matching approaches, we

can cite MatchNet (Han et al., 2015). It is presented as the combination

of two networks: the first one is the feature extracting network, inspired by

Siamese network, and the second one is the learned metric network composed

of 3 fully connected layers. DeepDesc (Simo-Serra et al., 2015) proposed a

Siamese network with L2 distance trained by selecting only hardest pairs sam-

ples to match in order to increase the descriptor performance. Similarly, in

(Tian et al., 2017), the authors proposed a network named L2-Net with seven

convolutional layers that outperformed traditional descriptors, including SIFT.

GeoDesc (Luo et al., 2018b) proposed to learn local descriptors by including ge-

ometry constraints from multi-view reconstructions, achieving thus significant

improvements in terms of loss computation, data sampling and data generation

during the learning process. In designing SOSNet, Tian et al. (Tian et al.,

2019) used second-order similarity into the learning of local descriptors, achiev-

ing state-of-the-art performance on several standard benchmarks for different

tasks. Later, the same authors (Tian et al., 2020) proposed HyNet, a modi-

fied version of L2-Net where all batch normalization layers are replaced by the

off-the-shelf Filter Response Normalization (FRN) layers, which outperforms

previous architectures on standard benchmarks.
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Recently, a dense feature descriptor namely DGD-net is designed in (Liu

et al., 2021) where the training is guided by the reliability of the descriptor in

matching. DGD-net proposes a backtracking method to enhance the localization

accuracy. The authors of (Zhou et al., 2021) designed Patch2Pix in a detect-to-

refine manner, which begins with establishing correspondences between patches

and then regresses pixel correspondences according to matched patches using

a local search. A novel local descriptors extraction method named CNDesc is

introduced in (Wang et al., 2022) where cross normalization technology is used

as an alternative to the common L2 normalization. An efficient feature reuse

backbone is designed providing the network with a strong descriptive ability and

an image-level distribution consistent loss is used for regularization to enhance

the robustness and stability of local descriptors.

Recently, in (Wiles et al., 2021), authors proposed a new image matching

approach using a co-attention module to condition learned descriptors on both

images and a distinctiveness score computed to select the best matches at test

time, leading thus to an improved correspondence between image pairs under

challenging conditions. Sarlin et al. (Sarlin et al., 2020) designed SuperGlue,

an attention-based graph neural networks for local feature matching based on

transformer (Vaswani et al., 2017). Inspired by SuperGlue, LoFTR (Sun et al.,

2021) used self and cross attention layers to extract local feature descriptors

and match images. It used a linear transformer to reduce the computational

complexity.

Motivated by this success of deep learning techniques in various computer

vision tasks, the medical imaging community has investigated the transition

from handcrafted based systems to learning based systems (Khan & Yong, 2016;

Liu et al.). However, this transition has been gradual over the past few years. In

(Khan & Yong, 2016), Khan et al. presented a comparison between handcrafted
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and CNN features in medical image modality classification based on local image

features. They showed that handcrafted features outperform CNN features.

This finding was explained by the data intensive nature of the used architecture

which make it not enough discriminant when using a limited amount of training

data. Luo et al. (Luo et al., 2018a) have shown also that CNNs require a

relatively large amount of training data to achieve high accuracy. However, the

scarcity of labeled data especially in the medical field is a major bottleneck for

training such models.

Transfer learning from natural images has been widely used in medical

imaging as one of the potential options to mitigate this inherent data issue

(Liu et al., 2020; Menegola et al., 2017; Shan et al., 2020). Tajbakhsh et al.

(Tajbakhsh et al., 2016) proposed to fine-tune adequately a pre-trained network

for colonoscopy frame classification. Promising results were obtained despite the

difference between medical images and ImageNet dataset (Deng et al., 2009) on

which the network has been trained. Several studies show also that transfer

learning can improve performances in medical applications (Alzubaidi et al.,

2020; Li et al., 2017; Morid et al., 2021).

Most recently, self-supervised learning has gained popularity as it is a solu-

tion to deal with the problem of scarce labeled data. This method has shown a

great success in several applications (Misra & Maaten, 2020; Jing & Tian, 2020;

Goyal et al., 2019), but less attention in medical image analysis (Spitzer et al.,

2018; Bai et al., 2019; Zhuang et al., 2019; Jing & Tian, 2019). Azizi et al.

(Azizi et al., 2021) showed that self-supervised strategy, with unlabeled medical

images, significantly outperforms transfer learning strategy.
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3. Proposed approach

In this section, we first outline the general principle of our proposed match-

ing method for determining the correspondence between endoscopic image key-

points. Then we go over our model architecture in detail, as well as the training

steps.

3.1. Image matching approach

The general principal of our image matching approach is depicted in Fig-

ure 1. Let It and It+1 be two consecutive endoscopic images to be matched.

Image key-point detector is applied to the input two images to extract Nt and

Nt+1 key-points located in It and It+1 respectively. We then crop around each

key-point a squared patch of 128 × 128 pixels yielding in two sets of patches

{P t
i }i=1:Nt

and {P t+1
j }j=1:Nt+1

. The aim of the remaining processing is to find

the correspondence between these two sets of patches. To do this, we use a CNN

to transform each patch into a more discriminative representation space, and

then solve the matching problem by minimizing the Euclidean distance between

patches in that embedding space following equation 1. In 1, f(.) represents

the CNN transformation of a given patch, ĵ ∈ [1 : Nt+1] is the optimal index

matching the i-th patch from It, and ‖.‖2 stands for the Euclidean distance.

ĵ = argmin
j

∥∥f(P t+1
j )− f(P t

i )
∥∥
2

(1)

3.2. CNN model architecture

The architecture of our network is inspired by L2-Net (Tian et al., 2017).

It consists of seven convolutional layers with 128-D feature vector output. As

shown in Figure 2, the first six convolution layers have small kernel size (3× 3)

and are followed by batch normalization and ReLU. The last layer has a kernel
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CNN
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Figure 1: Overview of the matching process.

size of (8×8) and is followed only by batch normalization. Batch normalization

is considered only for CNN training phase. The number of filters by convolution

layer is respectively {16, 16, 32, 64, 128, 128, 128}. The padding is set to 1 for all

layers (except in the last layer). We used convolution stride equals to 2 instead

of pooling layers.

Figure 2: Network architecture.

3.3. CNN model training

In our approach, the CNN model training phase is critical because it must

produce a model with high discriminative capability without using labeled data.

A typical supervised-learning scheme would rely entirely on key-point matching
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ground truth in addition to the input video frames for training. Instead, we

designed a self-supervised training approach based on a triplet loss architecture

that only requires raw endoscopic video frames. Indeed, triplet loss, introduced

in (Schroff et al., 2015) as FaceNet model, has been successfully used in several

tasks (Grati et al., 2020; Harvill et al., 2019; Kumar et al., 2021). As depicted

Anchor

Positive

Negative

N p   

A A

N

p   

m m

TRAINING

Triplet loss Triplet loss

Embedding

 space

T( ).

Figure 3: Overview of the triplet loss training approach. Anchor, positive and negative
patches are fed to the CNN and trained so that the anchor-positive distance is minimized and
the anchor-negative one is maximized in the feature space. As a result, a more discriminative
embedding space is learned.

in Figure 3, the training requires a triplet input image patches. For sake of

simplicity, we note them (Pi, P
+
i , P

−
i ) where Pi is the anchor patch, P+

i is

the positive patch (has a similar appearance as Pi) and P−i is the negative

patch. An anchor patch is obtained by cropping a window around a given key-

point. Its corresponding positive patch is generated by applying a homography

transformation T (.) to the anchor patch. T (.) is a simulated transformation

that often exists in endoscopic images. The negative patch could be any other

patch selected from the same endoscopic image.

The method of selecting positive and negative patches to form triplets is

critical, as random selection does not always produce good results. Various

triplet selection approaches have been proposed in several studies (Hermans

et al., 2017; Cui et al., 2016; Yu et al., 2018). In our case, we use the same

strategy proposed in recent HardNet method (Mishchuk et al., 2017). It aims
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at minimizing the distance between anchor and positive patches while maximiz-

ing the distance between the anchor and the nearest negative patch. The loss

equation is defined as follows:

L =
1

Nt

Nt∑
i=0

max
(
0,m+ d(f(Pi)− f(P+

i ))−min(d(f(Pi)− f(P+
jmin

)), d(f(Pkmin
)− f(P+

i ))
)

(2)

where d(f(Pi), f(P+
i )) =

√
2− 2f(Pi)f(P+

i ), P+
jmin

is the second nearest neigh-

bor to Pi after P+
i , Pkmin

is the nearest non-matching anchor to P+
i , m is a

margin scalar, jmin and kmin are defined respectively in equations 3 and 4.

jmin = argmin
j=1..Nt,j 6=i

d(f(Pi)− f(P+
j )) (3)

kmin = argmin
k=1..Nt,k 6=i

d(f(Pk)− f(P+
i )) (4)

4. Experiments and results

The evaluation of the proposed image key-points matching is performed

in several stages to study different aspects of the approach. The evaluation

experiments are conducted in three experimental sets:

• Intrinsic evaluation of our method: we assess the robustness of our method

to typical geometric transformation variations between frames such as view

point, scale, and blurring changes. In addition, we back up our HardNet

loss choice by evaluating different triplet loss variants.

• Comparison to state-of-the-art local feature descriptor methods: we con-

sider both handcrafted and deep learning methods.

• Use-case of endoscopic image mosaicing: we qualitatively demonstrate the

efficiency of our image key-points matching in the use case of endoscopic
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image mosaicing.

Before delving into the details of these experiments, we will first present our

dataset, and go over our training settings.

4.1. Database description

To generate our training database, five human bladder endoscopic videos

from different patients acquired with the same endoscope have been used. Sam-

ples of such images are shown in Figure 4. In all of the conducted experiments,

we use 4 out of the 5 videos for training and keep the remaining video for

validation in a cross-validation scheme.

Figure 4: Samples of clinical endoscopic images taken from different patients.

We first convert raw data into gray-scale images and enhance contrast based

on CLAHE method. Comes after key-points detection and anchors cropping. As

explained in the previous section, positive samples are obtained after applying

any appropriate transformation to endoscopic frames. In our case, we applied

rotations with small angles (θ ∈ [5, 10, 15] degrees), scaling with small scale

factor (Sf = [0.9, 0.95, 1.05, 1.1, 1.15]) and/or small translations in both axes
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(e.g., 8 pixels). In total, we created a training dataset composed of about 20k

patch.

4.2. Training settings

The database was trained using Stochastic Gradient Descent with a batch

size of 128 and an initial learning rate of 0.001 and a momentum set to 0.9.

These are the final hyperparameters we considered after several runs, with the

goal of improving convergence speed. The model converges in about 28 hours

of training on a NVIDIA Titan V GPU with 12GB memory. The margin m of

equation 2 is experimentally fixed to 1. The matching between 576× 720 image

pairs completes in less than 1 second. In our application context, the run-time

is less important because panoramic image construction is typically done offline.

4.3. Intrinsic evaluation of the proposed method

4.3.1. Robustness to image transformation variations

To evaluate the robustness of the proposed local feature matching method

against image transformation variations, we applied various combinations of ge-

ometric transformation to each image from the validation video in order to assess

the robustness of our method against specific transformations (i.e., viewpoint

change, scale change, blurring). Performances have been evaluated in terms of

recall with regards to precision (Mikolajczyk & Schmid, 2005). The number of

correct and false matches are determined by the projection error PE instead of

the overlap error used in (Mikolajczyk & Schmid, 2005). The projection error

PE is defined as the Euclidean distance calculated between the matched key-

points and the ground truth key-points (correct matches). In our experiments,

we fixed experimentally the projection error to PE = 5. We also report the

obtained results for well-known handcrafted descriptors (i.e., AKAZE, KAZE,

SURF, SIFT, ORB and BRISK) to put our results into perspective. It is worth
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noting that since each original handcrafted descriptor is built on top of its own

key-point detector, we decided to output the results for each of these detectors

for a fair comparison. As an example, when applied to key-points detected with

the code provided in the AKAZE implementation, we refer to our method as

ProposedAKAZE .

4.3.2. Robustness to viewpoint changes

To simulate typical viewpoint changes in endoscopic videos, we estimate

geometric transformations between consecutive frames in clinical data yielding

in a bench of homography 3 × 3 matrices. This estimation is performed in

a standard registration scheme based on key-points detection, matching, and

RANSAC algorithm (Fischler & Bolles, 1981). We applied a set of 10 randomly

selected pre-computed transformations to each image from the validation endo-

scopic videos. Then, for each pair of images (input and transformed images),

we detect key-points, extract local features and match descriptors according to

the baseline to evaluate. The obtained recall and precision results are shown in

Figure 5.

Figure 5 shows that the proposed descriptor outperforms the handcrafted

ones. Indeed, the maximal recall value is reached for a precision value of about

99% for ProposedAKAZE setting. We notice also that AKAZE is outperforming

the other handcrafted descriptors.

4.3.3. Robustness against scale changes

Considering that only small variations occur generally between two con-

secutive frames in endoscopic videos, we do not need to evaluate large scale

changes. We evaluated the performance of the different descriptors only against

small pre-defined scale factors {0.9, 0.95, 1, 1.05, 1.1, 1.15}. The result relative to

the sensitivity of the proposed descriptor to scale changes is depicted in Figure
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Proposed

AKAZE
Proposed

KAZE
Proposed
SIFT

Proposed

SURF
Proposed

ORB

Proposed
BRISK

AKAZE

KAZE

SIFT

SURF

ORB

BRISK

Figure 5: Recall/precision curves computed for all descriptors when varying viewpoints. The
proposed descriptor outperforms the handcrafted ones, reaching the maximal recall value for
a precision rate of 99% (when AKAZE is used as detector).

6

Figure 6 highlights that handcrafted descriptors are more sensitive to scal-

ing factor changes than the proposed descriptor. Especially, for ProposedORB ,

ProposedAKAZE , ProposedKAZE , and ProposedSURF configurations, the preci-

sion of the proposed descriptor remains high (almost more than 90%) for scaling

factors in the range of [0.9, 1.1].

4.3.4. Robustness against blurring

Endoscopic videos are often captured with blur due to several factors such

as small hand vibration, bad choice of lens focus, fast movement of endoscopic

camera with a low frame rates, etc. Therefore, we have to quantitatively measure

the descriptors efficiency regarding the blur artifact. Thus, we blurred the input
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Proposed

AKAZE
Proposed

KAZE
Proposed
SIFT

Proposed

SURF
Proposed

ORB

Proposed
BRISK

AKAZE

KAZE

SIFT

SURF

ORB

BRISK

Figure 6: Precision rates computed for different scale factors. The proposed descriptor out-
performs the handcrafted ones, reaching higher precision rates, showing thus less sensitivity
to scaling changes.

video frames by applying various convolution kernels (3×3, 5×5, 10×10, 15×15).

Figure 7 illustrates quantitatively how blur affects matching precision. Com-

pared to handcrafted descriptors, the proposed descriptor is the least sensitive

to blur.

4.3.5. Comparison of triplet loss variants

In here, we consider different triplet Loss functions: the HardNet Loss

(Mishchuk et al., 2017), the standard Triplet Loss with a fixed margin (Schroff

et al., 2015), and the adaptive margin triplet Loss (Wang et al., 2018). The

HardNet and the triplet loss functions are tested with a same margin m = 1.

Similarly to (Mishchuk et al., 2017), we evaluate the different losses in terms of

precision which is defined as the ratio of correct matches over the total number

of matches and matching score which is the ratio of correct matches over the

total number of detected key points. The obtained comparison results are illus-
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AKAZE
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Proposed
SIFT

Proposed

SURF
Proposed
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Proposed
BRISK

AKAZE
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SIFT

SURF
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BRISK

Figure 7: Precision rates computed with different blur created with different kernel sizes. The
proposed descriptor is the least sensitive to blur.

trated in Table 1 showing the outperformance of HardNet loss which explains

our decision to select it for our CNN model training.

4.4. Comparison to state-of-the-art local feature descriptor methods

There is no publicly available benchmark for evaluating endoscopic image

matching at the moment. We decided in these experiments to annotate the

frames of one validation video to cover more realistic transformations between

Table 1: Comparison of three different loss functions: HardNet Loss, Triplet Loss and the
adaptive margin triplet Loss in terms of precision and score matching in %. HardNet loss
shows better performance.

Precision Matching Score
HardNet Loss 99.01 80.36
Triplet Loss 95.80 79.13
Adaptative margin triplet Loss 92.19 80.34
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consecutive frames. The annotation is carried out as follows. We first detect

key-points in all the video frames, and then we manually annotate the correspon-

dence between key-points with a customized tool yielding over 1000 annotated

image pairs.

4.4.1. Comparison to state-of-the-art Handcrafted descriptors

These experiments are being carried out to consolidate the results previously

obtained in the intrinsic validation of our method, demonstrating its superiority

over all well-known handcrafted descriptors. In Figure 8, we depict the matching

results between two endoscopic frames. Green and red lines refer respectively

to correct and wrong matches. Compared to all the used descriptors, we can

observe that a larger number of correct matches (green lines) is achieved with

our approach.

For quantitative evaluation, we report the obtained matching performances

in terms of recall and precision in Figure 9.

From Figure 9, we can observe that the maximal recall rate could be achieved

for a precision rate of almost 98% when our descriptor is paired with SURF or

KAZE. However, when handcrafted descriptors are used, the best recall value

could be obtained for a maximal precision rate of 88% (in the case of SURF). A

trade-off between precision and recall should be undertaken to choose the best

descriptor.

4.4.2. Comparison to deep learning based supervised methods

As previously stated, no benchmarking for endoscopic image key-points

matching exists in the literature. Nonetheless, to put our results into per-

spective, we compare the performance of our descriptor to the most recent

state-of-the-art methods for key-point matching based on supervised learning:

SosNet (Tian et al., 2019), SuperGlue (Sarlin et al., 2020), HyNet (Tian et al.,

20



KAZE Proposed
KAZE
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AKAZE

SIFT Proposed
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SURF Proposed
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BRISK Proposed
BRISK

ORB Proposed
ORB

Figure 8: Qualitative evaluation of the proposed descriptor. Green and red lines refer respec-
tively to correct and wrong matches. The best matching quality (number of green lines) is
reached with the proposed descriptor.

2020), and CNDesc (Wang et al., 2022). We used 800 image pairs for training

and left the remaining 200 images for testing.

Both SuperGlue and CNDesc originally require first to extract a set of fea-

ture key-points from the training and testing images. We followed the same

procedure to train SuperGlue and CNDesc on our dataset. In our experiments,
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Figure 9: Quantitative evaluation of the proposed descriptor on real clinical dataset. The
maximal recall rate could be achieved for a precision rate of almost 98% when our descriptor
is used with SURF or KAZE detectors (i.e., ProposedSURF and ProposedKAZE , respectively.

feature key-points were detected using SIFT method as we did not observe any

significant performance differences when choosing different key-point detectors.

On the other hand, training the HyNet and SosNet models as well as our pro-

posed model requires a set of extracted patches based on the localization of

image key-points. To this end, the training patch dataset is extracted around

the SIFT image key-points that have already been detected. The training for

all five competing methods is therefore based on the same key-points.

Comparative results in terms of precision and matching score metrics are

summarized in Table 2. Despite being the most recent work, CNDesc shows the

lowest results and seems to be the least suitable to endoscopic videos. The other

methods achieved competitively high performances. However, the fundamental

difference between our method and the other competing ones is still the training

mode and our ability to adapt automatically to the large texture variability in

endoscopic videos. Indeed, we remember that in our case the training triplets are
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automatically generated which means that a fine-tuning step could be carried

out whenever needed on new endoscopic videos without any annotation.

Table 2: Comparison between our method and the most recent state-of-the-art methods for
key-point matching based on supervised learning in terms of precision and matching score
reported in (%). We notice that all the obtained results are very comparable.

Precision Matching Score
SosNet (Tian et al., 2019) 99.95 91.60
SuperGlue (Sarlin et al., 2020) 99.17 92.81
HyNet (Tian et al., 2020) 99.96 90.29
CNDesc (Wang et al., 2022) 98.37 90.51
Proposed 99.89 92.56

4.5. Use-case of endoscopic image mosaicing

To validate the effectiveness of the proposed descriptor in generating panoramic

images, we feed the obtained matching results to a mosaicing system based on

RANSAC algorithm (Fischler & Bolles, 1981). We construct a panoramic image

with a set of 400 consecutive frames from bladder endoscopic video, as shown

in Figure 10.

The obtained mosaic image is coherent and we can observe clearly the tex-

ture continuity which is a good indicator proving the precision of the images

alignment. This experiment illustrates that the proposed descriptor provide re-

liable and robust matching features that can be utilized to construct panoramic

images for endoscopic videos. However, a strong blur effect or large scale change

can perturb the registration process and cause discontinuities in the resulting

mosaic image. To overcome this problem, we can extend the mosaic image

system with an artifact detection algorithm.

5. Conclusions and perspectives

Despite the success of deep learning approaches in a variety of computer

vision tasks, a lack of labeled data remains a major barrier to the use of neural
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Figure 10: A 1258 × 1436 panoramic image constructed from a 400 consecutive frames from
human bladder endoscopic video. The obtained mosaic image is coherent and we can observe
clearly the texture continuity which is a good indicator proving the precision of the images
alignment.

networks in medical applications. To address this issue, we proposed a self-

supervised approach for endoscopic image matching in this paper, which is based

on the automatic generation of a pseudo labeled data-set. As a result, our

method allows us to train a local descriptor network using only endoscopic

images, with no need for labeled data or manual annotation. The proposed self-

supervised approach was evaluated and compared to different handcrafted image

feature descriptors and also to recent deep learning based supervised methods:

SosNet, SuperGlue, HyNet and CNDesc.
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The experimental results proved the robustness of our descriptor against

viewpoint, scaling factor, and blurring changes. Moreover, compared to the

supervised state-of-the-art deep learning based methods, our approach achieves

competitive performance in terms of precision and matching score while using

unlabeled patches in a self-supervised training mode. For future works, we

would like to investigate further our approach on endoscopic videos of other

organs such as small intestine, large intestine and stomach. In addition, we

can use different endoscopy system such as capsule endoscopy or blue laser

endoscopy system.
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