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Abstract—The event camera asynchronously produces the
event stream with a high temporal resolution, discarding redun-
dant visual information and bringing new possibilities for moving
object detection. Nevertheless, the existing object detectors cannot
make the most of the spatial-temporal asynchronous nature and
high temporal resolution of the event stream. For one thing,
existing methods fail to consider objects with different velocities
relative to the event camera’s motion, resulting from the global
synchronized time window with the whole spatial slice. For
another, most of the existing methods rely on heavy models
and boost the detection performance with low frame rates,
failing to utilize the high temporal resolution characteristic of
the event stream. In this work, we propose a motion robust
and high-speed detection pipeline which better leverages the
event data. First, we design an event stream representation
called Temporal Active Focus (TAF), which efficiently utilizes the
spatial-temporal asynchronous event stream, constructing event
tensors robust to object motions. Then, we propose a module
called the Bifurcated Folding Module (BFM), which encodes the
rich temporal information in the TAF tensor at the input layer of
the detector. Following this, we design a high-speed lightweight
detector called Agile Event Detector (AED) plus a simple but
effective data augmentation method, to enhance the detection
accuracy and reduce the model’s parameter. Experiments on two
typical real-scene event camera object detection datasets show
that our method is competitive in terms of accuracy, efficiency,
and the number of parameters. By classifying objects into
multiple motion levels based on the optical flow density metric, we
further illustrated the robustness of our method for objects with
different velocities relative to the camera. The codes and trained
models are available at https://github.com/HarmoniaLeo/FRLW-
EvD.

Index Terms—Event Camera, Object Detection, Event Repre-
sentation, Fast-moving Objects, Light Weight Detector

I. INTRODUCTION

Real-world object detection tasks have extremely high re-
quirements on the detection speed and the robustness of
detectors for bad weather, extreme lighting conditions, and
fast-moving objects. Autonomous driving is one of its typical
application scenarios which is demanding for safety and
robustness. Therefore, diverse sensors are leveraged to obtain
robust detection under various conditions. Among them, tradi-
tional frame-based RGB cameras [1], [2] are used to provide
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rich semantic and texture information about the surroundings.
The LIght Detection And Ranging (LIDAR) sensor-based
object detectors [3]–[6] are employed to compensate for RGB
cameras’ failure under extreme lighting conditions. In addition,
the millimeter-wave radar is utilized to enhance the detection
performance under adverse weather conditions [7]. Despite
these progresses, none of these sensors are particularly good at
seeing fast-moving objects [2], [8] (e.g. the sudden appearing
pedestrian in front of a car), thus degrading the detection
accuracy, which leads to a safety hazard.

As a new type of vision-based sensor [9], the event camera
has many advantages, including high temporal resolution, large
dynamic range, and reduction of redundant information [10]–
[13]. Benefiting from these properties, event cameras have
great potential for applications in scenarios where most sensors
(e.g. RGB camera, LIDAR, and millimeter-wave radar) are
subject to motion blur and fast-moving objects, with very low
energy consumption and small data storage costs [14], [15].

So far, there have been some works that apply event cameras
to object detection tasks, mainly in the field of autonomous
driving [16]–[18]. The contributions of the event cameras
to the field are their ability to supplement other sensors,
provide concurrent streams of temporal contrast events, and
offer several advantages over traditional cameras.

Among the works, the methods with leading accuracy levels
(e.g., YOLE [19], RED [20], and ASTMNet [21]) follow the
paradigm of a global time window (cuboid-shaped shadow
region in Fig. 1) for event representation and a deep neural
network-based object detector with large amounts of param-
eters to boost detection accuracy, their general structure is
shown in Fig. 1. For example, the state-of-the-art ASTM-
Net [21] deeply explores this paradigm by adaptively adjusting
the duration of the global time window and leveraging the
recurrent-convolutional architecture.

Despite the exploration of adaptive and asynchronous tem-
poral sampling, there still exist two main drawbacks in existing
methods, namely the global time window and the unsatis-
factory running speed [19]–[24]. Firstly, the asynchronous
exploration in existing methods is limited by the global time
window, which maintains the whole spatial slice when ad-
justing the temporal duration. Hence, existing methods cannot
take into account objects with different velocities relative to
the event camera. When there are multiple objects in the
field of view at the same time, a long time window may
lead to the occurrence of motion blur for fast-moving objects,
while a short time window may be unable to gather enough
information for slow-moving objects. Secondly, current object
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Fig. 1: Structure of our approach and comparison with pre-
vious approaches [20]–[22], [24]. The TAF, BFM, and AED
stand for the temporal active focus representation, bifurcated
folding module, and agile event detector, respectively. S*
denotes the semantic dimension encoded via the BFM from
the temporal dimension. Unlike previous methods, our TAF
approach uses an asynchronous approach to sample the event
stream and uses BFM to extract semantics from the temporal
dimension when constructing the representation tensor. Our
AED detector is also more lightweight.

detectors require a large number of model parameters to
achieve high accuracy, which implies a large computational
burden and low inference speed. Applying those algorithms to
event data does not match its high temporal resolution nature.

To solve the above problems, we propose a motion-robust
and high-speed object detection pipeline for event data. First
of all, we design a new event stream representation called
Temporal Active Focus (TAF), to conquer the drawbacks of
the global time window. It can better take advantage of the
asynchronous nature of event data, spatially and temporally.
By asynchronously sampling the Event Measurement Field
[25] in a low computationally demanding manner, it constructs
tensors containing different time range information on differ-
ent spatial and polar positions. Then, we design a module
called Bifurcated Folding Module (BFM), cooperating with the
TAF. The BFM encodes the rich temporal information in TAF
tensors before feeding the tensors into the detector, improving
the detection accuracy. Moreover, we propose a lightweight
detector called Agile Event Detector (AED), which has a
high inference speed that better matches the event data’s high
temporal resolution. In addition, to improve the generalization
capability of the detector, we propose to use a simple but
effective data augmentation strategy including random flipping
and cropping. The overall architecture of our approach and
comparison with the previous approach is shown in Fig. 1.

We choose two typical real-scene event camera object detec-

tion datasets for experiments: the complete Prophesee GEN1
Automotive Detection Dataset (GEN1 Dataset) [26] and the
Prophesee 1 MEGAPIXEL Automotive Detection Dataset [20]
with partial annotation (1 MEGAPIXEL Dataset (Subset)).
We measure the motion speed of objects in the datasets by
computing optical flow, and then we classify them into 5
different motion levels. Experiments show that compared with
the current state-of-the-art methods, our method has a far lower
number of parameters and much higher running speed while
retaining competitive accuracy. The experiments also show that
our method has high detection accuracy under all 5 motion
levels, which demonstrates motion robustness.

In summary, our contributions are as follows:
1) We propose an event stream representation method

called Temporal Active Focus (TAF), which better lever-
ages the asynchronous nature of event stream data,
spatially and temporally.

2) We design a module called Bifurcated Folding Module
(BFM) to encode the rich temporal information in the
TAF tensor.

3) We introduce a high-speed lightweight detector called
Agile Event Detector (AED) along with a simple but
effective data augmentation method.

4) We conduct experiments on two typical real-scene event
camera object detection datasets. The experimental re-
sults show that compared with the state-of-the-art meth-
ods, our method has a far lower number of parameters
and a much higher running speed. Moreover, our method
retains competitive accuracy and superior motion robust-
ness.

II. RELATED WORKS

In this section, we present related works, including event
representations and event-based object detection methods.

A. Event representations

Currently, representative approaches mainly process events
in batches into tensor-like representations as the input of the
object detection algorithms. Much research has demonstrated
that the statistics of the event representation tensors overlap
with those of natural images [17], [25], [27]. The event
representation methods are divided into two main categories:
the Event Spike Tensor representation [17], [27]–[29] and
the representation of emulating spike neural networks [19],
[27], [30]. Event Spike Tensor is a data representation method
based on discretizing the Event Measurement Field [25]. The
representation of emulating spike neural networks is to let the
spatial locations of newly occurring events always have larger
values in a tensor.

There are hyper-parameters to be specified in all the existing
event representation methods. The representative Event Spike
Tensor requires hyper-parameters including the measurement
function, the convolution kernel function, and timestamps
for executing convolutions. There are also some works [21],
[25] that explore the possibility of learning the measurement
function or the convolution kernel function directly from
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Fig. 2: Comparisons between the process of constructing Event Spike Tensors and the process of TAF at the nth detection.
t(n) is the timestamp of the nth detection. ∆τ is the sampling period. B is the temporal dimension length. N is the number
of events to sample.

the raw event stream, but the timestamps for performing
kernel convolutions are still hyper-parameters that need to
be specified. The representation of emulating spike neural
networks requires a global numerical transformation function
as the hyper-parameter to keep the values in the tensor in
a value range. The hyper-parameters determine the trade-off
between the globally fixed time window length and temporal
resolution. Therefore, the existing event representations cannot
take into account objects with different velocities relative to
the event camera.

Inspired by a queue-based event representation method [31],
we propose to explore its possibility in object detection tasks.
We believe that its ability to asynchronously sample the event
stream data at each spatial and polar position is significant to
the object detection tasks. In our work, we propose a new kind
of event stream representation method, solving the problem via
asynchronously sampling the Event Measurement Field [25]
to adjust the time window length and temporal resolution on
each spatial and polar position flexibly.

B. Event stream object detectors

Mainstream approaches use Convolutional Neural Networks
(CNN) with a large number of parameters to build object
detectors [1], [19], [22], [23], [32]. The main problems with
these methods are that they are not accurate, light, and fast
enough for event stream data object detection tasks. Dif-
ferent from these methods, some approaches use recurrent
convolutional neural network object detectors [20], [21] to
improve the accuracy. However, the memory mechanisms used
in the recurrent convolutional neural networks are not designed
according to the characteristics of the event stream data.
Therefore, those detectors are expensive to train and slow to
run. In our work, we design a high-speed lightweight detector

with competitive accuracy. Our detector is more suitable for
event stream data object detection tasks.

III. PROBLEM STATEMENTS

A paradigm for the event-based object detection task was
defined by Perot et al. [20]. It is briefly modified here to make
it more precise and to facilitate the discussion later on:
• Event stream data: for a camera with the picture size

height of H and width of W , its event stream data
is defined as E := {ei = (xi, yi, pi, ti)}i∈N, where
xi ∈ {0, 1, ...,W − 1} and yi ∈ {0, 1, ...,H − 1} are the
coordinates, pi ∈ {0, 1} is the polarity, ti ∈ [0, Tmax)
is the timestamp, Tmax is the maximum duration of the
event stream record.

• Annotation: B∗ := {b∗j = (xj , yj , wj , hj , lj , tj)}j∈N,
where xj ∈ R and yi ∈ R are the coordinates of the
upper left corner of a bounding box, wj ∈ R+ is the
width of the bounding box, hj ∈ R+ is the height of the
bounding box, lj ∈ {0, ..., L} is the category, tj is the
timestamp.

• Detection: D(S(E(n), t(n))), where D(.) is the detector,
S(.) is the event representation method, n ∈ {1, 2, ...}
means it is the nth detection on the event stream, E(n) :=
{ei}ti∈[0,t(n)) is the available event stream for the nth

detection, t(n) ∈ [0, Tmax) denotes the timestamp of the
nth detection.

The event representation methods are divided into two main
categories: the Event Spike Tensor representation [17], [27]–
[29] and the representation of emulating spike neural networks
[19], [27], [30].

The Event Spike Tensor methods can sample the Event
Measurement Field [25] with convolution kernel to repre-
sent rich information of the event stream. Among them,
the Event Volume [29] is a typical Event Spike Tensor. It



uses convolution kernel to sample events in the time win-
dow ti ∈ [t(n) − B∆τ, t(n)) at the nth detection, with a
sampling resolution inversely proportional to the sampling
period ∆τ ∈ R+ and a fixed temporal dimension length
B ∈ Z+. The Event Count Image [17], [27], on the other
hand, uses a deformable convolution kernel to sample the
recent N ∈ Z+ events. The kernel size and the time window
covered can therefore be dynamically adjusted according to the
frequency of events triggered within the recent event stream.
However, the globally synchronized characteristic in these
above representations has limitations. As illustrated in Fig. 2,
for spatial and polar locations that recently trigger events less
frequently, a short global synchronized time window cannot
aggregate enough information. On the contrary, for spatial and
polar locations that recently trigger events more frequently, a
long global synchronized time window leads to a decrease in
the temporal resolution, making the convolution kernel cover
excessive events, resulting in a loss of information.

The methods of emulating spike neural networks do not
apply a linear transformation to the Event Measurement Field,
but the value of each spatial location is adjusted by discrete
decisions during the event generation process. The generated
representation tensors always satisfy that spatial locations of
the recently generated events maintain larger values. There-
fore, this kind of method supports flexible nonlinear temporal
resolution adjustment. The surface of Active Events [27], [30]
is a typical example of the representation method of emulating
spike neural networks. It gives a 2D snapshot of the latest
timestamp of the events in the field of view. The elapse from
the timestamp of the nth detection ∆t ∈ R− is then mapped
to the value range (0, 1) with a numerical transformation eλ∆t,
where λ ∈ R+ is a hyper-parameter. Fig. 3 shows the mapping
when λ takes different values. It can be seen that under large λ,
the mapping gives the newly triggered events a larger temporal
resolution, while the information of events triggered further
than a threshold from now will hardly be retained. Therefore,
still, the Surface of Active Events can only consider events
in a certain time window. The length of the time window
can be increased by decreasing λ. However, on the other
hand, the temporal resolution will be decreased. Therefore,
since the hyper-parameter λ is globally applied, the Surface of
Active Events also faces the problem of globally synchronized
characteristics like the Event Spike Tensor methods.

Fig. 4 shows the visualization of different event represen-
tation tensors with different hyper-parameters. In summary, it
is hard to find a hyper-parameter that takes into account all
objects with different motion speeds relative to the camera in
the field of view at the same time.

IV. METHOD

This section introduces our core methods, including the
event representation method Temporal Active Focus (TAF),
the Bifurcated Folding Module (BFM) for fully extracting
features from the TAF representation tensor, and the high-
speed lightweight detector Agile Event Detector (AED).

Short Time Window

(-5×104,0.61)

(-1×105,0.37)

(-3×105,0.05)
(-1×106,0.00)(-3×106,0.00)

(-1×105,0.90)

(-3×105,0.74)

(-1×106,0.37)

(-3×106,0.05)

(-5×104, 0.61)

(-1×105, 0.37)

(-3×105, 0.05)
(-1×106, 0.00)(-3×106, 0.00)

(-5×104, 0.95)

(-1×105, 0.90)

(-3×105, 0.74)

(-1×106, 0.37)

(-3×106, 0.05)

Δt(μs)

Δt(μs)

S

λ=1×10-5

λ=1×10-6

Δt(μs)

(-1×106, 0.47)

(-5×106, 0.28)

(-1.5×107, 0.16)
(-3×107, 0.08)

1.0

0.8

0.6

0.4

0.2

0.0

-1-2-3-4-5 0

0.8

0.6

0.4

0.2

1.0

0.0

-1-2-3-4-5 0

1e6

1e6

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

-1-2-3-4-5 0
1e6Δt(μs)

f

1.0

0.8

0.6

0.4

0.2

0.0
-1-2-3-4-5 0

1e7Δt(μs)

F

-6

(-5×107, 0.02)

S High 
Temporal 

Resolution

Long Time Window

Low 
Temporal 

Resolution
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the timestamp of the nth detection t(n). λ is a hyper-parameter.

A. Temporal Active Focus

Tensors generated by the Temporal Active Focus method
can be viewed as a dense version of the Event Spike Tensor.
Considering a traditional Event Spike Tensor with variable
length in temporal dimension to cover all event stream infor-
mation by the time for detection, i.e., B = d t

(n)

∆τ e. Due to the
spatial and temporal sparsity of the event stream data [23],
such a tensor is also a sparse tensor. Temporal Active Focus
(TAF), by contrast, samples the first K latest positions with a
non-zero value in the temporal dimension at each spatial and
polar position to form a dense tensor.

The infinite-length sparse Event Spike Tensor is impractical
to build in terms of time and storage cost. However, since the
object detection on the event stream is performed at a certain
frequency if the detection period is set to the sampling period
∆τ , the computational burden can be greatly reduced by using
the FIFO queue to incrementally update the TAF tensor. The
necessary condition is that the convolution kernel k(·) used
for sampling the Event Measurement Field satisfies:{

k(x, y, p, t) > 0, t ∈ [0, kupper]

k(x, y, p, t) = 0, Others

s.t. kupper ∈ [0,∞)

(1)
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TAF maintains a per spatial and polar position specific FIFO
queue FIFO(x, y, p, k) with depth K ∈ Z+. The queues
continuously receive non-zero samples from the event stream,
thus generating dense tensor representations. The process of
building the TAF tensor S ∈ R2K×H×W is shown in Algo-
rithm 1. The convolution kernel k(·) and the measurement f(·)
are essential components of Event Spike Tensor as introduced
in [25]. For the convolution kernel, we simply adopt the
rectangular window function:

k(x, y, p, t) =

{
1, t ∈ [0,∆τ ]

0, Others
(2)

In order not to lose the absolute position information on the
temporal dimension, we use a measurement to calculate the
average elapse from the events covered by the convolution
kernel to t(n):

f (n)(x, y, p, t) =
t(n) − t

#{E(n)
x,y,p}

(3)

where E
(n)
x,y,p = {ei}ti∈[t(n)−kupper,t(n)),xi=x,yi=y,pi=p and

#(.) is the counting symbol.
At the nth detection, we have the average time elapses

calculated as:

∆t(n)(E, t, x, y, p) :=∑
ei∈E

f(xi, yi, pi, ti, t
(n))k(x− xi, y − yi, p− pi, t− ti) (4)

The non-zero values of the average time elapses will be pushed
into the FIFO queues. Then at the n+ 1th detection, we have
new values calculated and pushed into the queues, while old
values are updated by: ∆t(n+1) ←− ∆t(n) + ∆τ .

To limit the range of ∆t values (in milliseconds), we
apply another measurement function based on the logarithmic
transformation:

F (∆t) = 1− ln(1 + ∆t× 10−4)

ln(1 + Tmax × 10−4)
(5)

where Tmax is the maximum duration of the event stream (in
milliseconds). Fig. 5 shows that the values of F (·) on the
whole∆t ∈ [−Tmax, 0) interval all reflect high resolutions.
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Fig. 5: The mapping between the elapse ∆t and the value of
the measurement function F (·) when the maximum duration
of the event stream record Tmax = 6× 107µs.

Fig. 2 visualizes the asynchronous characteristic of TAF,
which shows that TAF can adapt the interval of applying
convolutions asynchronously according to the event triggering
frequency. Therefore, a larger temporal resolution is applied
for periods with a higher event triggering frequency, while a
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Algorithm 1: The process of building the TAF tensor
when continuously performing object detection on the
event data stream.

Input: X = {0, 1, ...,W − 1}, Y = {0, 1, ...,H − 1},
P = {0, 1}, N = {1, 2, ..., dTmax

∆τ e}, C =
{0, 1, ..., 2K − 1}
#Initialize FIFO queues
for each x ∈ X , y ∈ Y , p ∈ P do

Initialize all values in FIFO(x, y, p) with 0;
#Detect on the event flow
for each n ∈ N do

#Perform convolution
E

(n)
sub := {ei}ti∈[n∆τ−kupper,n∆τ)

#Update FIFO queues
for each x ∈ X , y ∈ Y , p ∈ P do

if ∆t(n)(E
(n)
sub, n∆τ, x, y, p) > 0 then

Add ∆t(n)(E
(n)
sub, n∆τ, x, y, p) to

FIFO(x, y, p).
for each c ∈ C do

Update FIFO(x, y, p)[c] with new value

#Construct tensor
for each x ∈ X , y ∈ Y , c ∈ C do

Sc,y,x := F{FIFO(x, y, c− 2b c2c)[b
c
2c]}

Output: S := {Sc,y,x}c∈C,y∈Y,x∈X

smaller temporal resolution is applied otherwise. In addition,
the time interval of event streams considered at each spatial
and polar position starts and ends flexibly, which means that
the time window can also be adjusted asynchronously. The
positions and values in the temporal dimension will jointly
encode information such as the elapse of the most recently

triggered event at each position, the number of short-time
triggered events, and the frequency of triggered events in a
certain period, thus containing more information. Column 8 in
Fig. 4 shows the visualization of the information considered
by Temporal Active Focus. It can be seen that the TAF tensor
can consider equal high-resolution information for objects with
different motion speeds.

B. Bifurcated Folding Module

The input layer of conventional object detectors is of-
ten a convolutional layer. The convolutional layer not only
extracts information in the channel but also models spatial
dependencies to extract spatial information. It works well
when using the normal RGB image as the input since the
semantics in channels are often weak. However, the TAF tensor
has very rich temporal information encoded in the channels.
Therefore, we design a module called the Bifurcated Folding
Module (BFM) to extract semantic information in the temporal
dimension of the TAF tensor before feeding it into the detector,
which is point-wisely applied at each spatial location.

The overall structure of the BFM is shown in Fig. 6(a). The
design of the BFM follows two main concepts. First, instead
of being fully connected to the temporal dimension, it will
gradually aggregate values at adjacent temporal positions to
prevent over-fitting. Second, it will assign greater importance
to recent information as it has a greater temporal resolution.

Following the first concept, we design the Folding Layer.
The structure of the Folding Layer is shown in Fig. 6(b).
The Folding Layer gradually reduces the number of input
channels using the 1 × 1 depth-wise convolution. It actually
models the local connection of adjacent temporal positions.
The structure of the Folding Layer and its function is similar
to Temporal Convolutional Network (TCN) [34], so we imitate
the design of TCN with Weight Normalization and ReLU
activation followed.



Following the second concept, we are inspired by the
Cross-Stage-Partial-connections (CSP) [35] mechanism. After
each temporal aggregation, we make a slicing in the channel
dimension to get the channels encoding the temporally latest
information and finally connect all sliced channels. This oper-
ation also acts as the residual connection, making the module
easier to converge during training [36]. We finally fuse the
information encoded in output channels with a Multi-Layer
Perceptron (MLP). The structure of the MLP is shown in
Fig. 6(c).

Some alternative approaches such as Temporal Convo-
lutional Network (TCN) [34], Recurrent Neural Networks
(RNNs) [37], [38], and Transformer-based models [39] can be
used to extract temporal information from TAF tensors. How-
ever, the BFM model has the following advantages. Firstly,
BFM is more lightweight and computationally efficient, which
makes it more suitable for event data that has a high temporal
resolution. Secondly, BFM is more closely combined with
TAF event representation since it is designed to model the
local connection of adjacent temporal positions rather than
long-range temporal dependencies. Moreover, it also explicitly
assigns great importance to the temporal latest information in
the TAF data since they have a higher temporal resolution.

C. Agile Event Detector

In the field of generic object detection, YOLO series [19],
[22], [32] are featured by the outstanding trade-off between
accuracy and efficiency. The YOLO series has the advantage of
high speed over other approaches such as Faster R-CNN [40],
Mask R-CNN [41], RetinaNet [42], and DETR [43], while
maintaining competitive detection accuracy. Hence, we cus-
tomize an Agile Event Detector (AED) based on the YOLOX
model [44], which is more lightweight and yields higher speed
compared to the YOLOX baseline. The general structure of the
AED model is shown in Fig. 7.

Different from the YOLOX’s CSPDarknet [35] backbone,
AED utilizes a backbone network adapted from the Darknet21
used in YOLOv3 [45]. Since there is no channel connection
operation, Darknet21 runs faster than CSPDarknet. In addition,
we increase the channel number of feature maps at an early
stage since the event representation tensors encode rich seman-
tics in the channels. The Feature Pyramid Network (FPN) and
the detection head are modified from the YOLOX as shown
in Fig. 7.

To improve the generalization capability of the lightweight
detector, we also propose a simple but effective data augmen-
tation method for event stream representation tensor data:

1) Random Flipping: During training, each event repre-
sentation tensor S has p1 probability to be flipped
horizontally, i.e., S∗c,y,x = Sc,y,W−x−1.

2) Random Cropping and Resizing: During training, each
event representation tensor S ∈ RC×H×W has p2

probability to be resampled to C × bαHc × bαW c
using nearest neighbor interpolation, where α ∈ [1,∞),
and then randomly cropped back to C × H ×W , i.e.
S∗c,y,x = Sc,y∗:y∗+H,x∗:x∗+W , where y∗ ∼ U(0, bαHc−

H), x∗ ∼ U(0, bαW c−W ), and U(a, b) is the uniform
distribution on [a, b], a, b ∈ R.

V. EXPERIMENTAL RESULTS
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Detection Results

Fig. 7: The structure of the AED model. It contains a backbone
network adopted from the Darknet21 [45]. It also contains an
FPN and a detection head the same as the implementation in
YOLOX [44]. (C ×M × N) is the size of the input event
representation tensor.

In this section, we will present our experimental settings,
including details of the dataset used for the experiment, the se-
lection of hyper-parameters, and the evaluation method. Then
we will compare our method with state-of-the-art methods.
Finally, we will illustrate the effectiveness of each component
of our method through ablation studies.

A. Experiment Settings

1) Dataset: We choose the Prophesee GEN1 Automotive
Detection Dataset (GEN1 Dataset) [26] and the Prophesee 1
MEGAPIXEL Automotive Detection Dataset (1 MEGAPIXEL
Dataset) [20] to conduct the experiments. The 1 MEGAPIXEL
Dataset and the GEN1 Dataset are two typical real-scene event
camera object detection datasets. Each video stream is up to
60 seconds, captured with the event camera and stored as the
event stream. The timestamps are in microsecond resolution,
therefore Tmax = 6× 107µs.

To improve the efficiency of performance validation, our
experiments are conducted on the complete GEN1 Dataset and
the downsampled 1 MEGAPIXEL Dataset (1 MEGAPIXEL
Dataset (Subset)) by reducing the annotation frequency to 1
Hz while preserving the complete event stream data. This
downsampling approach preserves as much diversity of scenes
and objects as possible. However, since the number of samples
used for training is only 1/60 of the original dataset, the
performance of the trained model may be degraded.

2) Implementation Details: Referring to the setting in
YOLOX [44], all methods based on YOLOX and AED models
are trained using Adam optimizer [46] and cosine learning
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Fig. 8: The visualization of data segmentation and examples of objects under different motion levels.

rate with 5 preheat epochs. In the preheat epochs, the learning
rate will grow from 0 to 2.1 × 10−4 × Batchsize, and then
decrease. The Batch size is taken as 30 on GEN1 Dataset
and 16 on the 1 MEGAPIXEL Dataset (Subset). We use the
best training model on the validation dataset and apply it to
the testing dataset to report the final performance, which is a
widely used method in related works [20], [21]. For the data
augmentation, we take p1 = 0.5, p2 = 0.5, and α = 1.5. For
all Event Volume representation tensors, we take B = 5, which
is commonly used in existing work [20]. For the TAF tensor,
we set ∆τ = 10ms on both datasets since it approximates the
run time of the method. All methods in our work were trained
on a server with a single GeForce RTX 3090 GPU and an 8-
core Intel(R) Core(TM) i7-7820X CPU @ 3.60GHz. We test
all methods on a server with a single Titan Xp GPU and a
16-core Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz.

3) Evaluation Method: The performance metrics include
accuracy, running time, and the number of parameters. The
accuracy evaluation protocol is consistent with the evaluation
protocol provided by the 1 MEGAPIXEL Dataset [20]. In the
protocol, the Mean Average Precision (mAP) [?] is used as
the accuracy metric, which is a commonly used metric for
object detection models. mAP (IoU@[0.5:0.05:0.95]) is used
for evaluation, where the mAP is computed by the mean over
a range of IoU thresholds from 0.5 to 0.95 with a step size of

0.05. For algorithms that use the TAF tensor as input, we set
the detection period equal to ∆τ and the tolerance to ∆τ/2;
for algorithms using other event representation methods, we
specify detections at timestamps where the annotations appear.

To evaluate the motion robustness of methods, we measure
the motion speed of objects in the dataset by computing optical
flow, to classify them into 5 different motion levels. To be
specific, we compute the TV-L1 dense optical flow using the
method proposed by Nagata et al. [33] for all timestamps
where the annotations are present. The difference between
adjacent timestamps is set to 50ms. For timestamp tj with an
annotation b∗j presents, for a camera with the picture size of H
in height and W in width, let the estimated horizontal optical
flow be utj (x, y) and the vertical optical flow be vtj (x, y),
then we have the optical flow intensity denoted as:

||V (x, y)||tj =
√
u2
tj (x, y) + v2

tj (x, y)

∀ x ∈ {0, 1, ...,W − 1}, y ∈ {0, 1, ...,H − 1}
(6)

Based on the optical flow intensity, we can define a metric
called Bounding Box Optical Flow Density (BBOFD) for each
annotation b∗j :



||V (x, y)||j =

∑xj+wj−1
x=xj

∑yj
y=yj−hj+1 ||V (x, y)||tj
wj × hj

(7)

For the object corresponding to the annotation b∗j , BBOFD can
be an effective metric for its motion speed relative to the event
camera at tj . The larger the ||V (x, y)||j , the faster the object.
Of all the annotations in each of the two datasets, we set 5
intervals for the BBOFD at each 20% quantile. The intervals
can classify the annotations and detection results into 5 classes
according to their corresponding objects’ speed relative to the
camera. We call the 5 classes the 5 motion levels, which are
numbered from 1-5, indicating the speed from low to high.
We show the visualization of data segmentation and examples
of objects under different motion levels in Fig. 8.

To make the metric accurate, we filtered out all overlapping
bounding boxes and cropped all bounding boxes into the
camera picture size. We then evaluate the detection results
under each of the five classes.

B. Comparison with the State-of-the-art

We compare our method with the state-of-the-art methods
[20]–[22], [24], [32], [48]. We first compare our overall
method with other existing works in terms of accuracy, model
inference speed, and model parameters. Then, for the event
representation methods, we conduct a separate comparison ex-
periment, using AED as the detector, comparing the accuracy
and speed of TAF with other methods.

1) Comparison with the State-of-the-art methods : TABLE
I shows the results of comparing our method with the state-
of-the-art methods [22], [48]. It can be seen that among the
methods using feed-forward detectors without the memory
mechanism [22]–[24], [32], [48], our method achieves the best
performance in terms of accuracy and speed at the same time.
Compared with the NGA-events method [32], our method
needs only 24.1% of parameters but achieves 9.5 mAP points
improvement and 54.1% model inference time reduction on
the GEN1 Dataset. Our method also achieves 9.6 mAP points
improvement and 37.1% inference time reduction on the 1
MEGAPIXEL Dataset (Subset). ASTMNet [21] is currently
the most advanced method on GEN1 Dataset. Comparing our
method with ASTMNet, the mAP is 1.3 points lower on GEN1
Dataset, but the model inference time reduces by 66.4%, and
the number of model parameters is only 37.4%. It can be
seen that our method is competitive among existing methods
when jointly considering the accuracy, speed, and model size
metrics.

2) Comparison with the State-of-the-art event representa-
tion methods: Based on the AED with data augmentation,
we compare our TAF representation with three state-of-the-
art competitors, namely, Event Volume [29], Event Count
Image [17], [27], and Surface of Active Events [27], [30].
We set three sets of hyper-parameters for each of the three
event representation methods, resulting in different global
synchronized time windows and temporal resolutions.

TABLE II and III show the comparison of accuracy be-
tween different event representation methods with different
parameters at 5 motion levels in the GEN1 Dataset and the
1 MEGAPIXEL Dataset (Subset) respectively. Though with
different settings, the accuracy of different methods varies
at each motion level, different methods achieve the highest
accuracy on motion level 3 in general. On the one hand, as
the motion level goes lower, the accuracy reduces, since the
events are triggered less frequently and event representation
methods cannot aggregate enough information. On the other
hand, as the motion level goes higher, the accuracy also
degrades, which results from the fact that fast-moving objects
generate excessive events, causing motion blur in the event
representation. It can also be found that in general the accuracy
on the motion level 1 is much lower than that on level 5.
This indicates that in the event data object detection task,
the accuracy degradation caused by insufficient information
is more severe than that caused by motion blur. It can be
seen that our TAF method is highly competitive in terms of
both accuracy and speed. When using Event Count Image,
Surface of Active Events, and Event Volume, longer time
windows should be used to improve the detection accuracy
for objects with low motion levels. On the contrary, shorter
time windows should be used for objects with high motion
levels. This demonstrates the trade-off that exists in these
event representation methods. By contrast, the improvement
in the time window and temporal resolution makes the TAF
method achieves high detection accuracy at all motion levels
in a hyper-parameter-free manner. Especially when detecting
low-motion level objects, using the TAF method can achieve
quite significant accuracy improvements.

The visualization in Fig. 9 further demonstrates the robust-
ness of the TAF method. In case (a), the first object on the left
has a high motion speed relative to the camera, so when using
Event Volume taking ∆τ = 200ms and Surface of Active
Events taking λ = 1 × 10−6, both cannot detect the object
due to the motion blur. Although the object can be detected
when using Event Count Image under both N = 50, 000 and
N = 200, 000, the estimation of the height is inaccurate. In
case (d), the two objects on the right side have high motion
speed relative to the camera. Therefore, also due to the motion
blur, the estimation of the size is inaccurate when using Event
Volume taking ∆τ = 200ms, the localization is inaccurate
when using Event Count Image taking N = 200, 000, and
the object is not detectable when using Surface of Active
Events taking λ = 1× 10−6. On the other hand, in both cases
(b)(c)(d), there are objects with low motion speed relative to
the camera. It can be seen that when using Event Volume
taking ∆τ = 50ms and Surface of Active Events taking
λ = 1 × 10−5, the first object on the left in case (b) and the
second object on the left in case (c) are not detected, while the
size estimation of the first object on the left in case (d) is not
accurate. When using Event Count Image taking N = 50, 000,
the second object from the left in case (c) is not detected and
the size of the first object from the left in case (d) is not
estimated accurately. In contrast, the TAF method can detect



TABLE I: Performance comparison with the state-of-the-art methods. The bold is the best result in each group of comparisons.

Method Event Representation Detector Memory GEN1 Dataset 1 MEGAPIXEL
Dataset (Subset) Params(M)

mAP Inference
Time(ms) mAP Inference

Time(ms)

Chen et al. [22] Event Count Image [28] YOLO [47] - 0.322 21.47 - - 45.3
Jiang et al. [48] Event Count Image [28] YOLOv3 [45] - 0.326 22.34 0.207 20.81 61.5
JDF-events [24] 2 Polarities Event Count Image [28] YOLOv3 [45] - 0.332 22.34 0.224 20.81 61.5
NGA-events [32] Event Volume [29] YOLOv3 [45] - 0.359 26.11 0.248 21.23 61.5
Sparse-conv [23] Raw Events YOLO [47] - 0.145 - - - -

RED [20] Event Volume [29] SSD [49] ConvLSTM [50] 0.400 - - - 24.1
ASTMNet [21] Raw Events SSD [49] Rec-conv [21] 0.467 35.61 - - 39.6

Our baseline Event Volume [29] YOLOX [44] - 0.350 13.19 0.213 16.16 14.4
Ours Temporal Active Focus AED - 0.454 11.98 0.344 13.36 14.8

TABLE II: Comparison of accuracy between different event representation methods with different parameters at 5 motion levels
on GEN1 Dataset. The bold is the best result in each group of comparisons.

Method ∆τ(ms) N λ
Lv1
mAP

Lv2
mAP

Lv3
mAP

Lv4
mAP

Lv5
mAP

Overall
mAP

Representation
Time(ms)

Event Volume [29]
50

- -
0.172 0.414 0.455 0.451 0.397 0.426 2.60

100 0.198 0.428 0.453 0.441 0.382 0.424 2.80
200 0.218 0.434 0.459 0.448 0.374 0.422 3.27

Event Count Image [17], [27] -
5× 104

-
0.204 0.371 0.408 0.411 0.362 0.386 0.90

1× 105 0.211 0.377 0.405 0.395 0.343 0.376 1.01
2× 105 0.228 0.388 0.394 0.369 0.312 0.368 1.19

Surface of Active Events [27], [30] - -
1× 10−5 0.199 0.403 0.425 0.421 0.367 0.400 0.99

2.5× 10−6 0.216 0.429 0.431 0.403 0.353 0.404 1.01
1× 10−6 0.228 0.420 0.428 0.400 0.349 0.403 1.06

Temporal Active Focus 10 - - 0.282 0.461 0.476 0.459 0.407 0.454 1.43

TABLE III: Comparison of accuracy between different event representation methods with different parameters at 5 motion
levels on 1 MEGAPIXEL Dataset (Subset). The bold is the best result in each group of comparisons.

Method ∆τ(ms) N λ
Lv1
mAP

Lv2
mAP

Lv3
mAP

Lv4
mAP

Lv5
mAP

Overall
mAP

Representation
Time(ms)

Event Volume [29]
50

- -
0.038 0.219 0.224 0.318 0.314 0.299 7.80

100 0.035 0.232 0.325 0.315 0.301 0.305 11.14
200 0.062 0.239 0.309 0.281 0.276 0.290 14.20

Event Count Image [17], [27] -
4× 105

-
0.111 0.209 0.269 0.257 0.271 0.276 1.31

8× 105 0.105 0.212 0.270 0.253 0.254 0.268 1.34
1.2× 106 0.131 0.233 0.258 0.240 0.260 0.278 1.49

Surface of Active Events [27], [30] - -
1× 10−5 0.043 0.231 0.315 0.287 0.286 0.294 3.71

2.5× 10−6 0.090 0.234 0.297 0.274 0.288 0.296 3.20
1× 10−6 0.143 0.262 0.300 0.272 0.296 0.303 3.32

Temporal Active Focus 10 - - 0.262 0.312 0.339 0.308 0.314 0.344 2.83

TABLE IV: The ablation of each component in our method. The bold is the best result in each group of comparisons.

Detector Data Augmentation Event Representation GEN1 Dataset 1 MEGAPIXEL
Dataset (Subset) Params(M)

mAP Runtime(ms) mAP Runtime(ms)
YOLOX [44] - Event Volume [29] 0.350 15.79 0.213 23.96 14.4
YOLOX [44] X Event Volume [29] 0.410 15.79 0.269 23.96 14.4

AED X Event Volume [29] 0.426 14.18 0.299 21.35 14.8
AED X TAF 0.454 13.41 0.344 16.19 14.8



Fig. 9: Qualitative analysis results. The green bounding boxes indicate the annotations, while the white bounding boxes indicate
the detection results.

TABLE V: The effects of inserting TAF to SOTA methods. The bold is the best result in each group of comparisons.

Detector Event Representation GEN1 Dataset 1 MEGAPIXEL
Dataset (Subset) Params(M)

mAP Runtime(ms) mAP Runtime(ms)

YOLOv3 [45] Event Volume [29] 0.359 28.71 0.248 29.03 61.5
TAF 0.381 27.54 0.278 24.06 61.6

YOLOX [44] Event Volume [29] 0.410 15.79 0.269 23.96 14.4
TAF 0.436 14.62 0.314 18.99 14.4

AED Event Volume [29] 0.426 14.18 0.299 21.35 14.8
TAF 0.454 13.41 0.344 16.19 14.8

all the objects mentioned above while estimating the size and
location accurately.

C. Ablation Study

In the ablation experiments, we focus on the effectiveness of
the different components of our method and factors that affect
the performance when using the TAF representation method.

1) Components: The ablation of components is shown in
TABLE IV, where the runtime is the sum of the representation
time and the model inference time. Experiments show that our
proposed data augmentation scheme can improve the accuracy
of the baseline detector by a large margin on both datasets.
With a slight increase in the number of parameters compared
to YOLOX, AED notably improves accuracy and significantly
reduces runtime on both datasets. Moreover, using the TAF
method instead of the Event Volume will result in a significant
improvement in accuracy and a reduction of the running
time on both datasets. The reduction of the running time is
especially significant on the 1 MEGAPIXEL Dataset (Subset).
Our final method achieves 74.6 FPS on the Prophesee GEN1
Automotive Detection Dataset (GEN1 Dataset) [26] and 61.8

FPS on the Prophesee 1 MEGAPIXEL Automotive Detection
Dataset [20], which satisfies the real-time processing require-
ments.

We also evaluate the effectiveness of inserting TAF into
various SOTA event data object detection methods. As shown
in TABLE V, our experimental results show that TAF sig-
nificantly improves the detection accuracy of these methods
while maintaining a high inference speed. The results show
the generalizability of our proposed TAF method.

2) Temporal Active Focus: TABLE VI and VII show the
performance of the TAF under different settings. Overall,
using BFM for feature pre-extracting will result in remark-
able accuracy improvement at all five motion levels on both
datasets. On the 1 MEGAPIXEL Dataset (Subset), we can
see a higher performance improvement for detecting objects
that are slow relative to the camera. However, the running
speed is slightly reduced because feature extraction needs to be
performed point-wisely in space. On GEN1 Dataset, the queue
depth K value has little impact on accuracy, and we can see
that K = 4 is a better hyper-parameter on GEN1 Dataset.
On the 1 MEGAPIXEL Dataset (Subset), when K = 8,



TABLE VI: The performance of the TAF under different settings on the GEN1 Dataset. The bold is the best result in each
group of comparisons.

K BFM Lv1
mAP

Lv2
mAP

Lv3
mAP

Lv4
mAP

Lv5
mAP

Overall
mAP

Representation
Time(ms)

Inference
Time(ms)

4 - 0.272 0.438 0.456 0.444 0.396 0.444 1.43 11.46
4 X 0.282 0.461 0.476 0.459 0.407 0.454 1.43 11.98
8 - 0.269 0.439 0.456 0.449 0.398 0.445 1.76 11.67
8 X 0.288 0.451 0.478 0.457 0.402 0.451 1.76 12.26

TABLE VII: The performance of the TAF under different settings on 1 MEGAPIXEL Dataset (Subset). The bold is the best
result in each group of comparisons.

K BFM Lv1
mAP

Lv2
mAP

Lv3
mAP

Lv4
mAP

Lv5
mAP

Overall
mAP

Representation
Time(ms)

Inference
Time(ms)

4 - 0.230 0.284 0.313 0.293 0.301 0.326 1.76 11.67
4 X 0.222 0.270 0.313 0.291 0.300 0.333 1.76 12.84
8 - 0.258 0.296 0.315 0.294 0.300 0.323 2.83 12.38
8 X 0.262 0.312 0.339 0.308 0.314 0.344 2.83 13.36

the accuracy is slightly lower without BFM. However, with
BFM, the accuracy is much higher. This further illustrates
the effectiveness of the BFM module: the 1 MEGAPIXEL
Dataset (Subset) has a higher resolution, and the camera used
is more sensitive to changes in illumination, requiring larger
K values to aggregate events over a larger time range to
fully retain event information. However, larger K values bring
richer semantics to the temporal dimension. The traditional
convolutional input layer is difficult to extract the information.
On the other hand, BFM can extract the rich semantics as
much as possible, thus fully exploiting the effect of the TAF
method.

VI. CONCLUSIONS

In this paper, we present a motion robust and high-speed
detection pipeline for event-based object detection, which
takes the different velocities of objects into account and further
reduces the computational burden compared with previous
event-based object detectors. Specifically, we introduce the
Temporal Active Focus (TAF) event representation, the Bi-
furcated Folding Module (BFM), the Agile Event Detector
(AED), and a simple yet effective data augmentation strategy.
The TAF leverages the spatial-temporal asynchronous event
data and builds event tensors robust to object motions, the
BFM extracts rich temporal information at the input layer,
and the AED is faster and more accurate than the baseline
YOLOX. Extensive experiments on two typical event-based
object detection datasets show that our detection pipeline
achieves leading accuracy compared with the state-of-the-art
event-based object detector. In addition, our method has a
far lower number of parameters and much higher running
speed while achieving competitive accuracy and high motion
robustness.
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