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Abstract

The Manifold Hypothesis is a widely accepted tenet of Machine Learning which asserts
that nominally high-dimensional data are in fact concentrated near a low-dimensional mani-
fold, embedded in high-dimensional space. This phenomenon is observed empirically in many
real world situations, has led to development of a wide range of statistical methods in the last
few decades, and has been suggested as a key factor in the success of modern AI technologies.
We show that rich and sometimes intricate manifold structure in data can emerge from a
generic and remarkably simple statistical model — the Latent Metric Model — via elemen-
tary concepts such as latent variables, correlation and stationarity. This establishes a general
statistical explanation for why the Manifold Hypothesis seems to hold in so many situations.
Informed by the Latent Metric Model we derive procedures to discover and interpret the
geometry of high-dimensional data, and explore hypotheses about the data generating mech-
anism. These procedures operate under minimal assumptions and make use of well known,
scaleable graph-analytic algorithms.

1 Introduction
The manifold hypothesis is a widely accepted tenet of Machine Learning which posits that [16]:

“...the dimensionality of many data sets is only artificially high; though each data point consists
of perhaps thousands of features, it may be described as a function of only a few underlying
parameters. That is, the data points are actually samples from a low-dimensional manifold that
is embedded in a high-dimensional space”.

This phenomenon has impacted a wide range of methods and algorithms. Presence of manifold
structure is the premise of manifold estimation and testing [27, 30, 29], nonlinear dimension
reduction techniques [78, 89, 38, 6, 98, 95, 59], intrinsic dimension estimation [45, 54, 36, 15],
and regression and classification techniques specially adapted to settings in which covariates are
valued on manifolds [8, 4, 19, 102, 55, 65]. Assumptions that data are concentrated near low-
dimensional topological or geometric structures underpin clustering techniques and topological
data analysis [24, 66, 14, 5, 18, 17]. Some nonparametric techniques, such as nearest neighbour or
tree-based regression methods, function without manifold structure necessarily being present, but
benefit significantly when it is there, since their convergence rates depends on intrinsic rather than
ambient dimension of covariates [46, 47]. It has been proved that deep neural networks exhibit
a similar property [64]. More broadly, the presence of manifold structure has been suggested
as a key factor in the success of deep learning methods [10]. Assumptions that data lie on a
low-dimensional manifold embedded in high-dimensional space are central to very recent practical
and theoretical developments in generative modelling in Artificial Intelligence, especially diffusion
models [82, 83, 39, 21, 22, 84, 20, 73, 35, 25].

Why might manifold structure be present in data? In some situations, such as image analysis,
an intuitive albeit heuristic explanation can be given in terms of the physical mechanism which
generated the data (see e.g., Pless and Souvenir [75] for a review of manifold estimation in this
context). Figure 1 shows 24 grayscale images of a car, a subset of n = 75 images from [31],
taken from angles 0, 5, 10, . . . , 355 degrees around the circumference of a circle. Each image is of
resolution 384× 288 pixels and so can be represented as a vector of length p = 110592. However,
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24 of 72 photos in the data set, taken from camera angles 0,15,30,...,345 degrees
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Figure 1: A collection of images reduced in dimension using PCA.

at least intuitively, we can account for the variation across the collection of images using far fewer
dimensions, in terms of the position of the camera in the three-dimensional space of the world
around us. Figure 1 shows the result of using principal component analysis (PCA) to reduce
dimension, upon which we make the following observations.

The first 20 principal components account for 91.5% of the total variance, suggesting that the
data are concentrated somewhere in a low-dimensional linear subspace of R110592. The first three
dimensions — the coordinates of the data with respect to the eigenvectors associated with the
three largest eigenvalues — produce points around a loop which is somewhat irregular in shape
but resembles the circle of camera positions, subject to deformation by bending and twisting. The
points appear roughly equally spaced around the loop, like the camera positions which are equally
spaced at intervals of 5 degrees around a circle.

Evidently reducing the dimension of these image data by PCA allows us to access some of the
geometric structure of the data generating mechanism, but questions remain. We have chosen to
plot the first three dimensions for ease of visualisation, is this a “good” choice? What might the
other dimensions convey? What explains the precise shape of the loop and the spacing of the
points along it, relative to the underlying circle of camera positions?

In other situations, embedded topological and geometric structure may appear in different
forms and have different interpretations. Figure 2 shows two approaches to visualising expression
levels of p = 5821 genes measured across n = 5000 individual cells from an adult planarians, a
type of flatworm. In the field of single-cell transcriptomics — as set out in the 2018 Science paper
[74] — such data offer the possibility of discovering the cell lineage tree of an entire animal: the
aim is to find out if the data reflect the tree-structured process by which stem cells differentiate
into a variety of distinct cell types. These data were prepared using the Python package Scanpy
[100] following the methods of [74].

The left plot in figure 2 shows the result of dimension reduction from 5821 to 2 using PCA. The
right plot shows the result of first reducing from 5821 to 14 dimensions using PCA, followed by
reduction to 2 dimensions using t-SNE [95], a very popular nonlinear dimension reduction method
which finds a lower dimensional representation of a data set by minimising a particular measure of
distortion of pairwise distances. We used the default t-SNE parameter settings in scikit-learn.
In both plots, the points are coloured by cell type, but neither PCA nor t-SNE have access to
this information. Similarly to figure 1, it is evident from figure 2 that performing some form
of dimension reduction allows us to access structure underlying the data, albeit in the form of
discrete cell types rather than the geometry of camera positions. In figure 1, using only PCA to
reduce dimension was enough to make this structure visible. However, in figure 2, using only PCA
and reducing to 2 dimensions, distinct cell types are not clearly separated, whereas PCA down
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to 14 dimensions followed by t-SNE seems to be more effective. The t-SNE visualisation hints
at the presence of tree structure underlying the data, with some areas having branch-like arms
originating at the central point cloud, but other lineages lack clarity or seem to be disconnected.
Could we combine methods differently to obtain a clearer picture?

Figure 2: Planaria example. Left: first 2 dimensions of the PCA embedding. Right: representation
of the data in 2 dimensions obtained by first reducing to 14 dimensions using PCA, then applying
t-SNE.

These examples illustrate just some of the ways in which underlying structure can manifest
itself in embedded topological and geometric patterns in data. Many other examples can be
found: in genomics, where genotyping DNA sites has revealed striking geographic patterns [67,
48, 23]; neuroscience, where simultaneous recordings from Grid cells have been shown to exhibit
toroidal structure seemingly independent of behavioural tasks [28]; as well as manifold structure
in data from wireless sensor networks [68], visual speech recognition [11], drug discovery [77], RNA
sequencing [62], and human motion synthesis [52].

In this work we put forward a perspective that embedded topological and geometric structure in
data can be explained as a general statistical phenomenon, without reference to physical properties
or other domain-specific details of the data generating mechanism.

Main contributions. Our first main contribution is to propose a simple and generic statistical
model which produces hidden, low-dimensional manifold structure in high-dimensional data, thus
providing a statistical justification for the manifold hypothesis.

Our second main contribution is to describe how this hidden manifold relates to a true latent
domain defined by the model, explaining, for example, why the points in the right panel of figure 1
are not in a perfect circle, as the camera positions are, but still form a loop. More precisely, we
give mild conditions under which the relationship between the manifold and the latent domain is
a homeomorphism (a topological equivalence), and stronger conditions under which it becomes an
isometry (a metric equivalence).

Our third main contribution is to show how to combine simple or well-known techniques,
broadly relating to manifold-learning, to explore hypotheses and uncover information about the
latent domain and broader data generating mechanism. Given data vectors Y1, . . . ,Yn ∈ Rp, we
rationalise the following workflow:

1. Dimension selection, using Y1, . . . ,Yn to choose r̂.
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2. Linear dimension reduction of Y1, . . . ,Yn by PCA, resulting in an r̂-dimensional embedding,
ζ1, . . . , ζn.

3. Spherical projection of the embedding, setting ζspi := ζi/∥ζi∥, i = 1, . . . , n

4. Nearest neighbour graph construction from ζsp1 , . . . , ζ
sp
n .

5. Analysis and visualisation of the nearest neighbour graph, e.g., shortest paths, minimum
spanning tree, topology.

These recommended steps are supported by new theory and empirical evidence, providing a
general-purpose mechanism for geometric data exploration under minimal assumptions.

The remainder of this article is structured as follows. In Section 2 we introduce the Latent
Metric Model, and the associated manifold M, which arises as a consequence of correlation over a
latent domain Z. In section 3 we describe how this manifold structure hides in the data and how
the manifold relates to Z. We establish a representation formula (proposition 1) uncovering the
perhaps surprising fact that, under the Latent Metric Model, data are noisy, random projections
of points in M. Standard statistical concepts, such as stationarity, give rise to striking geometric
relationships between M and Z, such as isometry. In section 4 we develop theory and methodology
supporting the workflow above, elucidating the benefits of applying PCA (theorem 1), proposing
a new dimension selection method, and more. In Section 5 we demonstrate the workflow on real
data, revisiting the image and transcriptomics data from section 1, as well as a temperature time
series example. The key new feature of these analyses is that we can explore manifold hypotheses
grounded in a statistical model.

2 The Latent Metric Model
The Latent Metric Model (LMM) is constructed from three independent sources of randomness.

Latent Variables. Z1, . . . , Zn are independent and identically distributed random elements of
a metric space (Z, dZ), that is Z is a set, and dZ(·, ·) is a distance function on Z. It is assumed
that the metric space (Z, dZ) is compact, and Z1, . . . , Zn are distributed according to a Borel
probability measure µ supported on Z.

Random Functions. X1, . . . , Xp are random R-valued functions, each with domain Z. That
is, for each z ∈ Z and j = 1, . . . , p, Xj(z) is an R-valued random variable. It is not assumed that
X1, . . . , Xp are identically distributed, but it is assumed that E[|Xj(z)|2] <∞, for all j = 1, . . . , p
and z ∈ Z.

Noise. E ∈ Rp×n is a matrix of random variables whose elements are each zero-mean and unit-
variance. The columns of E are assumed independent and elements in distinct rows of E are
assumed pairwise uncorrelated.

The data matrix Y ∈ Rn×p is defined by:

Yij := Xj(Zi) + σEij (1)

for some σ ≥ 0. It will sometimes be convenient to think of data vectors Y1, . . . ,Yn ∈ Rp such
that [Y1| · · · |Yn]

⊤ ≡ Y, so Yij is the jth element of Yi. Similarly we shall write noise vectors
[E1| · · · |En]

⊤ ≡ E.
We call:

f(z, z′) :=
1

p

p∑
j=1

E[Xj(z)Xj(z
′)] (2)

the mean correlation kernel associated with the LMM. The following assumption is taken to hold
throughout the paper without further mention.
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A1. For each j = 1, . . . , p, E[Xj(z)Xj(z
′)] is a continuous function of (z, z′) ∈ Z × Z.

Assumption A1 implies f(z, z′) is continuous in z, z′, and by a generalisation of Mercer’s
theorem [60, 85, Thm 4.49] given in section A, when A1 holds there exists a countable collection
of non-negative real numbers (λfk)k≥1, λ

f
1 ≥ λf2 ≥ · · · , and a sequence of functions (ufk)k≥1 which

are orthonormal in L2(µ) such that

f(z, z′) =

∞∑
k=1

λfku
f
k(z)u

f
k(z

′) = ⟨ϕ(z), ϕ(z′)⟩ℓ2 , (3)

where the series converges absolutely and uniformly in z, z′. Here ϕ is the “feature map”:

ϕ(z) :=
[
(λf1 )

1/2uf1 (z) (λf2 )
1/2uf2 (z) · · ·

]⊤
. (4)

We stress two points. First, the central purpose of the LMM is to explain and describe manifold
structure in data as a general statistical phenomenon. The breadth of this objective necessitates a
flexible modelling paradigm and, in particular, we do not make specific distributional or functional
assumptions, such as Gaussian errors or that the kernel is squared exponential. The assumptions in
this paper, which are always clearly indicated, involve more general concepts, such as continuity,
smoothness or stationarity. Second, we stress the perspective here that f and ϕ are derived
quantities, defined implicitly by the ingredients of the LMM, rather than model parameters or
hyperparameters whose values need to be chosen.

The inner product on the r.h.s. of (3) is ⟨x, x′⟩ℓ2 :=
∑∞

k=1 xkx
′
k, between infinitely long vectors

x = [x1 x2 · · · ]⊤ belonging to ℓ2 := {x ∈ RN : ∥x∥ℓ2 < ∞}, where ∥x∥ℓ2 :=
(∑∞

k=1 |xk|2
)1/2

=

⟨x, x⟩1/2ℓ2
. The image of ϕ, that is

M := {ϕ(z); z ∈ Z} , (5)

is a subset of ℓ2, because Z is compact and z 7→ f(z, z) is continuous under A1, so supz∈Z ∥ϕ(z)∥2ℓ2 =
supz∈Z f(z, z) <∞.

We denote by r the rank of f , that is the largest k ≥ 1 such that λfk > 0, with r := ∞ if λfk > 0
for all k ≥ 1. When r <∞ we abuse notation slightly by writing

ϕ(z) :=
[
(λf1 )

1/2uf1 (z) (λf2 )
1/2uf2 (z) · · · (λfr )

1/2ufr (z)
]⊤

. (6)

Some special cases of the LMM are detailed in appendix B. It is shown there that in a setting
where Z is a subset of Euclidean space and X1, . . . , Xp are deterministic linear functions, the LMM
reduces to the spiked-covariance model [42, 69], which is the de-facto standard model under which
to study the theoretical properties of PCA in high dimensions. In the case that Z is a subset of
Euclidean space and X1, . . . , Xp are independent and identically distributed Gaussian processes,
the LMM reduces to the Gaussian Process Latent Variable Model introduced by Lawrence [50] and
Lawrence and Hyvärinen [49] to facilitate probabilistic nonlinear dimension reduction. Appendix
A also examines the situation in which Z is a set containing finitely many points, in which case
the LMM reduces to a form of finite mixture model.

The LMM deviates from the ubiquitous assumption in Statistics that data are independent
and identically distributed; from the definitions above, the “noise-free” data vectors Yi − σEi ≡
[X1(Zi) · · ·Xp(Zi)]

⊤, i = 1, . . . , n, are exchangeable but not independent. We shall see that this
dependence, combined with the latent structure of the LMM, are key to the emergence of manifold
structure in high dimensions. Without such dependence, the behaviour of data can be explained by
high dimension, low sample size (HDLSS) asymptotics, introduced in the seminal JRSSB paper
of Hall et al. [34]. HDLSS asymptotics are based on an argument that if Yi and Yj are i.i.d.
random vectors whose elements satisfy suitable weak dependence and moment conditions, then
p−1∥Yi − Yj∥2 converges to a constant as p → ∞. In [34] this leads to a conclusion that i.i.d.
high-dimensional data vectors tend to lie deterministically at the vertices of a simplex. In section
3 we set out a different, much richer conclusion about the behaviour of p−1∥Yi − Yj∥2, arising
from the LMM.
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3 Connecting statistical and geometric properties of the LMM
In this section we explain how statistical properties of the LMM allow us to connect the geometry
of the data vectors, Y1, . . . ,Yn, which can be thought of as a point cloud in Rp, to the structure
of M, and in turn the latent metric space Z. This is important for two reasons. Firstly, it shows
how manifold structure in data emerges from elementary statistical properties of the LMM, thus
clarifying in what sense and why the Manifold Hypothesis holds. Secondly, it forms the basis for
data analysis procedures we detail in section 4. We proceed in four main steps:

• Section 3.1 shows how inner-products between data vectors, say Yi,Yj , relate to inner products
between ϕ(Zi), ϕ(Zj). Since ϕ(Z1), . . . , ϕ(Zn) are i.i.d. and valued in M, recall (5), this gives
our first indication that the geometry of the point cloud Y1, . . . ,Yn will reflect the shape of
M.

• Section 3.2 shows that under a simple distinguishability assumption, the feature map ϕ is a
homeomorphism. Informally, this means we can think of M as being equivalent to Z up to
some continuous, invertible distortion such as bending, twisting or stretching. Formally, we can
say M is a topological manifold.

• Section 3.3 shows that when Z is a subset of Euclidean space, conditions closely related to weak
stationarity of the random function Xj imply ϕ is an isometry. This means a very special form
of geometric relationship holds between M and Z, in which distances between points in Z,
say Zi and Zj , are faithfully represented by distances measured along the manifold M between
ϕ(Zi) and ϕ(Zj), rather than by straight-line distances of the form ∥ϕ(Zi)− ϕ(Zj)∥ℓ2 .

• Section 3.4 shows that if the kernel is sufficiently smooth, most of the structure of M is captured
in a low-dimensional subspace. This hints towards the potential effectiveness of PCA (step 2
in the workflow) for manifold exploration.

Remarkably, we shall draw the conclusions in the second and third points above without any
explicit knowledge of the eigenvalues and eigenfunctions which appear in the definition of ϕ, and
which thus define M.

3.1 Relating data inner products to feature map inner products
We have not made any assumptions about the functional form of z 7→ Xj(z), j = 1, . . . , p, in the
LMM, other than A1. Nevertheless, the following proposition shows that a linear relationship
holds between Yi − σEi and ϕ(Zi).

Proposition 1. Under the LMM with r ∈ {1, 2, . . . , }∪{∞}, the matrix W ∈ Rp×r with elements

Wjk :=
1

(pλfk)
1/2

∫
Z
Xj(z)u

f
k(z)µ(dz) (7)

satisfies
Yi

m.s.
= p1/2Wϕ(Zi) + σEi, i = 1, . . . , n, E[W⊤W] = Ir, (8)

where Ir is the identity matrix with r rows and columns.

The qualification “m.s.
= ” in (8) indicates that the infinite summations constituting the matrix-vector

product Wϕ(Zi) in the case r = ∞ converge in the mean-square sense. The proof of proposition
1, in appendix C, entails a generalised form of Karhunen-Loève expansion of X1, . . . , Xp.

The identities in (8) can be interpreted as meaning that p−1/2Yi is a noisy, random projection
of ϕ(Zi). Indeed we can use (8) together with the defining properties of the LMM in section 2
to describe the behaviour of the inner-product between Yi,Yj ∈ Rp when the randomness in
X1, . . . , Xp and E is averaged out:

1

p
E[⟨Yi,Yj⟩|Zi, Zj ] = ⟨ϕ(Zi),E[W⊤W]ϕ(Zj)⟩ℓ2 + 0 + 0 + σ2 1

p
E[⟨Ei,Ej⟩]

= ⟨ϕ(Zi), ϕ(Zj)⟩ℓ2 + σ2I[i = j]. (9)
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The quantity p−1⟨Yi,Yj⟩ is an arithmetic mean of p random variables. If, conditionally on
Zi, Zj , the summands in p−1⟨Yi,Yj⟩ are weakly dependent and have moments bounded uniformly
in p, then by a law of large numbers argument p−1⟨Yi,Yj⟩ will be close to its conditional ex-
pectation (9) with high probability when p is large (see proposition 6 in appendix C for details).
Moreover, write W ≡ [W1| · · · |Wp]

⊤ and note from (7) that the only randomness in Wj arises
from Xj . So if X1, . . . , Xp were assumed weakly dependent, W1, . . . ,Wp would be too. Then,
again assuming moments bounded uniformly in p, by a law of large numbers argument the sum∑p

j=1 WjW
⊤
j will be close to its expectation with high probability when p is large, i.e.,

W⊤W =

p∑
j=1

WjW
⊤
j ≈ E[W⊤W] = Ir.

We therefore conclude that, subject to suitable weak dependence and moment conditions,∣∣p−1⟨Yi,Yj⟩ − ⟨ϕ(Zi), ϕ(Zj)⟩ℓ2 − σ2I[i = j]
∣∣→ 0, as p→ ∞, (10)

in probability. In this sense the geometry of the collection of high-dimensional data vectors
Y1, . . . ,Yn reflects that of ϕ(Z1), . . . , ϕ(Zn), subject to some distortion depending on the noise
level σ. Moreover, if (10) holds, then |p−1∥Yi −Yj∥2 − ∥ϕ(Zi)− ϕ(Zj)∥2ℓ2 − 2σ2| → 0 as p→ ∞.
This stands in contrast to the behaviour established in [34] that p−1∥Yi −Yj∥2 → const. when
Yi and Yj are independent and identically distributed.

In section 4.1, we shall complement the above reasoning with theorem 1 which shows that when
the noise level σ is fixed, and n→ ∞ and p/n→ ∞ simultaneously, using PCA to reduce dimension
of Y1, . . . ,Yn allows ϕ(Z1), . . . , ϕ(Zn) to be recovered, up to an orthogonal transformation.

3.2 Relating distinguishability of latent variables to homeomorphism
A homeomorphism between two metric spaces is a mapping which is continuous, bijective and has
a continuous inverse. If such a mapping exists the two metric spaces are said to be homeomorphic,
or topologically equivalent. To develop some intuition, one can think about the case in which the
metric spaces in question are subsets of the three dimensional Euclidean world around us. In
this situation mappings which qualify as homeomorphisms include transformations of shape by
bending, twisting, stretching and folding, but not cutting, puncturing or joining [9]. Topological
equivalence implies the two metric spaces in question must exhibit the same number of connected
components, the same number of 1-dimensional loops and more generally the same number of k-
dimensional “holes” as each other. Detecting such features using data is the purpose of persistent
homology methods within the field of Topological Data Analysis [14, 17]. But there is more
to a topological structure than its homology; for example, in the transcriptomics application
(introduction and Section 5.2), the hypothesized underlying structure has interesting, ‘tree-like’,
topology but no interesting homology.

We shall now see that, with only a little more structure added to the LMM, ϕ is homeomorphism
between Z and M, where the distance on M is ∥ · − · ∥ℓ2 . The first requirement, continuity of ϕ,
means that dZ(z, z′) → 0 implies ∥ϕ(z)− ϕ(z′)∥ℓ2 → 0. This holds due to the identities:

∥ϕ(z)− ϕ(z′)∥2ℓ2 = ∥ϕ(z)∥2ℓ2 + ∥ϕ(z′)∥2ℓ2 − 2⟨ϕ(z), ϕ(z′)⟩ℓ2
= f(z, z) + f(z′, z′)− 2f(z, z′),

combined with continuity of f under A1. By its definition, ϕ : Z → M is automatically surjective,
and if ϕ is one-to-one, its inverse is automatically continuous due to a general result in the theory
of metric spaces [86, Prop. 13.26] concerning the inverse of a continuous mapping with compact
domain. The question of whether or not ϕ is a homeomorphism thus reduces to whether or not it
is one-to-one. Consider the following assumption.

A2. For each z, z′ ∈ Z such that z ̸= z′, there exists ξ ∈ Z such that f(z, ξ) ̸= f(z′, ξ).

Assumption A2 can be interpreted as a “distinguishability” condition, requiring that points in Z
can be distinguished from each other via the kernel f , and furthermore:
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Proposition 2. ϕ : Z → M is a homeomorphism if and only if A2 holds.

The proof of proposition 2 is in appendix C. The term topological manifold conventionally means
some set such that each point in that set has a neighbourhood which is homeomorphic to some
subset of Euclidean space. We note that the relationship between M and Z is of a similar nature,
except that M is globally rather than only locally homeomorphic to Z, and the metric space Z
need not be Euclidean. Putting these differences aside, we shall simply call M a manifold from
now on.

When M and Z are homeomorphic, they must have the same covering dimension—see [71,
Ch.3] for background—this is an abstract topological notion dimension, which generalises the usual
notion of dimension of Euclidean space. In this sense, we can say that when Z is low-dimensional,
M is low-dimensional too.

3.3 Relating stationarity to isometry
Weak stationarity of any one of the random functions Xj in the LMM would mean that:

• E[Xj(z)] is constant in z, and

• E[(Xj(z)− E[Xj(z)])(Xj(z
′)− E[Xj(z

′)])] is a function only of distance between z and z′.

If all the random functions X1, . . . , Xp were to have this property, it would follow from the defini-
tion of f in (2) that f(z, z′) must also be a function only of distance between z and z′. We shall
now see that this leads to an isometric relationship between M and Z. To define isometry, it’s
convenient to work in the following setting:

A3. Z is a compact subset of Rd, and there exists a continuous path in Z of finite length between
any two points in Z.

The precise mathematical definition of a path and its length are given in appendix C.1. In the
setting of A3, we denote by dgeoZ (z, z′) the shortest path length, or geodesic distance, in Z. This is
the infimum of the lengths of all paths in Z with end-points z, z′ (see appendix C.1 for details). If
Z is convex, the shortest path between two points is a straight line and dgeoZ (z, z′) = ∥z−z′∥Rd . For
x, x′ ∈ M, the shortest path length, or geodesic distance, in M is denoted dgeoM (x, x′) and defined
analogously to dgeoZ (z, z′). Even when Z is convex, in general M is not convex and dgeoM (x, x′) is
not equal to the straight-line distance ∥x− x′∥ℓ2 .

We shall say isometry holds between Z and M if

dgeoM (ϕ(z), ϕ(z′)) = dgeoZ (z, z′), ∀z, z′ ∈ Z. (11)

Compared to homeomorphism, this isometry condition imposes more of a constraint on the rela-
tionship between Z and M. One can interpret isometry as allowing ϕ to transform Z into M by
bending, but not by stretching or compressing, since that would violate the equality of shortest
path lengths.

The following proposition shows that isometry holds up to a scaling constant when, for z, z′
close to each other, f(z, z′) depends only on the Euclidean distance between z and z′. In contrast,
weak-sense stationarity involves the more stringent requirement that such dependence holds for
all z, z′. Define D := {(z, z); z ∈ Z} ⊂ Z × Z.

Proposition 3. Assume A2 and A3. If f(z, z′) = g(∥z − z′∥2Rd) for all z, z′ in an open neigh-
bourhood of D where g is twice continuously differentiable and g′(0) < 0, then

dgeoM (ϕ(z), ϕ(z′)) =
√
−2g′(0)dgeoZ (z, z′). (12)

The following proposition complements proposition 3 by addressing the special case in which Z is
a sphere.

Proposition 4. Assume A2. If Z = {z ∈ Rd : ∥z∥Rd = 1} and f(z, z′) = g(⟨z, z′⟩Rd) for all z, z′
in an open neighbourhood of D where g is twice continuously differentiable and g′(1) > 0, then

dgeoM (ϕ(z), ϕ(z′)) =
√
g′(1)dgeoZ (z, z′). (13)

The proofs of propositions 3 and 4 are at the end of appendix C.1.
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3.4 Relating smoothness to concentration within a low-dimensional sub-
space

When the latent domain Z is a subset of Rd, we will say that f is smooth if it can be expressed
as the restriction of a smooth function on Rd ×Rd to Z ×Z. How smooth f is affects how much
of the manifold M we can capture using only the first few coordinates. For some s < r, consider
the truncated map

ϕs(z) :=
[
(λf1 )

1/2uf1 (z) · · · (λfs )
1/2ufs (z) 0 · · ·

]⊤
.

The eigenvalues give us a measure of how well Ms := ϕs(Z) approximates M through the mean
square error

E[∥ϕ(Zi)− ϕs(Zi)∥2ℓ2 ] =
∑
k>s

λfkE
[
|ufk(Zi)|2

]
=
∑
k>s

λfk .

The rate of decay of the eigenvalues is known to be related to the smoothness of the kernel [87] and
so, under smoothness assumptions, the first s coordinates of ϕ can provide a good approximation to
M, even if r = ∞. Recalling the representation Yi

m.s.
= p1/2Wϕ(Zi)+σEi from proposition 1, such

smoothness also implies each vector Yi will be concentrated within the (at most) s-dimensional
subspace of Rp, when s ≤ p, spanned by the first s columns of W, since

E
[
∥Yi − p1/2Wϕs(Zi)∥2

]
= E

[
∥p1/2Wϕ(Zi)− p1/2Wϕs(Zi) + σEi∥2

]
= pE[∥ϕ(Zi)− ϕs(Zi)∥2ℓ2 ] + σ2E[∥Ei∥2] = p

∑
k>s

λfk + pσ2,

where the independence of W, ϕ(Zi), Ei, the second equality in (8) and the properties E[Eij ] = 0,
E[E2

ij ] = 1 have been used. An LMM with smooth kernel can therefore produce a data matrix Y
which is ‘approximately low-rank’, a common feature of real data [94], hinting that PCA may be
a useful tool to help recover ϕ(Z1), . . . , ϕ(Zn).

3.5 A visual example
To illustrate some of the concepts from section 3, we consider a case in which Z is a torus
embedded in R3, satisfying A3 with d = 3. We take µ to be the uniform distribution on the
torus, and Z1, . . . , Z4000 simulated from µ are shown in figure 3. The colouring of the points in
this figure emphasises that the torus is the Cartesian product of two circles, and the locations on
the torus can be parameterised in terms of angles around these two circles.

Figure 3: Torus example. Left: grey wireframe of Z, a torus, with colour bars indicating
coordinates with respect to two circles. Both the middle and right plots show the same n = 4000
points, Z1, . . . , Z4000, which are sampled uniformly on the torus, coloured by their coordinates
with respect to each of the two circles.

We assume X1 . . . , Xp are i.i.d., zero-mean Gaussian processes with common covariance func-
tion exp(−∥z− z′∥2R3) = f(z, z′), which satisfies A1. Figure 4 shows numerical approximations to
the first 1-3, 4-6 and 7-9 dimensions of ϕ(Zi), i = 1, . . . , 4000 (these approximations were obtained

9



Figure 4: Torus example. Both the top and bottom rows show the first 9 dimensions of ϕ(Zi),
i = 1, . . . , 4000. In each row, points are coloured according to the coordinates of the underlying
points Z1, . . . , Zn with respect to the two circles shown in figure 3. Numerical scales are omitted
to de-clutter the plots.

using PCA, the details of which are given later in section 4.1). The only difference between the
two rows of plots in figure 4 is the colouring of the points; the colouring in the top row is the
colouring of the corresponding points in the middle plot in figure 3, similarly the colouring in the
bottom row matches that in the plot on the right of figure 3.

Figure 5: Torus example. Blue: numerical shortest path lengths between points in M vs. between
the corresponding points in Z. Red: theoretical scaling relationship

√
2.

It is clear from figure 4 that the global shape of M, when viewed three dimensions at a time,
is qualitatively different to the global shape of Z. However, assumption A2 holds, so by lemma
2, we know M is topologically equivalent to Z, and by proposition 3, ϕ isometry holds, up to a
scaling factor of

√
−g′(0) =

√
2 for the f in question. This tells us that shortest path lengths in M

are equal to the corresponding path lengths Z, up to a factor of
√
2. Figure 5 shows comparison

10



of these shortest path lengths, computed numerically from the points in figures 4 and 3 using a
nearest neighbour graph as detailed in section 4.4. We see a close approximation to the theoretical
scaling factor of

√
2, shown by the red line.

Overall this example illustrates that if we are interested in discovering the topological or
geometric structure of Z based on observations of M, we should not pay attention to the global
shape of M that we perceive visually, because that depends on both Z and ϕ. However, when
homeomorphism holds, we can in principle recover the abstract topological structure of Z and its
homological features such as number of connected components, number of holes, etc., from M.
Moreover, when isometry holds, at least up to a constant scaling factor, we can gain insight into
the geometry of Z from shortest paths in M.

4 Methodology
In this section, properties of the LMM are used to explain and justify the workflow outlined in
section 1. Discussion of the step 1. is postponed until after discussion of step 2.

4.1 Linear dimension reduction by PCA
Given data Y ∈ Rn×p and s ≤ min{p, n}, let the columns of VY ∈ Rp×s be orthonormal eigenvec-
tors associated with the s largest eigenvalues of Y⊤Y ∈ Rp×p. The dimension-s PCA embedding
is the collection of vectors ζ1, . . . , ζn, defined by:

[ζ1| · · · |ζn]⊤ := YVY (14)

so for each ζi = V⊤
YYi is is a vector in Rs. These quantities are sometimes called principal

component scores [53, 80, 37]. When performing PCA in practice, one often centers the data
about their sample mean. For simplicity of presentation we do not consider such centering here,
although we do not require population centering, that is we do not assume E[Yi] = 0.

The following assumptions about the LMM are introduced to enable theoretical analysis of the
PCA embedding.

A4. The random functions X1, X2, . . . are independent.

A5. supj≥1 supz∈Z E[|Xj(z)|4] <∞ and supj≥1 supi≥1 E[|Eij |4] <∞.

A6. For each p ≥ 1, the rank r of the mean correlation kernel f defined in (2) is finite, and r
and 1/λfr are bounded as p→ ∞.

Theorem 1. Assume A4-A6 and let r be as therein. Let ζ1, . . . , ζn be the dimension-r PCA
embedding of Y ∈ Rn×p under the LMM. Then there exists a random orthogonal matrix Q ∈Rr×r

depending on n and p such that

max
i=1,...,n

∥∥∥p−1/2Qζi − ϕ(Zi)
∥∥∥
2
∈ OP

(
1√
n
+

√
n

p

)
(15)

as n→ ∞ and p/n→ ∞ simultaneously, where ∥ · ∥2 is the Euclidean norm.

Theorem 1 is a corollary to a more detailed non-asymptotic concentration result for the PCA
embedding, theorem 4, stated and proved in appendix D.

Interpretation of theorem 1 and relation to the literature

Theorem 1 implies that for any ϵ > 0, the probability that maxi=1,...,n

∥∥p−1/2Qζi − ϕ(Zi)
∥∥
2
> ϵ

converges to zero as n and p/n grow simultaneously. In that sense ϕ(Z1), . . . , ϕ(Zn) can be recov-
ered from p−1/2ζ1, . . . , p

−1/2ζn, up to an orthogonal transformation, i.e., a transformation which
preserves distances and inner-products. We see that computing the PCA embedding achieves a
form of de-noising: each ζi depends on all three sources of randomness in the LMM, but ϕ(Zi)
clearly depends only on the random latent variable Zi.
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The result has positive implications for different forms of unsupervised learning, such as clus-
tering, topological data analysis or manifold learning in the regime n, p/n → ∞. Viewed as sets,
the point clouds {p−1/2ζi}i=1,...,n and {ϕ(Zi)}i=1,...,n converge to each other in Hausdorff distance,
up to Q, implying convergence of topological summaries such as persistence diagrams [97], and so
on. Broadly speaking, whatever we wish to estimate about M, if we can show the estimator would
be consistent given ϕ(Z1), . . . , ϕ(Zn), there is a reasonable chance to show it is consistent given
p−1/2ζ1, . . . , p

−1/2ζn. The LMM then gives us a way to translate such estimates into statements
about the latent domain Z (see Section 3).

The behaviour of PCA and principal component scores in high-dimensions has been the subject
of intensive theoretical study, e.g., [69, 43, 44, 103, 53, 104, 80, 81, 37]. A central theme in these
works is analysis of the eigenvectors of the sample “covariance” matrix n−1Y⊤Y ∈ Rp×p, which
make up the columns of the matrix VY appearing in (14). It is usually assumed that the data
follow a spiked covariance model (a special case of the LMM in which Z is Euclidean, f is linear
and X1, . . . , Xp are deterministic - see section B for details), with consideration given to various
scaling relationships involving p, n and other parameters. One of the key messages of [43] is that the
eigenvectors of the sample covariance matrix consistently estimate their population counterparts
if and only if p/n→ 0.

Prima facie, theorem 1 may therefore seem surprising, since it says the PCA embedding is
consistent in a regime, p/n → ∞, where PCA was previously said to be inconsistent [43], for the
reasons above. The explanation is that we can obtain a consistent embedding, YVY, without
requiring consistency of VY. The proof of theorem 1 sets out in a crucially different direction: an
elementary linear algebra argument (lemma 5 in section D) shows that p−1/2YVY = UYΛ

1/2
Y ,

where the columns of UY ∈ Rn×r are orthonormal eigenvectors of p−1YY⊤ ∈ Rn×n with asso-
ciated eigenvalues on the diagonal of ΛY. The

√
n/p term in (15) relates to the concentration

behavior of the n×n matrix p−1YY⊤ about its conditional expectation: E
[
(p−1YY⊤)ij |Zi, Zj

]
=

p−1E [⟨Yi,Yj⟩|Zi, Zj ], c.f. (9). The 1/
√
n term in (15) concerns approximations to certain inte-

grals with respect to µ, based on the samples Z1, . . . , Zn, which arise when relating the rows of
UYΛ

1/2
Y to ϕ(Z1), . . . , ϕ(Zn).

The proof of theorem 4 relies heavily on matrix decomposition techniques used by Lyzinski
et al. [58] in the study of spectral embedding of random graphs under a random dot product
model. The uniform nature of theorem 1 is directly inspired by the uniform consistency result of
Lyzinski et al. [58][Thm. 15], which is an instance of convergence with respect to the 2 → ∞ matrix
norm, studied in detail by Cape et al. [13]. We note more generally that singular vector estimation
under low-rank assumptions is an active area of research. As a recent example, Agterberg et al. [2]
obtained finite sample bounds and a Berry-Esseen type theorem for singular vectors under a model
in which the signal is a deterministic low-rank matrix and heteroskedasticity and dependence is
allowed in additive sub-Gaussian noise.

Discussion of assumptions A4-A6

In the proof of theorem 4 and hence theorem 1, the independence assumption A4 and the moment
assumption A9 are used when analysing p−1YY⊤ via matrix a polynomial moment concentration
inequality from [70]. The moment assumption A9 is not particularly restrictive. From a modelling
point of view relaxing A4 to some form of weak dependence or mixing condition would be desirable,
but the authors do not know of any suitable polynomial moment matrix concentration inequalities
which are applicable in that situation.

Concerning assumption A6, that f has finite rank: recall from section 3.4 that the eigenvalues
tend to tail off quickly when f is smooth, in which case assumption A6 might be taken to hold
approximately. Here we will add that if f is polynomial [79] or piecewise polynomial, or if Z has
finitely many points, then f has strictly finite rank. As a result, assumption A6 is mild enough
to include any function f which is obtainable from standard numerical or function approximation
schemes (e.g. Taylor expansion, polynomial splines, etc).

The condition that r is bounded as p → ∞ in A6 can be understood as constraining the
functional complexity of f as p grows. The condition that 1/λfr is bounded as p → ∞ means
that the additive noise whose scale is specified by the constant σ cannot overwhelm the “signal” in
the LMM. If X1, X2, . . . are identically distributed then f , and hence r and λfr , are automatically
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constant in p.
However, the fact that theorem 1 involves choosing the dimension of the PCA embedding to

be equal to r is less realistic, although a very common type of assumption in uniform consistency
results for spectral embedding, e.g. [58]. Truncated spectral embedding of graphs under a model
with an infinite rank kernel was studied by [88], but their results concern a weaker, non-uniform
measure of error than the one we consider here.

4.2 Choosing the PCA dimension
Our model and theory motivate a new method for choosing the embedding dimension, r̂. Before
proceeding, we should make clear that the hat notation in r̂ is meant loosely: we seek a choice
which achieves a good bias/variance trade-off in practice, and this may or may not coincide with
the true rank of the kernel, r. Moreover, we do not claim that there is a ‘best’ choice: different
tasks benefit from different choices. In particular, if using PCA for prediction purposes we simply
recommend cross-validation, as is common practice. For more exploratory analyses, as conducted
here, we propose the following approach instead.

Assuming n is even split the data Y into two, Y(1),Y(2) ∈ Rn/2×p, and for each candidate
dimension ρ, take the orthogonal projection of the rows of Y(1) onto the ρ principal eigenvectors
of Y(1)⊤Y(1) — the resulting n/2 vectors are p-dimensional, just constrained to a ρ-dimensional
subspace. Next, measure how much this projection step has brought the first half closer to the
second, using Wasserstein distance. Select r̂ to be the ρ achieving the smallest distance. The
procedure is described precisely in algorithm 1.

To understand how r̂ might relate to r, let us make a few simplifying assumptions. Suppose
r <∞, so that (with exact equality)

Yi = p1/2Wϕ(Zi) + σEi,

and that the second Wasserstein distance is used, that is dρ = W2(Y
(1)Πρ,Y

(2)) where

W2
2 (A,B) := min

π

1

m

∑
∥Ai −Bπ(i)∥22, A,B ∈ Rm×d,

where Ai and Bi are the ith rows of A and B, and where the minimum is over all permutations
of the integers 1, . . . ,m.

The second Wasserstein distance is particularly amenable to mathematical analysis because of
the following property, which can be checked by direct calculation. If there exist Â1, . . . , Âm such
that for all i, j we have ⟨Ai − Âi,Bj⟩ = 0, then

W2
2 (A,B) =

1

m
∥A− Â∥2F +W2

2 (Â,B). (16)

To see why algorithm 1 might reject overly values of ρ, suppose ρ > r and consider the projection
errors E(1) = Y(1)(Πρ − Πr). With E(1)

i denoting the ith row of E(1) and the superscript (k)
indicating random objects associated with Y(k), suppose

1

p
⟨ E(1)

i ,E
(2)
j ⟩ ≈ 0, and

1

p
⟨ E(1)

i ,
√
pWϕ(Z

(2)
j )⟩ ≈ 0, i, j = 1, . . . , n/2. (17)

Then, using (16),
1

p
d2ρ ≈ 2

np
∥E(1)∥2F +

1

p
d2r,

where ∥E(1)∥2F is non-decreasing in ρ− r, and it follows that we should expect dρ > dr when ρ is
large relative to r.

Why should the approximations in (17) hold? The first is the product of sample-splitting.
If the Ei are statistically independent, then E(2) is statistically independent of V(1)

ρ . Combined
with the fact that the elements of E(2)

i are mean-zero and unit-variance, we therefore expect the
p−1E

(2)
i to be approximately orthogonal to the subspace spanned by the columns of V(1)

ρ , when
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p is large relative to n. The second approximation seems to be reasonable as long as n and p are
large, and we have confirmed this by simulation.

Now consider the case ρ < r. We have

d2ρ = W2
2 (Y

(1)Πρ,Y
(2)) =

2

n
∥Y(2)(Πρ − Ip)∥2F +W2

2 (Y
(1)Πρ,Y

(2)Πρ).

By the Eckart-Young theorem,

∥Y(2)(Πρ − Ip)∥2F ≥
∑
k>ρ

λk(Y
(2)⊤Y(2)) (18)

where λk(Y
(2)⊤Y(2)) is the kth largest eigenvalue of Y(2)⊤Y(2). The r.h.s. of (18) is non-

decreasing in r− ρ. To see that the term W2
2 (Y

(1)Πρ,Y
(2)Πρ) converges to zero as p/n, n→ ∞,

it is convenient to consider the case σ = 0. In this situation,

1

p
W2

2 (Y
(1)Πρ,Y

(2)Πρ) ≤
1

p
W2

2 (Y
(1),Y(2)) =

1

p
W2

2 (Φ
(1)W⊤,Φ(2)W⊤)

where Φ(k) = [ϕ(Z
(k)
1 )| · · · |ϕ(Z(k)

n/2)]
⊤ ∈ Rn/2×r. Appealing to the same arguments as in section

3.1, as p/n → ∞, 1
pW

2
2 (Φ

(1)W⊤,Φ(2)W⊤) is concentrated about W2
2 (Φ

(1),Φ(2)), and the latter
converges to zero as n → ∞ because the rows of Φ(1) and Φ(2) are i.i.d. random vectors in Rr.
It follows that we should expect dρ > dr when ρ is small relative to r, and so overall that dρ will
have a minimum near ρ = r.

A general rule we could draw from these arguments, and which we see in practice, is that to
recommend substantial dimension reduction the algorithm wants to see a large p relative to n, and
noise. Conversely, if the noise level is low or if n is large relative to p, then dρ may keep decreasing
with ρ, which we tend to interpret as contraindication against PCA.

Method comparison

We now explore the performance of Algorithm 1 in a few simulated examples. We consider four
configurations, where each configuration refers to a choice of latent space Z and corresponding
kernel f . In the first configuration, the latent space comprises six distinct elements. The latent
spaces in the remaining configurations are different subsets of R2. In each configuration, we draw
n = 500 points Zi uniformly on Z, and the resulting point sets are shown in figures 6a)1-4.

In the first configuration, we choose an arbitrary 6×6 positive-definite matrix to represent the
kernel. In the second, f(x, y) = (x⊤y + 1)2, which has rank 6; in the third, f(x, y) = {cos(x(1) −
y(1)) + cos(x(2) − y(2)) + 2}, which has rank 5; and in the fourth, f(x, y) = exp(−∥x − y∥2R2/2),
which has infinite rank.

We simulate a 500 × 1000 data matrix Y in each configuration, where the p = 1000 random
functions are independent, zero mean Gaussian processes with the same covariance kernel f , and
the errors Eij are independent and standard normal.

In figures 6c)1-4 we show the Wasserstein error (log-scale), i.e., the distance computed in
Algorithm 1, for different choices of dimension. Reassuringly, the optimum roughly coincides with
the true rank of the kernel when finite (dashed black line, configurations 1-3) and at the same time
it is interesting that a non-degenerate optimum is still found under infinite rank (configuration
4). If we lower the noise, the optimal dimension increases (figure 17, Appendix), reflecting the
afore-mentioned bias/variance trade-off.

For comparison, we also show the dimensions selected using the ladle [57] and elbow methods
[106], as implemented in the R packages ‘dimension’ (on github: https://github.com/WenlanzZ)
and ‘igraph’ (on The Comprehensive R Archive Network), respectively. The ladle and Wasserstein
methods seem to make similar choices, although as implemented the ladle method is computa-
tionally costly, which has precluded more simulations or going beyond max(n, p) = 1000 to allow
a more comprehensive comparison. We would advise against the elbow method for dimension
selection under the LMM, as it appears to favour dangerously low dimensions.

In configurations 3 and 4, there is isometry between M and Z. As a result, we can aim to
recover the path lengths in Z amongst Z1, . . . , Zn from p−1/2ζ1, . . . , p

−1/2ζn – see section 4.4 for
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Algorithm 1 PCA dimension selection
Input: data matrix Y ∈ Rn×p.
1: Split the data as Y(1) := Y1:⌈n/2⌉,1:p, Y(2) := Y(⌈n/2⌉+1):n,1:p

2: for ρ ∈ {1, ...,min(n, p)} do
3: Let V(1)

ρ ∈ Rp×ρ denote the matrix of orthogonal eigenvectors associated with the ρ largest
eigenvalues of Y(1)⊤Y(1)

4: Project Y(1) onto the linear span of the columns of V(1)
ρ , that is compute: Y(1)Πρ where

Πρ := V
(1)
ρ V

(1)⊤
ρ .

5: Compute Wasserstein distance dρ between Y(1)Πρ and Y(2) as point sets in Rp.
6: end for

Output: selected dimension r̂ = argmin {dρ}.

details. This method yields infinite distances when the k-nearest neighbour graph isn’t connected.
Dealing with this issue in a systematic way is awkward, and we settled on the following solution.
Picking ϵ as the 5% quantile of the R2 Euclidean distance matrix between the Zi, we place an edge
between any pair of points within distance ϵ, weighted by Euclidean distance, and approximate the
geodesic distance between two points as the corresponding weighted graph distance. Any infinite
distance remaining is replaced with the original Euclidean distance. The blue line in figures 6d)3-
4 shows the entrywise mean square error between the estimated geodesic distance matrices of
Z1, . . . , Zn and p−1/2ζ1, . . . , p

−1/2ζn, for different choices of r. The optimum roughly coincides
with the dimensions selected by the ladle and Wasserstein methods.

Because of the isometric relationship between M and Z in configurations 3 and 4, we might
also hope that the persistence diagrams of their Rips filtrations would be similar. The red line
in figures 6d)3-4 shows the bottleneck distance between the persistence diagrams of the Rips
filtrations of Z1, . . . , Zn and p−1/2ζ1, . . . , p

−1/2ζn, as implemented in the R package ‘TDA’, for
different choices of r. In this metric, the optimal dimension (lowest bottleneck distance) is lower
than that suggested by the ladle and Wasserstein methods, but we do not know to what extent
this should be expected in general. The scales of the log-Wasserstein error, geodesic distance error,
and bottleneck distance are not comparable and in figures 6d) we have recentered and rescaled
the curves to make their maxima and minima agree.

In figures 6e)1-4 we show the persistence diagrams of the Rips filtrations of p−1/2ζ1, . . . , p
−1/2ζn

computed on the basis of the dimension selected by the Wasserstein method (Algorithm 1), using
the R package ‘TDA’. Recall that in persistent homology the significance of a topological feature
is quantified by its persistence, death minus birth, which is the vertical distance between the point
(birth,death) to the diagonal x = y. Following Fasy et al. [26] we draw a line parallel to x = y to
separate the signal from the noise, picking y = x+0.2 by eye. In each figure, we report the number
of connected components, β̂0, and holes, β̂1, estimated by this heuristic. The true corresponding
values for Z are respectively (6,0), (1,8), (1,0), and (1,1).

4.3 Spherical projection
When performing data analysis we may wish to consider the assumption that f belongs to one
of the families of kernels in proposition 3 or 4, because of their stationarity interpretation, and
because the associated isometry properties would justify use of the PCA embedding to recover
geometric features of Z. However, all these kernels have the property that

p−1

p∑
j=1

E[|Xj(z)|2] = f(z, z) = const., (19)

which from a modelling point of view may be restrictive. We shall now show that the spherically
projected PCA embedding has a model-based interpretation which allows this restriction to be
loosened.

Suppose we are given random functions X1, . . . , Xp such that f(z, z) is constant in z ∈ Z.
Without loss of generality assume this constant is 1. As usual let ϕ be the feature map associated
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Figure 6: PCA dimension selection. Columns 1-4: different latent space/kernel configurations.
1-3 are finite rank, 4 infinite rank; configurations 3 and 4 are isometric. Row a: sampled positions
(n = 500); b: first two principal components (p = 1000); c: the dimension selected by different
methods, and the true rank when finite; d: error in geodesic distance and persistence diagram
estimation (bottleneck distance) for the isometric configurations; e: persistence diagrams showing
partial recovery of true topological features. Further details in main text.
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with f . Note that in this situation M is a subset of the unit hypersphere {x ∈ ℓ2 : ∥x∥ℓ2 = 1}.
With α1, . . . , αn being i.i.d. random variables whose distribution is supported on a compact set
A ⊂ R+, define the model:

Yij = αiXj(Zi) + σEij . (20)

This can be viewed as a particular form of LMM with extended latent space Zext := A× Z and
extended random functions Xext

j (α, z) := αXj(z). Its mean correlation kernel is:

f ext(α, z, α′, z′) :=
1

p

p∑
j=1

E
[
Xext

j (α, z)Xext
j (α′, z′)

]
= α⟨ϕ(z), ϕ(z′)⟩ℓ2α′,

the Mercer feature map of f ext satisfies: ϕext(α, z) = αϕ(z), and we have p−1
∑p

j=1 E[|Xext
j (α, z)|2] =

α2, allowing more flexibility than (19).
Now suppose assumption A6 holds, let ζ1, . . . , ζn be the dimension-r PCA embedding com-

puted from Y under the extended LMM (20) and consider the spherical projection ζspi := ζi/∥ζi∥2.
Using the identities ∥ϕext(α, z)∥2 = α∥ϕ(z)∥2 = αf(z, z)1/2 = α, and applying the triangle in-
equality several times gives:

∥Qζspi − ϕ(Zi)∥2 =

∥∥∥∥ p−1/2Qζi
p−1/2∥ζi∥2

− ϕext(αi, Zi)

∥ϕext(αi, Zi)∥2

∥∥∥∥
2

≤ 2
∥p−1/2Qζi − ϕext(αi, Zi)∥2

αi − ∥p−1/2Qζi − ϕext(αi, Zi)∥2
,

where Q is any orthogonal matrix. Theorem 1 could therefore be applied to the LMM (20) to estab-
lish that for the particular Q in that theorem, ∥p−1/2Qζi−ϕext(αi, Zi)∥2 → 0, which by the above
inequality implies ∥Qζspi − ϕ(Zi)∥2 → 0. In summary, under the model (20), ϕ(Z1), . . . , ϕ(Zn) can
be recovered from the spherically projected embedding ζsp1 , . . . , ζ

sp
n , up to an orthogonal transfor-

mation.

4.4 Nearest neighbour graph construction
Constructing a nearest neighbour graph from the PCA embedding allows us to approximate topo-
logical and geometric features of M and hence Z. In keeping with the workflow set out in
section 1, we focus on the spherically projected embedding ζsp1 , . . . , ζ

sp
n but very similar consid-

erations apply to the raw embedding ζ1, . . . , ζn. Noting that ∥ζspi ∥2 = 1 for all i, we denote by
dS(ζ

sp
i , ζ

sp
j ) := arccos(⟨ζspi , ζ

sp
j ⟩2) the circular arc distance on the unit hypersphere.

There are two popular types of nearest neighbour graph: the ϵ-nn and k-nn graphs, both of
which are undirected, weighted graphs with n vertices, identified with ζsp1 , . . . , ζ

sp
n . There is an

edge between ζspi and ζspj in the ϵ-nn graph if dS(ζ
sp
i , ζ

sp
j ) ≤ ϵ, and in the k-nn graph if ζspi is one

of the k-nearest (with respect to dS) neighbours of ζspj or vice versa. In both types of graph, if
there is an edge between ζspi and ζspj it is assigned weight dS(ζ

sp
i , ζ

sp
j ). A number of algorithms for

identifying nearest neighbours exactly or approximately are available, for example in the Python
library scikit-learn [72].

Recalling (29), nearest neighbour graph distances can be used to approximate shortest path
lengths in M:

dgeoM (ϕ(Zi), ϕ(Zj)) ≈ Dij
M := min

x1,...,xm

{dS(x1, x2) + · · ·+ dS(xm−1, xm)} ,

where the minimum is over all paths in the nearest neighbour graph connecting x1 = ζspi and
xm = ζspj . If there are no such paths, Dij

M = ∞ by convention.
Various fast algorithms for computing shortest paths and shortest path lengths are available,

for example in the Python library NetworkX [33].
The use of nearest neighbour graphs to approximate path lengths on manifolds is well studied

and is the first step in the Isomap procedure [89]. The theoretical accuracy of such approximations
has been analysed by [7, 93]. In particular [93] note that the k-nn graph is often preferred in
practice although its analysis is more complicated. They also note that choosing a single value for
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ϵ or k is a difficult problem in general. Where possible in the examples of section 5 we compute
and analyse the nearest neighbour graph over a range of values for ϵ or k, rather than selecting
one single value. This approach is similar in spirit to the computation of ϵ-nn graphs over a range
of ϵ values in persistent homology techniques [14, 17].

5 Examples
In the following three real data examples, we will assume the LMM holds and explore hypotheses
about the latent domain, Z, feature map, ϕ, and the manifold underlying the data, M = ϕ(Z).
In all examples, we have access to background information. In some cases, such as the first
hypothesis in the image and transcriptomics examples, the background points us towards generic
hypotheses, such as ‘M is a loop’ or ‘M is a tree’. In others, e.g. the second hypothesis in the
image and transcriptomics examples, the information is used more explicitly to obtain trial values
for Z, realisations zi of Zi, and to estimate parts of the model. Although we provide baseline
comparisons against uniform models, the workflow we present is designed for exploratory rather
than confirmatory analysis and should not be viewed as formal hypothesis testing.

The code and data used are available here: https://github.com/anniegray52/explore_
manifold_hyp

5.1 Images
We return to the data set of images described in section 1. Recall there are n = 72 images, each
consisting of p = 110592 grey-scale pixels, taken from angles 0, 5, 10, . . . , 355 degrees around the
circumference of a circle. We will assume XY coordinates for the camera positions, cos(θi), sin(θi)
for each angle θi (converted to radians). In this context, we will first consider the hypothesis:

1. Z is a circle and ϕ is a homeomorphism. An informal implication is: The data lie close to a
loop.

Finding the data consistent with the above, we will consider the stronger hypothesis:

2. Z is the circle of camera positions, zi = (cos(θi), sin(θi)) are the (known) camera positions,
and ϕ is a scaled isometry. An informal implication is: Distances along the loop correspond
to distances along the circle between camera positions.

The first step of the workflow is to apply the dimension selection method. As per figure 7a),
this results in r̂ = 11. The kernel density estimate in 7b) demonstrates the variation in the
magnitudes of the dimension-r̂ PCA embedding vectors ∥ζ1∥2, . . . , ∥ζn∥2; in all subsequent steps
we instead work with the spherically projected embedding ζsp1 , . . . , ζ

sp
n as per (4.3).

We now consider the first hypothesis, which would be mathematically justified by assumption
A2, with Z (say) the unit circle on R2 (dZ the Euclidean metric). Then indeed ϕ would be a
homeomorphism and M would be topologically equivalent to a circle. Conveniently in this exam-
ple, the presence of loops or holes in data point-clouds can be assessed using persistent homology
techniques [14, 17]. Figure 7c) shows a persistence diagram computed from the spherically pro-
jected PCA embedding using the Python package Ripser.py [91]. The blue dot on the horizontal
dashed line is indicative of a single connected component with persists over a large range of length
scales. The isolated single orange dot close to the horizontal dashed line is indicative of a single
“loop” in the embedding, also persisting over a large range of length scales. This is consistent with
the hypothesis.

We now consider the second hypothesis, which by proposition 4 would be mathematically jus-
tified by the mean correlation kernel being of the form f(z, z′) = g(⟨z, z′⟩) in some neighbourhood
of z = z′ (or equivalently ⟨z, z′⟩ = 1), and g′(1) > 0 (recall proposition 4). On the hypothesis
assumption that zi = (cos(θi), sin(θi)), figure 7d) shows f̂(zi, zj) := ⟨ζspi , ζ

sp
j ⟩, which we regard

as an estimator of f(zi, zj), plotted as a function of θi and θj . The fairly constant width of
the pronounced yellow/white diagonal stripe in this plot admits the interpretation that indeed
f(z, z′) = g(⟨z, z′⟩) in a neighbourhood of z = z′. To examine this in more detail, figure 7e) plots
values of f̂(zi, zj) against ⟨zi, zj⟩ over all i, j = 1, . . . , n. The red dashed ellipse highlights that
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Figure 7: Images example. a) Wasserstein dimension selection; red vertical line indicates minimum
at r̂ = 11. b) Kernel density estimate for the magnitudes of the PCA embedding vectors. c)
Persistence diagram shows evidence of a single “loop” in the embedding. d) Estimated kernel as
a function of latent positions in angular form θi = arctan(z

(2)
i /z

(1)
i ). e) Estimated kernel as a

function of latent inner product ⟨zi, zj⟩, the red dashed ellipse highlights f̂(zi, zj) in the region
⟨zi, zj⟩ ≈ 1. f) Evidence of a linear relationship between shortest path lengths computed from the
nearest neighbour graph G (y-axis), and from the latent positions (x-axis).

f̂(zi, zj) is approximately an increasing function of ⟨zi, zj⟩ in a neighbourhood of zi = zj , which
is consistent with g′(1) > 0. Informed by (13) we thus anticipate there is isometry between M
and Z, up a scaling factor of g′(1)1/2. To see if the data are consistent with such a relationship
we compute the k-nn graph G as per section 4.4 with k = 2. This is the natural choice for k if M
is topologically equivalent to a circle. Figure 7f) shows shortest path lengths Dij

M in G plotted
against shortest path lengths around the circle, denoted Dij

Z , over i, j = 1, . . . , n. The clear linear
relationship is consistent with there being little deviation from isometry, up to a scaling factor,
which by a straight line fit in figure 7f) we can estimate: g′(1) ≈ 3.18.

5.2 Single-cell transcriptomics
We now revisit the planarian single-cell transcriptomics example introduced in section 1. Recall
that here we have p = 5821 dimensional gene expression data in n = 5000 cells from adult
planarians, and we also know cell-type labels for each of these cells, indicated by the different
colours in figure 2. Adult planarians have a large number of pluripotent stem cells, known as
neoblasts, that continuously differentiate into all adult cell types, resulting in a lineage tree that
connects all the cells in the whole animal. We represent this lineage by a continuous tree (formally
defined later) and suppose the cell types are named positions, ci, on this tree.

In this context, we will first consider the hypothesis:

1. Z is a continuous tree and ϕ is a homeomorphism. An informal implication is: The data lie
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close to a tree.

Finding the data consistent with the above, we will consider the stronger hypothesis:

2. Z is the lineage tree, zi = ci are the (known) cell types, and ϕ is a homeomorphism.
Informally: the tree represents the lineage of the cell types.

In graph theory, a tree is an undirected graph in which any two vertices are connected by a
unique path. We consider an analogue of this concept which reflects the continuous nature of cell
differentiation. Inspired by definitions in [63, 41], we say a metric space Z is a continuous tree if
for any z, z′ ∈ Z there exists a homeomorphism ψ between [0, 1] and some subset of Z such that
ψ(0) = z and ψ(1) = z′ (this means a continuous path in Z exists between z and z′), and all such
homeomorphisms have the same image (this means the path is unique).

Following the workflow in section 1, dimension selection results in r̂ = 14. We then calculate
the dimension-r̂ embedding and its spherical projection ζsp1 , . . . , ζ

sp
n . For the remainder of this

section we refer to the latter as the PCA embedding.
We now consider the first hypothesis, which would be mathematically justified by assumption

A2. Then M equipped with the ℓ2 distance also qualifies as a continuous tree, as the composition
of two homeomorphisms is a homeomorphism. To gain some preliminary insight into the structure
of the PCA embedding, figure 8a) shows, in red, a histogram of inner products between all distinct
pairs of embedding points ζspi , ζ

sp
j . As a baseline comparison, we generated a random embedding

consisting of the same number n = 5000 points uniformly distributed on the r̂-dimensional, unit-
radius hypershere. Figure 8a) shows, in black, a histogram of inner-products between all distinct
pairs of points in this random embedding. We see this black histogram is symmetrical and con-
centrated around 0. By contrast, the red histogram is not symmetrical and exhibits two peaks.
The peak near an inner product value of 1 indicates a substantial proportion of pairs of points
ζspi , ζ

sp
j which are much closer together than is observed in the random embedding. Many other

pairs ζspi , ζ
sp
j have inner products between −0.5 and 0, indicating they are spread out on the hy-

persphere, but not in the same way that uniformly random points are spread out. On the basis of
this preliminary check we see no reason to rule out tree structure in the PCA embedding. We now

Figure 8: Single-cell transcriptomics example. a) histogram of inner products between distinct
points in the PCA and random embeddings. b) average percentage increase in shortest path length
in the minimum spanning tree compared to the k-nn graph, over different values of k. Results
for the random embedding are shown in black, over 10 simulations with error bars indicated
2×standard error, c) comparing the shortest path lengths for samples in 10-nn graph and the
MST.

quantify how “tree-like” the PCA embedding is in two steps. First we compute the k-nn graph of
the PCA embedding as per section 4.4, and its minimum spanning tree. The latter is obtained
by removing edges from the k-nn graph until a tree is formed, in such a way that the total edge
length of the tree is minimal. Various fast algorithms for computing minimum spanning trees
are available, we used the Python library NetworkX [33]. The second step is to compare shortest
path lengths in the k-nn graph to those in the minimum spanning tree. The shortest path length
between any pair of vertices in the minimum spanning tree can only be greater than or equal to
the shortest path length between those vertices in the k-nn graph. The percentage increase in
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shortest path length, when averaged over all pairs of vertices, serves as a univariate statistic which
quantifies how tree-like the k-nn graph is. If the k-nn graph were a tree, this statistic would be
exactly zero.

Figure 8b) shows the average percentage increase in shortest path length, as a function of
k. The red line shows the results for the PCA embedding. The black line and error bars show
the same quantity computed from repeated simulations of the random embedding, serving as a
baseline for comparison. We see that across all values of k, the average percentage increase in
shortest path length is much lower for the PCA embedding than for the random embedding. This
indicates that the minimum spanning tree is a close approximation to the k-nn graph of the PCA
embedding. To take a finer-grained look, figure 8b) shows shortest path lengths in the minimum
spanning tree, versus in the k-nn graph with k = 10, for all pairs of vertices. The blue “y = x” line
indicates the lower bound on path length increase which would be achieved if the k-nn graph were
a tree. Overall, the findings in figure 8 are consistent with the PCA embedding of the planaria
data being tree-like.

We now consider the second hypothesis. The left plot in figure 9 shows a visualisation of
the minimum spanning tree derived from the k-nn graph with k = 10, with vertices coloured by
the known cell type labels. This visualisation was obtained using the Scaleable Force Directed
Placement graph layout algorithm [40]. From the colouring by cell type, we see that biologically
similar types, such as the three types of muscle cell, appear in localised branches of the tree.

Figure 9: Single-cell transcriptomics example. a) minimum spanning tree computed from the the
spherically projected PCA embedding of the planaria data, colours indicate cell types. b) the
class graph formed from the minimum spanning tree. All neoblast cell types are represented by
a single dark grey node. The class subgraph consisting only of neoblast types is shown in the
bottom right-hand corner inset.

We next construct a “class graph” which captures the relationships between cell types implied
by the minimum spanning tree in figure 9a). In this class graph, each vertex corresponds to a cell
type, and the undirected edge weight between any two vertices in the class graph is defined to be
the total number of edges in the minimum spanning tree between cells of those two types.

The class graph is shown in figure 9b). The size of each node represents the total number of cells
of that type. The thickness of the edges reflects their weights in the class graph, although for visual
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clarity we do not draw some edges with very low weights. Figure 9 elucidates cell development,
tracing the lineage from stem cells to progenitors and differentiated cell populations: neurons,
muscle cells, protonephridia, epidermis, and secretory cells.

The original paper [74] provides a consolidated tree, which amalgamates various evidence types.
The overall structure aligns with our nearest neighbour approach, with branches for individual
known cell types, however, discrepancies exist in the form of minor variations in the differentiated
cell populations. For example, cav-1+ neurons connect to ChAT neurons 1 rather than neural
progenitors. Additionally, a more interconnected secretory cell network is found in the class
graph. In the consolidated tree, two connections are added based on marker gene analysis (genes
known to be present in specific cell types): muscle pharynx to muscle body and from epidermis
to the epidermal lineage. In contrast, the nearest-neighbour approach employed here identifies
these connections. Acknowledging these differences, we refrain from delving further into minor
disparities, given the current paper’s intended scope.

For visual clarity, we draw a single node grouping together all the neoblast 1-13 cell types. The
subgraph of the class graph corresponding to these neoblast types is shown in the inset of figure
9b), revealing a large number of neoblast 1 cells, linked by edges to most other neoblast cell types.
This aligns with the results of the original authors, but contrasts with previous studies [96], [61],
which suggested distinct fates for various neoblast types. These disparities might be due to the
unique ability of specialised neoblast cells to maintain pluripotency [76] or the sensitivity of the
single-cell transcriptomic method, as in [74].

5.3 Temperature time series
In this example the raw data are time series of average daily temperatures in n = 265 towns and
cities, on p = 1450 days. The data originate from the Berkeley Earth project [1]. Our objective is
to explore the relationship between temperature deviations and geographic locations of the towns
and cities. To do so we take the ith data vector Yi to be the temperature time series for town
or city i centered about its long-run average. Thus geometry of the data point-cloud Y1, . . . ,Yn

as specified by the inner products p−1⟨Yi,Yj⟩ reflects the lag-zero cross-correlations amongst the
time series.

In this context, we will first consider the hypothesis:

1. Z is a geographic region, zi = (latitutei, longitudei) are the (known) geographical locations
of towns or cities, ϕ is a scaled isometry. An informal implication is: geodesic distances in
M reflect geographical distances.

On rejecting the above, we ask if we can at least entertain:

2. Z is a geographic region, zi = (latitutei, longitudei) are the geographical locations of towns
or cities, ϕ is a scaled isometry in certain subregions.

This will be found to hold approximately in e.g. central Europe.
Following the workflow from section 1, figure 10a) shows the results of dimension selection,

figure 10b) illustrates the variability of the magnitudes ∥ζi∥2 of the non-projected embedding
vectors, and we work henceforth with the spherically projected embedding as per section 4.3.

We now consider the first hypothesis, which by proposition 4 would be mathematically justified
if the temperatures on a given day were stationary processes over Earth (a ‘sphere’). If isometry
between Z and M were to hold up to a scaling factor, then the k-nearest neighbours of zi amongst
{zj ; j ̸= i} would correspond to the k-nearest neighbours of ϕ(zi) amongst {ϕ(zj); j ̸= i}, with
respect to dgeoM . In order to see if the data are consistent with the hypothesis of isometry, we
therefore compute the proportion of edges in common between the embedding k-nn graph G (as
per section 4.4), and the geographic k-nn graph defined by the known locations z1, . . . , zn. Figure
10c) shows this proportion as a function of k. As a baseline to help interpret these results, we
sampled n points uniformly from the r̂-dimensional unit hypersphere, derived the k-nn graph
from these points, then computed the proportion of edges in common with the geographic k-
nn graph. This was repeated independently 100 times, and the resulting minimum, mean and
maximum proportions of edges in common for each k are shown in red and black in figure 10c).
The correspondence between G and the geographic k-nn graph is much better than under this
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uniform model. However, we see that as k increases up to 50, the embedding k-nn graph has
about 70% of edges in common with the geographic k-nn graph, but increasing k further up to
about k = 130 does not increase this percentage further. This plateauing suggests isometry does
not hold.

We now consider the second hypothesis. The plateauing leaves open the possibility that there
may be coincidence between the embedding and geographic k-nn graphs in some localised areas of
Z but not in others. Indeed isometry as in (11) or (12) requires equality of shortest path lengths
for all z, z′ ∈ Z. Figure 11 shows the locations of the towns and cities, and the edges in the
embedding k-nn graph G, with k = 5 chosen so that according to figure 10c) the embedding and
geographic k-nn graphs have around 50% of edges in common. We see from figure 11 that in some
regions, especially in central Europe, edges in the embedding k-nn graph generally correspond to
geographic proximity, but elsewhere this correspondence does not hold. For example there are
edges connecting Edinburgh, U.K., to cities in Norway which are not amongst its geographically
nearest neighbours. Similarly, there are edges connecting Novorossiysk, Russia, to cities on the
opposite shore of the Black Sea which are not amongst its geographically nearest neighbours.
Conversely, geographic proximity does not always imply presence of an edge. For example, there
are no edges between Baia Mare, Romania, and two geographically close cities directly to the east,
on the other side of the Carpathian mountains.

Figure 10: Temperatures example. a) Wasserstein dimension selection; red line indicates minimum
at r̂ = 36. b) Kernel density estimate of the probability density of PC score magnitudes. c) The
blue curve shows proportion of edges in common between embedding k-nn graph and geographic
k-nn graph. The black line shows the mean proportion in common between the k-nn graph of a
100 uniformly random embeddings and the geographic k-nn graph. The red band indicates the
range between maximum and minimum proportions across these 100 random embeddings.

Plotting the k-nn graph G in this way shows presence or absence of edges, but it doesn’t
convey the weight of these edges in the k-nn graph G, which as per section 4.4, can approximate
distances dgeoM . Since the embedding is of dimension r̂ = 36, it is challenging or perhaps impossible
to construct a two-dimensional visualisation which faithfully conveys all aspects of its geometry.
However, the visualisation task is much simpler if we choose some town or city, and then visualise
the shortest paths in the embedding k-nn graph from that city to all other cities — the graph
consisting of the union of all such paths is sometimes called a shortest path tree.

Figure 12 shows the shortest paths in G from Tallinn, Estonia, to all other towns and cities.
Each such path is a sequence of towns or cities, and is visualised as a spline with knot points
given by the locations of these towns and cities, with colour indicating length. Tallinn was chosen
because of the different relationships between these shortest paths and geographic shortest paths
which can be seen in different regions: the shortest paths in G which terminate at some towns
and cities in central Europe, to the south-west of Tallinn, resemble geographic shortest paths,
indicating a geometric relationship not far removed from isometry. By contrast, the red dots in
figure 12 highlight the shortest path in G from Tallinn to Tripoli, Libya. This path passes through
Sweden, Norway, the U.K., Ireland, France, Spain, back to France and then Italy. Clearly, this is
not the geographically shortest path from Tallinn to Tripoli, indicating a strong deviation from
isometry in these regions. Recalling from section 3.3 the relationship between weak stationarity
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and isometry, this deviation from isometry implies a pronounced lack of stationarity (with respect
to geographic location) in these regions.

Figure 11: Temperatures example. Locations of towns and cities are shown in red. The blue lines
correspond to edges in the embedding k-nn graph G, with k = 5. The white circles highlight, from
west to east: Edinburgh, U.K.; Baia Mare, Romania; and Novorossiysk, Russia.

Figure 12: Temperatures example. Shortest paths in the embedding k-nn graph G from Tallinn,
Estonia, to all other towns and cities. Each shortest path is visualized as a spline, with knot points
given by the geographic locations of its constituent towns and cities. The red dots highlight the
shortest path from Tallinn to Tripoli, Libya.
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6 Conclusion
Conventional interpretation of the Manifold Hypothesis as per the quote from [16] in section 1 is
that data vectors Y1, . . . ,Yn ∈ Rp are samples from some distribution supported on a manifold
embedded in Rp, perhaps subject to noise disturbances. Our analysis of the LMM in section
3 provides a more nuanced perspective: Y1, . . . ,Yn are noisy, random projections of samples
on a manifold M; the manifold itself is a high-dimensional distortion of some latent domain Z
and arises due to correlation over Z. Under appropriate assumptions, M is homeomorphic or
isometric to Z. This perspective leads us to a ‘model-informed’ workflow, involving PCA and
nearest neighbour graph construction, in which we think about the data in relation to M, and
then M in relation to Z, to explore hypotheses about the topological and geometric structure of
Z.

In how much generality is this perspective applicable? Inspired by remarks of [94] in the
context of latent variable models of low-rank matrices, we note the basic structure of the LMM,

Yij = Xj(Zi) + σEij , (21)

resembles a representation formula for exchangeable arrays due to Aldous [3]: if Y is any infinite
two-dimensional array of random variables such that permutations of its rows or columns do not
alter the distribution of Y, then there exists a function h such that the following equality in
distribution holds

Yij
d
= h(ξ, Zi, Xj , Eij) (22)

where ξ and the Zi’s, Xj ’s and Eij ’s are i.i.d. U [0, 1]-distributed random variables. Putting aside
the fact that in the LMM the rows of Y are exchangeable but the columns need not be, the
resemblance between (21) and (22) indicates that the LMM is rather general, albeit constrained
to an additive form of error. The ability of PCA to extinguish noise, as characterised in theorem
1, seems closely tied to this additive structure.

What are the limitations of the data analysis workflow we have proposed? This workflow
is intentionally generic, and suitable for preliminary exploration of data and hypotheses about
the data generating mechanism. It could serve as a first step before more detailed confirmatory
analysis of a given data set, in order to quantify uncertainty, perform formal hypothesis testing,
or fit a parametric model, and so forth, but it clearly does not include those functionalities.
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A Supporting results for section 2
The following version of Mercer’s theorem can be found in [85, Thm 4.49].

Theorem 2 (Mercer’s theorem). Let Z be a compact metric space and let f : Z × Z → R, be a
symmetric, positive semi-definite, continuous function. Let µ be a finite Borel measure supported
on Z. Then there exists a countable collection of nonnegative real numbers (λfk)k≥1, λ

f
1 ≥ λf2 ≥ . . .

and R-valued functions (ufk)k≥1 which are orthonormal in L2(µ), such that:

f(z, z′) =

∞∑
k=1

λfku
f
k(z)u

f
k(z

′), z, z′ ∈ Z,

where the convergence is absolute and uniform.

B Special cases of the LMM
Spiked covariance model

The spiked covariance model [42, 69] is the de facto standard model under which to study the
theoretical properties of PCA, and is derived as follows. Let X ∈ Rn×p be a matrix of random
variables such that E[X⊤X] has rank r. Consider the eigendecomposition n−1E[X⊤X] = VΛV⊤,
where V ∈ Rp×r, and define Z := XVΛ−1/2. We have

E
[
Z⊤Z

]
= nIr, V⊤V = Ir, (23)

and X = ZΛ1/2V⊤, a.s., where the latter equality can be checked by verifying

E[∥X− ZΛ1/2V⊤∥2F] = trE[(X− ZΛ1/2V⊤)⊤(X− ZΛ1/2V⊤)] = 0.

The spiked covariance model takes the form:

Y = ZΛ1/2V⊤ + σE,

where the elements of E ∈ Rn×p are usually assumed to be zero-mean, unit variance and un-
correlated. The rows of Z ∈ Rn×r are called individual-specific random effects, and are usually
assumed to be i.i.d. The following proposition shows that a spiked covariance model of precisely
this form is a special case of the LMM.

Proposition 5. For any r < ∞, let the rows of Z ∈ Rn×r be i.i.d. random vectors such that
the first equality in (23) holds, let Λ = diag(λ1, . . . , λr) where λ1, . . . , λr are any strictly positive
real numbers and let V = [v1| · · · |vp]⊤ ∈ Rp×r be any deterministic matrix such that the second
equality in (23) holds. Then, if Y follows the Latent Metric Model specified by:

Z ⊂ Rr, [Z1| · · · |Zn]
⊤ := Z Xj(z) :=

〈
vj ,Λ

1/2z
〉
, (24)

the mean correlation kernel associated with this Latent Metric Model is:

f(z, z′) =
1

p
⟨z,Λz′⟩ ,

which has rank r, λfk = λk/p, [u
f
1 (z) · · · ufr (z)]⊤ = z ∈ Rr and the following identity holds:

Y = ZΛ1/2V⊤ + σE.

Proof. The claimed expression for f(z, z′) holds by substituting the definition of Xj(z) in (24) into
the definition f(z, z′) := p−1

∑p
j=1 E[Xj(z)Xj(z

′)] and using the assumption of the proposition
that V⊤V = Ir. The eigenfunctions [uf1 (z) · · · ufr (z)]⊤ = z ∈ Rr are orthonormal due to the
assumption E

[
Z⊤Z

]
= nIr and the i.i.d. nature of the rows of Z. The expression for Y in

the statement holds by substituting (24) into the definition of Y under the LMM, i.e., Yij =
Xj(Zi) + σEij .
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The relationship between the spiked covariance model (SCM) and the LMM can thus be
summarised as follows:

• the metric space (Z, dZ) in the LMM generalizes the Euclidean domain of individual-specific
random effects in the spiked covariance model;

• the eigenfunctions ufk , k ≥ 1, in the LMM generalise the linear dependence on individual-specific
random effects in the SCM;

• the random functions Xj , j = 1, . . . , p, in the LMM generalise the deterministic, linear functions〈
vj ,Λ

1/2z
〉
, j = 1, . . . , p, which in light of (24) are implicit in the SCM;

• the LMM allows for possibly infinite rank, generalising the finite-rank nature of the SCM.

Gaussian Process Latent Variable model

When Z is a subset of Rd and X1, . . . , Xp are independent and identically distributed Gaussian
processes, the LMM reduces to the Gaussian Process Latent Variable model of Lawrence [50],
Lawrence and Hyvärinen [49]. In this case the elements of the matrix W are independent and
identically distributed N (0, 1) and the aforementioned authors derive a likelihood function with
these variables out. Assuming f belongs to a given parametric family, e.g., a radial basis function
kernel, Lawrence and Hyvärinen [49] proposed maximum a-posteriori estimation of Z1, . . . , Zn,
parameters of the kernel and σ2 using a gradient method. Titsias and Lawrence [90] proposed
alternative variational methods with enable model assessment. Lawrence [51] derived a Gaussian
Markov random field model related to a GPLVM through which Locally Linear Embedding [78]
has a statistical interpretation.

Finite mixture model

Consider the case where Z has finitely many elements, say Z = {1, . . . ,m}. For the following
discussion it is not important that we take these elements to be the numbers 1, . . . ,m, any m
distinct abstract elements will do. In this situation the LMM is a form of finite mixture model
with random mixture centres. Indeed we see from:

Yij = Xj(Zi) + σEij

that [X1(z) · · · Xp(z)] can be interpreted as the p-dimensional random centre of a mixture com-
ponent labeled by z ∈ Z, and the latent variable Zi indicates which mixture component the ith
row of the data matrix Y is drawn from. The simple form of the noise in the LMM constrains
the generality of this mixture model: recall the elements of E are independent across columns;
elements in the same column but distinct rows are uncorrelated; all elements are unit variance.

To make Z into a metric space we consider the discrete metric dZ(z, z
′) := 0 for z = z′,

otherwise dZ(z, z′) := 1. The kernel f is specified by the matrix F ∈ Rm×m with entries

Fkl :=
1

p

p∑
j=1

E[Xj(k)Xj(l)], k, l ∈ {1, . . . ,m}.

In this situation A1 and A6 hold immediately, and r ≤ m.
Topological equivalence of M and Z in this situation would mean that M consists of m

distinct points {ϕ(1), . . . , ϕ(m)}, each associated with exactly one element of Z. If such topological
equivalence were to hold then theorem 1 would tell us that the PCA embedding vectors will be
clustered around the m distinct points {Q−1ϕ(1), . . . ,Q−1ϕ(m)}, with specifically p−1/2ζi being
close to Q−1ϕ(Zi).

To verify topological equivalence it remains to check A2 holds. To this end, suppose that
r = m, i.e. F is full rank. Then it is not possible that any two rows of F are identical. That is,
for k, l ∈ {1, . . .m} such that k ̸= l , there must exist some ξ ∈ {1, . . . ,m} such that f(k, ξ) =
Fkξ ̸= Flξ = f(l, ξ). Thus assumption A2 is satisfied and hence M is topologically equivalent to
Z if r = m.
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In practical terms, we therefore see that in order to organise the n rows of Y into m clus-
ters, one can first reduce dimension to r = m by computing the PCA embedding and then
apply some clustering technique to those embedding vectors. This two-step procedure of PCA
followed by clustering, sometimes described as spectral clustering, is very popular in the practice
of high-dimensional data analysis and is exactly what Yata and Aoshima [105] recommend in the
conclusion of their study of PCA embedding for mixture models in a regime where the number of
samples is fixed and the dimension tends to infinity. It is already known that PCA, albeit under
slightly different variations and assumptions, allows for “perfect clustering” in high-dimensional
mixture models [56, 2].
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Figure 13: Mixture model example. Left: maximum error
maxi ̸=j

∣∣p−1/2∥ζi − ζj∥2 − ∥ϕ(Zi)− ϕ(Zj)∥ℓ2
∣∣, averaged over 50 independent realisations from the

model, as a function of n and p. Right: the same error for p = 200, 1000, 15000, as a function of
n.

To illustrate the behaviour of the LMM and PCA embedding in this context, we consider
a case in which Z = {1, 2, 3} and µ is the uniform distribution on Z; for each j = 1, . . . , p,
[Xj(1) Xj(2) Xj(3)]

⊤ ∼ N (0,Σ) where Σ is full-rank; and the elements of E are independent and
identically distributed N (0, 1) with σ = 1. Figure 13 shows the error maxi ̸=j

∣∣p−1/2∥ζi − ζj∥2 − ∥ϕ(Zi)− ϕ(Zj)∥ℓ2
∣∣,

averaged over 50 independent realisations from the model. The plot on the left of the figure indi-
cates that over the ranges considered, for fixed n the error decreases as p increases. Theorem 1 is
not informative about the converse situation, when p is fixed and n increases: in this regime, the
condition of theorem 4 involving a lower bound on n will eventually be satisfied, but the condition
involving a lower bound on p/n will eventually be violated. We examine this in the right plot of
figure 13. We see that for fixed p, as n increases the error initially quickly decreases, but then the
appears to very slowly increase n≫ p. We conjecture the former and is related to the 1/

√
n term

in (15).
Figure 14 illustrates how this error performance relates to the clustering of the PCA embedding

vectors. When n is fixed, we see that as p increases the embedding vectors are increasingly tightly
clustered around ϕ(1), ϕ(2), ϕ(3), in keeping with theorem 1. When p is fixed, we see that three
clusters of embedding vectors are clearly discernible, but the clusters appear not to shrink as n
grows.

Overall we conclude that, whilst theorem 1 shows that both n and p/n being large is sufficient
to drive the error to zero, our numerical results suggest that for fixed p the error does not explode
as n grows, and even when n≫ p it may be that the PCA embedding still conveys the topological
or geometric structure of M and hence Z.
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Figure 14: Mixture model example. PCA embedding {p−1/2ζ1, . . . , p
−1/2ζn} (blue dots) and

ϕ(1), ϕ(2), ϕ(3) (red dots). Top row: n fixed to 200 and p varying. Bottom row p fixed to 200 and
n varying.

C Proofs and supporting material for section 3
Proof of Proposition 1. Define

W̃jk :=

∫
Z
Xj(z)u

f
k(z)µ(dz), (25)

and note that
W̃jk = p1/2(λfk)

1/2Wjk, (26)

where Wjk is defined in (7).
Pick any r0 ≤ r and recall r ∈ {1, 2 . . . , }∪{∞} is the number of nonzero eigenvalues (λfk)k≥1.

We claim that, for any z ∈ Z, the following equality holds:

1

p

p∑
j=1

E

∣∣∣∣∣Xj(z)−
r0∑
k=1

ufk(z)W̃jk

∣∣∣∣∣
2
 = f(z, z)−

r0∑
k=1

λfk |u
f
k(z)|

2. (27)
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To verify the equality (27), observe:

1

p

p∑
j=1

E

∣∣∣∣∣Xj(z)−
r0∑
k=1

ufk(z)W̃jk

∣∣∣∣∣
2


=
1

p

p∑
j=1

E
[
|Xj(z)|2

]
− 2

p

p∑
j=1

E

[
Xj(z)

r0∑
k=1

ufk(z)W̃jk

]

+
1

p

p∑
j=1

r0∑
k=1

r0∑
ℓ=1

E
[
W̃jkW̃jℓ

]
ufk(z)u

f
ℓ (z)

= f(z, z)− 2

r0∑
k=1

ufk(z)

∫
Z
f(z, z′)ufk(z

′)µ(dz′)

+

r0∑
k=1

r0∑
ℓ=1

ufk(z)u
f
ℓ (z)

∫
Z

∫
Z
f(z′, z′′)ufk(z

′)ufℓ (z
′′)µ(dz′)µ(dz′′)

= f(z, z)− 2

r0∑
k=1

λk|ufk(z)|
2 +

r0∑
k=1

λfk |u
f
k(z)|

2

= f(z, z)−
r0∑
k=1

λfk |u
f
k(z)|

2,

where the second equality uses (25) and f(z, z′) = p−1
∑p

j=1 E[Xj(z)Xj(z
′)], and the third equality

uses the fact that (ufk , λ
f
k)k≥1, by definition, are L2(µ)-orthonormal eigenfunctions and eigenvalues

of the integral operator associated with the kernel f and the measure µ.
By Mercer’s theorem (theorem 2) the r.h.s. of (27) converges to zero as r0 → r, uniformly

in z. Each of the summands on the l.h.s. of (27) is nonnegative, so they must also converge to
zero uniformly in z. Using this uniform convergence and the fact that for any j = 1, . . . , p and
i = 1, . . . , n, the pair of random variables Xj and Zi are statistically independent, we have:

lim
r0→r

E

∣∣∣∣∣Xj(Zi)−
r0∑
k=1

ufk(Zi)W̃jk

∣∣∣∣∣
2
 = lim

r0→r

∫
Z
E

∣∣∣∣∣Xj(z)−
r0∑
k=1

ufk(z)W̃jk

∣∣∣∣∣
2
µ(dz)

≤ lim
r0→r

sup
z

E

∣∣∣∣∣Xj(z)−
r0∑
k=1

ufk(z)W̃jk

∣∣∣∣∣
2
 = 0. (28)

Noting the identity (26) and recalling ϕ(z) = [(λf1 )
1/2uf1 (z) (λ

f
2 )

1/2uf2 (z) · · · ]⊤, we find that (28)
can equivalently be written:

Xj(Zi)
m.s.
= p1/2 ⟨ϕ(Zi),Wj⟩ℓ2 ,

where Wj is the jth row of W. This completes the proof of the first identity in (8).
The second identity in (8) follows from the fact that (ufk , λ

f
k)k≥1 are orthonormal eigenfunc-

tions/values:
p∑

j=1

E[WjkWjℓ] =
1

(λfkλ
f
ℓ )

1/2

∫
Z

∫
Z
ufk(z)

1

p

p∑
j=1

E [Xj(z)Xj(z
′)]ufℓ (z

′)µ(dz′)µ(dz)

=
λfℓ

(λfkλ
f
ℓ )

1/2

∫
Z
ufk(z)u

f
ℓ (z)µ(dz) =

{
1, k = ℓ

0, k ̸= ℓ
.

We introduce the following assumption in order to prove proposition 6 below.

A7. For mixing coefficients φ satisfying
∑

k≥1 φ
1/2(k) < ∞ and all z, z′ ∈ Z, the sequence

{(Xj(z), Xj(z
′)); j ≥ 1} is φ-mixing.
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Assumption A9 is stated in section D.

Proposition 6. Assume A9 and A7, and let q ≥ 1 and φ be as therein. Then there exists a
constant C(φ) depending only on φ such that for any δ > 0 and any i, j,

P
( ∣∣p−1 ⟨Yi,Yj⟩ − ⟨ϕ(Zi), ϕ(Zj)⟩ℓ2 − σ2I[i = j]

∣∣ ≥ δ
∣∣Zi, Zj

)
≤ 1

δ2q
1

pq
C(φ)M(q, σ)

where

M(q, σ) := sup
j≥1

sup
z∈Z

E
[
|Xj(z)|4q

]
+ σ sup

i,j≥1
E
[
|Eij |2q

]
sup
j≥1

sup
z∈Z

E
[
|Xj(z)|2q

∣∣]
+ σ2 sup

i,j≥1
E
[
|Eij |4q

]
.

Proof. Fix any i, j and consider the decomposition:

p−1 ⟨Yi,Yj⟩ − ⟨ϕ(Zi), ϕ(Zj)⟩ℓ2 − σ2I[i = j] =

4∑
k=1

∆k

where

∆1 := p−1 ⟨X(Zi),X(Zj)⟩ − f(Zi, Zj)

∆2 := p−1σ ⟨X(Zi),Ej⟩
∆3 := p−1σ ⟨X(Zj),Ei⟩
∆4 := p−1σ2 ⟨Ei,Ej⟩ − σ2I[i = j]

and X(z) := [X1(z) . . . Xp(z)]
⊤.

Writing ∆1 as

∆1 =
1

p

p∑
k=1

∆1,k, ∆1,k := Xk(Zi)Xk(Zj)− E [Xk(Zi)Xk(Zj)|Zi, Zj ] .

we see that ∆1 is an arithmetic mean of p random variables, each of which is conditionally mean-
zero given Zi, Zj .

For ∆2, we have

∆2 =
σ

p

p∑
k=1

∆2,k, ∆2,k := Xk(Zi)Ejk,

By definition of the LMM, the three collections of random variables, (Z1, . . . , Zn), (X1, . . . , Xp) and
(E1, . . . ,En) are mutually independent, and the elements of each vector Ej ∈ Rp are mean-zero
and independent. Therefore given Zi, Zj andX1, . . . , Xp, ∆2 is an arithmetic mean of conditionally
independent and conditionally mean-zero random variables. The same decomposition holds for
∆3, with i, j interchanged.

For ∆4, we have

∆4 =
σ2

p

∑
1≤k≤p

∆4,k, ∆4,k := EikEjk − I[i = j].

Recalling from the definition of the LMM that the elements of E are mean zero, unit-variance,
uncorrelated across rows, and independent across columns, we see that ∆4 is a sum of p mean-zero
and mutually independent random variables.

The proof proceeds by using a moment inequality for mixing random variables [101][Lemma
1.7] to bound E[|∆1|2q|Zi, Zj ], and using the Marcinkiewicz–Zygmund inequality to bound
E[|∆2|2q|Zi, Zj , X1, . . . , Xp], E[|∆3|2q|Zi, Zj , X1, . . . , Xp] and E[|∆4|2q]. These bounds are then
combined and Markov’s inequality applied. The details are similar to [32][Proof of proposition 2],
so are omitted.
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Proof of Proposition 2. As explained above the statement of proposition 2, we only need to show
that A2 holds if and only if ϕ is one-to-one. We first show that A2 implies ϕ is one-to-one. We
prove the contrapositive to this statement. So suppose that ϕ is not one-to-one. Then there must
exist z ̸= z′ ∈ Z such that ϕ(z) = ϕ(z′). This implies that for any ξ in Z, f(z, ξ) = ⟨ϕ(z), ϕ(ξ)⟩ℓ2 =
⟨ϕ(z′), ϕ(ξ)⟩ℓ2 = f(z′, ξ), which is the converse of A2.

In the other direction, suppose the converse of A2 holds, i.e., the exists z ̸= z′ such that
f(z, ξ) = f(z′, ξ) for all ξ. By considering the cases ξ = z and ξ = z′ we find f(z, z) = f(z, z′) =
f(z′, z′). In turn,

∥ϕ(z)− ϕ(z′)∥2ℓ2 = f(z, z) + f(z′, z′)− 2f(z, z′) = 0,

i.e., ϕ(z) = ϕ(z′), and hence ϕ is not one-to-one.

C.1 Proofs and supporting material for section 3.3
The purpose of this section is to state some definitions and intermediate results, building towards
the proofs of propositions 3 and 4. Recall that the term “continuous path” was used in A3. From
henceforth we just say “path” for short.

The following definitions are standard in metric geometry [12]. For x, x′ ∈ M, a path in M
with end-points x, x′ is a continuous function γ : [0, 1] → M such that γ0 = x and γ1 = x′, where
M is equipped with the distance ∥ ·− · ∥ℓ2 . With n ≥ 1, a non-decreasing sequence t0, . . . , tn such
that t0 = 0 and tn = 1, is called a partition. Given a path γ and a partition P = (t0, . . . , tn), define
χ(γ,P) :=

∑n
k=1 ∥γtk − γtk−1

∥ℓ2 . The length of γ is L(γ) := supP χ(γ,P), where the supremum is
over all possible partitions.

When Z is a subset of Rd, a path η in Z with end-points z, z′ is a continuous function η :
[0, 1] → Z such that η0 = z, η1 = z′, and with χ(η,P) :=

∑n
k=1 ∥ηtk − ηtk−1

∥Rd the length of η is
L(η) := supP χ(η,P).

The shortest path lengths, also known as geodesic distances, in M and Z are:

dgeoM (x, x′) := inf
γ:γ0=x,γ1=x′

L(γ) dgeoZ (z, z′) := inf
η:η0=z,η1=z′

L(η), (29)

where the infima are over all paths in respectively M and Z with the indicated end-points.

A8. Assume A3 holds and with d as therein, additionally assume there exists a closed ball Z̃ ⊂ Rd

centered on the origin such that: Z ⊂ Z̃; the definition of f(z, z′) can be extended from Z ×Z to
Z̃ × Z̃; f is C2 on Z̃ × Z̃ and the matrix Hξ ∈ Rd×d with elements:

(Hξ)ij :=
∂2f

∂zi∂z′j

∣∣∣∣∣
(ξ,ξ)

is positive-definite for all ξ ∈ Z.

The statement of the following theorem, from [99], is paraphrased slightly in order to match
the assumptions of interest here.

Theorem 3 ([99], Thm 1.). Assume A2 and A8. Then ϕ is a bi-Lipschitz homeomorphism
between Z and M. Let x, x′ be any two points in M, and let γ be any path in M of finite length,
with end-points x, x′. Define η : [0, 1] → Z by ηt := ϕ−1(γt). Then η is a path in Z with L(η) <∞.
For any ϵ > 0 there exists a partition Pϵ such that for any partition P = (t0, . . . , tn) satisfying
Pϵ ⊆ P, ∣∣∣∣∣L(γ)−

n∑
k=1

〈
ηtk − ηtk−1

,Hηtk−1
(ηtk − ηtk−1

)
〉1/2∣∣∣∣∣ ≤ ϵ. (30)

Proof of proposition 3. Under the assumptions of the proposition, by direct calculation Hξ =
−2g′(0)Id for all ξ ∈ Z and A8 holds.

Fix any z, z′ ∈ Z and let η be any finite length path in Z with these end-points. By theorem
3, ϕ is Lipschitz, so γ defined by γt := ϕ(ηt) has finite length. Define x := ϕ(z), x′ := ϕ(z′).
Applying theorem 3, we have from (30) that for any ϵ > 0 there exists a partition Pϵ such that
for any P = (t0, . . . , tn) satisfying Pϵ ⊆ P,
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∣∣∣L(γ)−√−2g′(0)χ(η,P)
∣∣∣ ≤ ϵ. (31)

Also, using the definition of path length L(η) and the triangle inequality, there exists P̃ϵ such that
for any partition P satisfying P̃ϵ ⊆ P, we have:

|L(η)− χ(η,P)| ≤ ϵ. (32)

Choosing P to be the union of Pϵ and P̃ϵ, i.e., if τ ∈ Pϵ or P̃ϵ, then τ ∈ P, we find that (31) and
(32) are satisfied simultaneously. Since ϵ was arbitrarily small, we find that L(γ) =

√
−2g′(0)L(η).

By theorem 3, ϕ is a bi-Lipschitz homeomorphism, so γ̃t = ϕ(η̃t) defines a bijection between
the set of finite-length paths γ̃ in Z with end-points ϕ(z), ϕ(z′) and the set of finite length paths
η̃ in Z with end-points z, z′. Therefore by taking the infimum over η on both sides of L(γ) =√
−2g′(0)L(η) where γ is defined by γt = ϕ(ηt) as above, we find that

dgeoM (ϕ(z), ϕ(z′)) =
√
−2g′(0)dgeoZ (z, z′) (33)

as required.

Proof of proposition 4. For the Z in question, we have g(⟨z, z′⟩Rd) = g(1 − ∥z − z′∥2Rd/2). The
proof is completed by applying proposition 3 and using the chain rule of differentiation.

D Proof and supporting results for theorem 1
Theorem 1 is a corollary to theorem 4. The proofs of both these theorems are in section D.2.
Section D.1 contains definitions and notation used throughout section D. Various intermediate
results used in the proof of theorem 4 are given in sections D.3-D.6.

The following assumption is a more detailed version of A5.

A9. For some q ≥ 1, supj≥1 supz∈Z E[|Xj(z)|4q] <∞ and supj≥1 supi≥1 E[|Eij |4q] <∞.

Theorem 4. Assume A4, A6 and A9, and let q ≥ 1 and r <∞ be as therein. For min(p, n) ≥ r,
let Y ∈ Rn×p follow the LMM from section 2 and let ζ1, . . . , ζn be the dimension-r PCA embedding.
Then there exists a random orthogonal matrix Q ∈Rr×r depending on n and p such that for any
δ ∈ (0, 1) and ϵ ∈ (0, 1], if

n ≥ c1σ
2r1/2

(
1 ∨ σ2r1/2

ϵ2

)
∨ log

(r
δ

)
and

p

n
≥ c2(q)

r

δ1/qϵ2
,

then
max

i=1,...,n

∥∥∥p−1/2Qζi − ϕ(Zi)
∥∥∥
2
≤ ϵ

with probability at least 1 − δ. Here c1 and c2(q) are constants depending on the suprema in A9
and the quantity infp≥1 λ

f
r which is strictly positive under A6; and ∥ · ∥2 is the Euclidean norm.

D.1 Definitions and preliminaries
Throughout section D the probability measure µ in the LMM is considered fixed, (λfk , u

f
k)k≥1 are

as in section 2, and assumption A6 is taken to hold, so that the rank of f is finite, i.e., r <∞.

D.1.1 Notation concerning vectors and matrices in general

We notationally index the eigenvalues of a generic symmetric matrix A in a non-increasing but
otherwise arbitrary order λ1(A) ≥ λ2(A) ≥ · · · . For a vector x with elements xi, ∥x∥∞ :=
maxi |xi| and ∥x∥2 :=

√∑
i |xi|2, and the spectral norm and Frobenius norm of matrices are

denoted ∥ · ∥2 and ∥ · ∥F .
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D.1.2 Some matrices of interest

Let the matrix Φ ∈ Rn×r be defined by

Φ := [ϕ(Z1)| · · · |ϕ(Zn)]
⊤,

Let ΛY ∈ Rr×r be the diagonal matrix with diagonal elements the eigenvalues λ1(p−1YY⊤)
. . . , λr(p

−1YY⊤), and let UY ∈ Rn×r have as its columns orthonormal eigenvectors associated
with these eigenvalues. Since Φ ∈ Rn×r and r ≤ min(p, n), the matrix ΦΦ⊤ has rank at most
r. Let ΛΦ ∈ Rr×r be the diagonal matrix with diagonal elements which are the eigenvalues
λ1(ΦΦ⊤), . . . , λr(ΦΦ⊤), and let UΦ ∈ Rn×r have as its columns orthonormal eigenvectors asso-
ciated with these eigenvalues. Let F1ΣF⊤

2 denote the full singular value decomposition of U⊤
ΦUY

and define the random orthogonal matrix F⋆ := F1F
⊤
2 .

D.1.3 Some events of interest

With Uj denoting the jth column of UΦ, define:

A1(ϵ) :=
{
∥p−1YY⊤ −ΦΦ⊤ − σ2In∥2 ≤ ϵn

}
A2(ϵ) :=

n⋂
i=1

BY,i(ϵ) ∩
r⋂

i=1

BΦ,i(ϵ)

A3(ϵ) :=

{
max

j=1,...,r
∥(p−1YY⊤ −ΦΦ⊤ − σ2In)Uj∥∞ ≤ ϵn1/2

}
Arank :=

{
rank(YY⊤) ≥ r

}
∩
{
rank(ΦΦ⊤) = r

}
BY,i(ϵ) :=

{{
λfi (1− ϵ) ≤ 1

nλi(p
−1YY⊤) ≤ λfi (1 + ϵ)

}
, 1 ≤ i ≤ r,{

1
nλi(p

−1YY⊤) ≤ ϵλfr
}
, r + 1 ≤ i ≤ n.

BΦ,i(ϵ) :=

{
(1− ϵ)λfi ≤ 1

n
λi(ΦΦ⊤) ≤ (1 + ϵ)λfi

}
, 1 ≤ i ≤ r.

D.2 Proofs of theorems 4 and 1
Proof of theorem 4. Let F1ΣF⊤

2 be the full singular value decomposition of U⊤
ΦUY and define

the random orthogonal matrix F⋆ := F1F
⊤
2 . On the event Arank we have UΦΛΦU

⊤
Φ = ΦΦ⊤, and

applying lemma 4 we find there exists a random orthogonal matrix Q̂ such that UΦΛ
1/2
Φ = ΦQ̂,

hence [UΦΛ
1/2
Φ F⋆]i = ϕ(Zi)

⊤Q for all i = 1, . . . n, where Q := Q̂F⋆ is orthogonal and [·]i denotes
the ith row of a matrix. Lemma 5 shows that [UYΛ

1/2
Y ]i = p−1/2ζi. Combining these observations

we have shown that on the event Arank,

∥p−1/2Qζi − ϕ(Zi)∥2 = ∥[UYΛ
1/2
Y −UΦΛ

1/2
Φ F⋆]i∥2, i = 1, . . . , n. (34)

Now fix any ϵ1 > 0, ϵ2 ∈ (0, 1/2) and ϵ3 > 0. Note that the event Arank is a superset of A2(ϵ2)
and thus A1(ϵ1)∩A2(ϵ2)∩A3(ϵ3) ⊆ Arank. Throughout the remainder of the proof of theorem 4 we
shall establish various identities and inequalities involving random variables, random matrices, etc;
all such identifies and inequalities to be understood as holding on the event A1(ϵ1)∩A2(ϵ2)∩A3(ϵ3),
although we shall avoid making this explicit in our notation in order to avoid repetition. For
example, for two random matrices say A and B, we write “A = B” as shorthand for “A(ω) = B(ω)
for all ω ∈ A1(ϵ1) ∩ A2(ϵ2) ∩ A3(ϵ3)” and similarly for two random variables say X,Y , we write
“X ≤ Y ” as shorthand for “X(ω) ≤ Y (ω) for all ω ∈ A1(ϵ1) ∩A2(ϵ2) ∩A3(ϵ3)”.
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Noting that on the event Arank, the matrices Λ−1/2
Y and Λ

−1/2
Φ are well-defined, let us introduce:

C1 := F⋆Λ
1/2
Y −Λ

1/2
Φ F⋆

C2 := (U⊤
ΦUY − F⋆)Λ

1/2
Y

C3 := UY −UΦF⋆ = UY −UΦU
⊤
ΦUY +UΦ(U

⊤
ΦUY − F⋆)

D1 := UΦC1

D2 := UΦC2

D3 := (I−UΦU
⊤
Φ)(p

−1YY⊤ −ΦΦ⊤)C3Λ
−1/2
Y

D4 := −UΦU
⊤
Φ(p

−1YY⊤ −ΦΦ⊤)UΦF⋆Λ
−1/2
Y

D5 := (p−1YY⊤ −ΦΦ⊤)UΦ(F⋆Λ
−1/2
Y −Λ

−1/2
Φ F⋆)

We now claim that:

UYΛ
1/2
Y −UΦΛ

1/2
Φ F⋆ = (p−1YY⊤ −ΦΦ⊤)UΦΛ

−1/2
Φ F⋆ +

5∑
i=1

Di, (35)

which up to some notational differences, is the same decomposition used by Lyzinski et al. [58,
Proof of Thm 18.] in the analysis of spectral methods for community detection in graphs. To
verify the decomposition (35), observe:

UYΛ
1/2
Y −UΦΛ

1/2
Φ F⋆ = UYΛ

1/2
Y −UΦF⋆Λ

1/2
Y

+UΦC1

= (In −UΦU
⊤
Φ)UYΛ

1/2
Y

+UΦC2

+UΦC1

= (In −UΦU
⊤
Φ)(p

−1YY⊤ −ΦΦ⊤)UYΛ
−1/2
Y (36)

+UΦC2

+UΦC1

= (p−1YY⊤ −Φ⊤Φ)UΦF⋆Λ
−1/2
Y

−UΦU
⊤
Φ(p

−1YY⊤ −ΦΦ⊤)UΦF⋆Λ
−1/2
Y

+ (In −UΦU
⊤
Φ)(p

−1YY⊤ −ΦΦ⊤)C3Λ
−1/2
Y

+UΦC2

+UΦC1

= (p−1YY⊤ −ΦΦ⊤)UΦΛ
−1/2
Φ F⋆

+ (p−1YY⊤ −ΦΦ⊤)UΦ(F⋆Λ
−1/2
Y −Λ

−1/2
Φ F⋆)

−UΦU
⊤
Φ(p

−1YY⊤ −ΦΦ⊤)UΦF⋆Λ
−1/2
Y

+ (In −UΦU
⊤
Φ)(p

−1YY⊤ −ΦΦ⊤)C3Λ
−1/2
Y

+UΦC2

+UΦC1

= (p−1YY⊤ −ΦΦ⊤)UΦΛ
−1/2
Φ F⋆ +D5 +D4 +D3 +D2 +D1 (37)

where (36) holds because UYΛ
1/2
Y = p−1Y⊤YUYΛ

−1/2
Y and UΦU

⊤
ΦΦΦ⊤ = ΦΦ⊤ .

The proof proceeds by bounding the Frobenius norm of each matrix Di, i = 1, . . . , 5.. Using
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lemma 2,

∥D1∥F = ∥C1∥F

≤ r1/2

2n1/2(1− ϵ2)1/2(λ
f
r )1/2

[
n
(ϵ1 + n−1σ2)2

λfr (1− 2ϵ2)

(
1 + 2

λf1

λfr

(
1 + ϵ2
1− 2ϵ2

))
+ nϵ1 + σ2

]

=
r1/2n1/2(ϵ1 + n−1σ2)

2(1− ϵ2)1/2(λ
f
r )1/2

[
(ϵ1 + n−1σ2)

λfr (1− 2ϵ2)

(
1 + 2

λf1

λfr

(
1 + ϵ2
1− 2ϵ2

))
+ 1

]
. (38)

Using lemma 1,

∥D2∥F ≤ r1/2∥C2∥2

= r1/2n1/2[λf1 (1 + ϵ2)]
1/2

[
ϵ1 + n−1σ2

λfr (1− 2ϵ2)

]2
. (39)

Again using lemma 1 and the fact that UY −UΦU
⊤
ΦUY = (UYU⊤

Y −UΦU
⊤
Φ)UY,

∥D3∥F ≤ 2r1/2∥p−1YY⊤ −ΦΦ⊤∥2∥C3∥2∥Λ−1/2
Y ∥2

≤ 2r1/2
(ϵ1n+ σ2)

n1/2
[
λfr (1− ϵ2)

]1/2 (∥UYU⊤
Y −UΦU

⊤
Φ∥2 + ∥U⊤

ΦUY − F⋆∥2
)

≤ 2r1/2n1/2
(ϵ1 + n−1σ2)2[
λfr (1− ϵ2)

]3/2
(
1 +

ϵ1 + n−1σ2

λfr (1− ϵ2)

)
(40)

Directly:

∥D4∥F ≤ r1/2∥D4∥2
≤ r1/2∥p−1YY⊤ −ΦΦ⊤∥2∥Λ−1/2

Y ∥2

≤ r1/2
(ϵ1n+ σ2)

n1/2
[
λfr (1− ϵ2)

]1/2
= r1/2n1/2

(ϵ1 + n−1σ2)[
λfr (1− ϵ2)

]1/2 (41)

Using lemma 2,

∥D5∥F = ∥(p−1YY⊤ −ΦΦ⊤)UΦ(F⋆Λ
−1/2
Y −Λ

−1/2
Φ F⋆)∥F

≤ r1/2∥p−1YY⊤ −ΦΦ⊤∥2∥F⋆Λ
−1/2
Y −Λ

−1/2
Φ F⋆∥F

≤ r1/2(ϵ1n+ σ2)
∥F⋆ΛY −ΛΦF⋆∥F

2n3/2(λfr )3/2(1− ϵ2)3/2

≤ rn2(ϵ1 + n−1σ2)

2n3/2(λfr )3/2(1− ϵ2)3/2

[
(ϵ1 + n−1σ2)2

λfr (1− 2ϵ2)

(
1 + 2

λf1

λfr

(
1 + ϵ2
1− 2ϵ2

))
+ ϵ1 +

σ2

n

]

=
rn1/2(ϵ1 + n−1σ2)2

2(λfr )3/2(1− ϵ2)3/2

[
(ϵ1 + n−1σ2)

λfr (1− 2ϵ2)

(
1 + 2

λf1

λfr

(
1 + ϵ2
1− 2ϵ2

))
+ 1

]
(42)

Having obtained the above bounds on ∥Di∥F , for i = 1, . . . , 5, we turn to the first term on the

42



r.h.s. of (35). Writing [·]i to indicate the ith row of a matrix,

max
i=1,...,n

∥[(p−1YY⊤ −ΦΦ⊤)UΦΛ
−1/2
Φ F⋆]i∥2 (43)

= max
i=1,...,n

∥[(p−1YY⊤ −ΦΦ⊤)UΦΛ
−1/2
Φ ]i∥2

≤ 1

n1/2(λfr )1/2(1− ϵ2)1/2
max

i=1,...,n
∥[(p−1YY⊤ −ΦΦ⊤)UΦ]i∥2

≤ r1/2

n1/2(λfr )1/2(1− ϵ2)1/2
max

j=1,...,r
∥(p−1YY⊤ −ΦΦ⊤)Uj∥∞

≤ r1/2ϵ3

(λfr )1/2(1− ϵ2)1/2
. (44)

where Uj is the jth column of UΦ.
Recall that at the start of the proof we fixed arbitrary values ϵ1 > 0, ϵ2 ∈ (0, 1/2) and

ϵ3 > 0. We now need to work with a specific numerical value for ϵ2, so let us take it to be 1/4.
Elementary manipulations of the bounds (38)-(42) then show that there exists c̃0 depending only
on the constants cmax

λ , cmin
λ in lemma 7 such that

∥D1∥F ≤ c̃0r
1/2n1/2

(
ϵ1 +

σ2

n

)(
ϵ1 +

σ2

n
+ 1

)
∥D2∥F ≤ c̃0r

1/2n1/2
(
ϵ1 +

σ2

n

)2

∥D3∥F ≤ c̃0r
1/2n1/2

(
ϵ1 +

σ2

n

)2(
ϵ1 +

σ2

n
+ 1

)
∥D4∥F ≤ c̃0r

1/2n1/2
(
ϵ1 +

σ2

n

)
∥D5∥F ≤ c̃0rn

1/2

(
ϵ1 +

σ2

n

)2(
ϵ1 +

σ2

n
+ 1

)
.

Now assuming
n ≥ 2σ2r1/2 (45)

i.e, n−1σ2r1/2 ≤ 1/2, and assuming
ϵ1r

1/2 ≤ 1/2 (46)

we have (
ϵ1 +

σ2

n

)
r1/2 ≤ 1.

Applying this inequality in the above bound on ∥D5∥F and allowing c̃0 to increase where necessary
we obtain:

max
i=1,...,5

∥Di∥F ≤ c̃0r
1/2n1/2

(
ϵ1 +

σ2

n

)
Combining this estimate with (44) and again allowing c̃0 to increase as needed,

max
i=1,...,n

∥[UYΛ
1/2
Y −UΦΛ

1/2
Φ F⋆]i∥2 ≤ max

i=1,...,n
∥[(p−1YY⊤ −ΦΦ⊤)UΦΛ

−1/2
Φ F⋆]i∥2 +

5∑
i=1

∥Di∥F

≤ r1/2c̃0n
1/2

(
ϵ1 +

σ2

n

)
+ r1/2c̃0ϵ3. (47)

Now fix any ϵ ∈ (0, 1] and let us strengthen (45) to

n ≥
(
2σ2r1/2

)
∨
(

9

ϵ2
c̃20rσ

4

)
(48)
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so that r1/2c̃0n−1/2σ2 ≤ ϵ/3. Then setting ϵ1 := ϵ/(3n1/2r1/2c̃0) (which satisfies (46) since c̃0 ≥ 1),
ϵ3 := ϵ/(3r1/2c̃0) and recalling that we have already chosen ϵ2 := 1/4 we have as a consequence of
(47),

P
(

max
i=1,...,n

∥[UYΛ
1/2
Y −UΦΛ

1/2
Φ F⋆]i∥2 ≤ ϵ

)
≥ 1− P(A1(ϵ/[3n

1/2r1/2c̃0])
c)− P(A2(1/4)

c)− P(A3(ϵ/[3r
1/2c̃0])

c).

Now fix any δ ∈ (0, 1). By lemma 9, proposition 7 and lemma 11, there exists constants c̃1(q), c̃2
and c̃3(q) (depending only on the constants cmax

λ , cmin
λ from lemma 7 and the constants cX(2q),

cE(2q) from lemma 9) such that

p

n
≥ c̃1(q)

1/q r

δ1/qϵ2
⇒ P(A1(ϵ/[3n

1/2r1/2c̃0])
c) ≤ δ

3
.

n ≥ c̃2

[
σ2 ∨ log

(r
δ

)]
and p ≥ c̃2

δ1/q
⇒ P(A2(1/4)

c) ≤ δ

3
.

p

n1/q
≥ c̃3(q)

1/q r
1+1/q

δ1/qϵ2
⇒ P(A3(ϵ/[3r

1/2c̃0])
c) ≤ δ

3
.

Combining these conditions with (48) and appropriately defining c1 and c2 gives the conditions in
the statement of the theorem. Recalling (34), the proof is complete.

Proof of theorem 1. If A5 holds, then A9 holds with q = 1. We may then apply theorem 4 in the
case q = 1, and in order for the lower bound conditions on n and p/n in the statement of theorem
4 to be satisfied for some given δ and ϵ, it is sufficient that:

n ≥ −č1 log δ
ϵ2

and
p

n
≥ č2
ϵ2δ

, (49)

for suitable constants č1 > 0 and č2 > 0 depending on σ, c1, c2(q) and supp≥1 r, noting the latter
supremum is finite under A6.

To complete the proof we need to show that for any δ ∈ (0, 1) there exists ϵ0 > 0 and M > 0
such that if (1/

√
n+

√
n/p)−1 > M , then:

P
[

max
i=1,...,n

∥p−1/2Qζi − ϕ(Zi)∥2 > ϵ0

(
1√
n
+

√
n

p

)]
< δ. (50)

So to proceed, fix any δ ∈ (0, 1), define ϵ0 :=
√
−č1 log δ ∨

√
č2/δ, M := ϵ0 and ϵ := ϵ0(1/

√
n +√

n/p).
Assume that (1/

√
n +

√
n/p)−1 ≥ M and notice that in this situation ϵ ∈ (0, 1], which is a

requirement of theorem 4. It follows from the definition of ϵ0 that:

ϵ20 ≥ −č1 log δ ≥
−č1 log δ(
1 + n/

√
p
)2 =

−č1 log δ

n
(
1/
√
n+

√
n/p

)2 ,
and rearranging then using the above definition of ϵ gives:

n ≥ −č1 log δ
ϵ2

,

i.e., the first inequality in (49) holds. Similarly

ϵ20 ≥ č2
δ

≥ č2(√
p/n+ 1

)2
δ
=

č2

p
n

(
1/
√
n+

√
n/p

)2
δ

hence
p

n
≥ č2
ϵ2δ

,
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i.e., the second inequality in (49) holds. Thus by theorem 4,

P
[

max
i=1,...,n

∥p−1/2Qζi − ϕ(Zi)∥2 >
(

1√
n
+

√
n

p

)
ϵ0

]
< δ.

which is (50).

D.3 Matrix estimates
Lemma 1. Assume A6. Then for any ϵ1 > 0 and ϵ2 ∈ (0, 1/2), on the event

A1(ϵ1) ∩A2(ϵ2)

we have

∥UYU⊤
Y −U⊤

ΦUΦ∥2 ≤ ϵ1 + n−1σ2

λfr (1− 2ϵ2)

and

∥U⊤
ΦUY − F⋆∥2 ≤

[
ϵ1 + n−1σ2

λfr (1− 2ϵ2)

]2
.

Proof. In outline, the proof follows Lyzinski et al. [58, Proof of Prop. 16], although we work with
the spectral rather than Frobenius norm. On the event in the statement we have:

|λr(ΦΦ⊤)− λr+1(p
−1YY⊤)| ≥ nλfr (1− 2ϵ2) > 0

and with σi denoting the ith singular value of U⊤
ΦUY and σi = cos(θi), the Davis-Kahan sin(θ)

theorem gives:

∥UYU⊤
Y −U⊤

ΦUΦ∥2 = max
i

| sin(θi)| ≤
∥p−1YY⊤ −ΦΦ⊤∥2

|λr(ΦΦ⊤)− λr+1(p−1YY⊤)|

≤ ϵ1 + n−1σ2

λfr (1− 2ϵ2)
. (51)

Therefore

∥U⊤
ΦUY − F⋆∥2 = ∥F1ΣF⊤

2 − F1F
⊤
2 ∥2

= ∥F1(Σ− Ir)F
⊤
2 ∥2

= ∥Σ− Ir∥2
= max

i=1,...,r
|1− σi|

≤ max
i=1,...,r

|1− σ2
i | = max

i=1,...,r
| sin(θi)|2

≤

[
ϵ1 + n−1σ2

λfr (1− 2ϵ2)

]2
where for the first inequality uses ∥U⊤

ΦUY∥2 ≤ 1 and the second inequality is from (51).

Lemma 2. Assume A6. For any ϵ1 > 0, ϵ2 ∈ (0, 1/2), on the event

A1(ϵ1) ∩A2(ϵ2)

we have

∥F⋆ΛY −ΛΦF⋆∥F ≤ r1/2

[
n
(ϵ1 + n−1σ2)2

λfr (1− 2ϵ2)

(
1 + 2

λf1

λfr

(
1 + ϵ2
1− 2ϵ2

))
+ nϵ1 + σ2

]
,

∥F⋆Λ
1/2
Y −Λ

1/2
Φ F⋆∥F ≤ ∥F⋆ΛY −ΛΦF⋆∥F

2n1/2(1− ϵ2)1/2(λ
f
r )1/2

,

∥F⋆Λ
−1/2
Y −Λ

−1/2
Φ F⋆∥F ≤

∥F⋆Λ
1/2
Y −Λ

1/2
Φ F⋆∥F

n(1− ϵ2)λ
f
r

.
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Proof. Using a decomposition idea from [58, proof of lemma 17], with

R := UY −UΦU
⊤
ΦUY,

we have

F⋆ΛY −ΛΦF⋆ = (F⋆ −U⊤
ΦUY)ΛY +U⊤

Φ(p
−1YY⊤ −ΦΦ⊤)R

+U⊤
Φ(p

−1YY⊤ −ΦΦ⊤)UΦU
⊤
ΦUY

+ΛΦ(U
⊤
ΦUY − F⋆)

hence

∥F⋆ΛY −ΛΦF⋆∥2 ≤ ∥U⊤
ΦUY − F⋆∥2(∥ΛY∥2 + ∥ΛΦ∥2) (52)

+ ∥U⊤
Φ(p

−1YY⊤ −ΦΦ⊤)R∥2 (53)

+ ∥U⊤
Φ(p

−1YY⊤ −ΦΦ⊤)UΦU
⊤
ΦUY∥2 (54)

For the term on the r.h.s. of (52), on the event in the statement of the present lemma and using
lemma 1 we have:

∥U⊤
ΦUY − F⋆∥2(∥ΛY∥2 + ∥ΛΦ∥2) ≤

[
ϵ1 + n−1σ2

λfr (1− 2ϵ2)

]2
2nλf1 (1 + ϵ2).

For the term in (53), using R = (UYU⊤
Y − U⊤

ΦUΦ)UY, we have again on the event in the
statement of the present lemma and using lemma 1,

∥U⊤
Φ(p

−1YY⊤ −ΦΦ⊤)R∥2 ≤ ∥p−1YY⊤ −ΦΦ⊤∥2∥R∥2
≤ (∥p−1YY⊤ −ΦΦ⊤ − σ2In∥2 + σ2)∥UYU⊤

Y −U⊤
ΦUΦ∥2

≤ (ϵ1n+ σ2)

(
ϵ1 + n−1σ2

λfr (1− 2ϵ2)

)
= n

(ϵ1 + n−1σ2)2

λfr (1− 2ϵ2)
.

For the term in (54),

∥U⊤
Φ(p

−1YY⊤ −ΦΦ⊤)UΦU
⊤
ΦUY∥2 ≤

(
∥(p−1YY⊤ −ΦΦ⊤ − σ2In)∥2 + σ2

)
∥U⊤

ΦUY∥2

≤ nϵ1 + σ2.

The bound on ∥F⋆ΛY −ΛΦF⋆∥F given in the statement holds by combining the above spectral
norm bounds.

For the bound on ∥F⋆Λ
1/2
Y −Λ

1/2
Φ F⋆∥F we use the fact that the elements of F⋆Λ

1/2
Y −Λ

1/2
Φ F⋆

can be written:

(F⋆Λ
1/2
Y −Λ

1/2
Φ F⋆)ij = (F⋆)ijλj(p

−1YY⊤)1/2 − λi(ΦΦ⊤)1/2(F⋆)ij

= (F⋆)ij
[λj(p

−1YY⊤)− λi(ΦΦ⊤)]

λj(p−1YY⊤)1/2 + λi(ΦΦ⊤)1/2

hence
|(F⋆Λ

1/2
Y −Λ

1/2
Φ F⋆)ij | ≤

|(F⋆ΛY −ΛΦF⋆)ij |
2n1/2(1− ϵ2)1/2(λ

f
r )1/2

,

and so
∥F⋆Λ

1/2
Y −Λ

1/2
Φ F⋆∥F ≤ ∥F⋆ΛY −ΛΦF⋆∥F

2n1/2(1− ϵ2)1/2(λ
f
r )1/2

.

The bound on ∥F⋆Λ
−1/2
Y −Λ

−1/2
Φ F⋆∥F in the statement is obtained in a similar manner using the

fact that for any a, b > 0, a−1/2 − b−1/2 = (b1/2 − a1/2)/(a1/2b1/2) .
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D.4 Some linear algebra
Lemma 3. For any m1,m2 ≥ 1, A ∈ Rm2×m1 , q ≤ min{m1,m2} and strictly positive real
numbers λ1, . . . , λq,
a) there exists U ∈ Rm2×q such that U⊤U = Iq and AA⊤U = UΛ, if and only if there exists
V ∈ Rm1×q such that V⊤V = Iq and A⊤AV = VΛ, where Λ := diag(λ1, . . . , λq);
b) when V with the properties stated in part a) exists, a choice of U which has the properties
stated in part a) is U = AVΛ−1/2;
c) λi(A⊤A) = λi(AA⊤), for i = 1, . . . ,min{m1,m2}.
d) the rank of A⊤A is equal to that of AA⊤;

Proof. Assume the existence of V with the properties stated in part a). Taking U := AVΛ−1/2

we have

U⊤U := Λ−1/2V⊤A⊤AVΛ−1/2

= Λ−1/2V⊤VΛΛ−1/2

= Λ−1/2ΛΛ−1/2 = Iq

and

AA⊤U = AA⊤AVΛ−1/2

= AVΛΛ−1/2

= UΛ.

The implication in the other direction for part a) holds by interchanging A⊤ and U with respec-
tively A and V. We have thus proved parts a) and b) of the lemma. Part a) implies that the
non-zero eigenvalues of A⊤A are equal to those of AA⊤, which establishes the claim of part c).
Part d) follows from part c).

Lemma 4. For any m1 ≤ m2 and A ∈ Rm2×m1 such that A has rank m1, there exists an orthog-
onal matrix Q ∈ Rm1×m1 such that UΛ1/2 = AQ, where Λ = diag{λ1(AA⊤), · · · , λm1

(AA⊤)}
and the columns of U ∈ Rm2×m1 are orthonormal eigenvectors of AA⊤ with eigenvalues λ1(AA⊤),
. . . , λm1

(AA⊤).

Proof. We have AA⊤ = UΛU⊤, hence UΛ1/2 = AA⊤UΛ−1/2. Take Q := A⊤UΛ−1/2 ∈
Rm1×m1 . We then find:

Q⊤Q = Λ−1/2U⊤AA⊤UΛ−1/2 = Λ−1/2U⊤UΛU⊤UΛ−1/2 = Im1

and
QQ⊤ = A⊤UΛ−1U⊤A. (55)

Consider the reduced singular value decomposition A = UΛ1/2V⊤ where V ∈ Rm1×m1 has
orthonormal columns. Substituting into the r.h.s. of (55),

QQ⊤ = VΛ1/2U⊤UΛ−1U⊤UΛ1/2V⊤ = VV⊤ = Im1 .

D.5 Some properties of the LMM

Lemma 5. On the event that the rank of Y⊤Y is at least r, p−1/2YVY = UYΛ
1/2
Y , where the

columns of UY ∈ Rn×r are orthonormal eigenvectors of p−1YY⊤ with associated eigenvalues on
the diagonal of the diagonal matrix ΛY ∈ Rr×r.

Proof. Apply lemma 3, part b).
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Thus by computing the PCA embedding ζ1, . . . , ζn and rescaling by p−1/2, we are, in effect, com-
puting the n rows of UYΛ

1/2
Y , where UYΛ

1/2
Y (UYΛ

1/2
Y )⊤ = UYΛYU⊤

Y is a rank−r approximation
to p−1YY⊤.

Lemma 6. Assume A6. Then p−1E[YY⊤|Z1, . . . , Zn] = ΦΦ⊤ + σ2In.

Proof. Let X ∈ Rn×p be the matrix with entries Xij := Xj(Zi). According to the model specifi-
cation in section 2, X and E are independent, and E[EE⊤] = pIn. Thus:

E[YY⊤|Z1, . . . , Zn] = E[XX⊤|Z1, . . . , Zn] + σE[XE⊤|Z1, . . . , Zn]

+ σE[EX⊤|Z1, . . . , Zn] + σ2E[EE⊤|Z1, . . . , Zn]

= pΦΦ⊤ + pσ2In.

Lemma 7. Assume A6 and A9. Then there exists a constant cmax
λ < ∞ depending only on the

first supremum in A9, and a constant cmin
λ > 0 such that

sup
p≥1

{
sup
z
f(z, z) + λf1

}
≤ cmax

λ , inf
p≥1

λfr ≥ cmin
λ .

Proof. The existence of cmin
λ as required is an immediate consequence of A6. Using A9 and

Jensen’s inequality gives:

sup
z
f(z, z) = sup

z

1

p

p∑
j=1

E[|Xj(z)|2] ≤ sup
z

1

p

p∑
j=1

E[|Xj(z)|4q]2/4q <∞.

The existence of cmax
λ as required follows from the above inequalities combined with:

λf1 ≤
∞∑
k=1

λfk =

∞∑
k=1

λfkE[|u
f
k(Z1)|2] = E[f(Z1, Z1)] ≤ sup

z
f(z, z).

D.6 Matrix concentration results
The following matrix-valued version of the Bernstein inequality can be found in, e.g., [92, Thm
1.6.2]

Theorem 5 (Matrix Bernstein inequality). Let M1, . . . ,Mn be independent random matrices with
common dimensions m1 ×m2 satisfying E[Mi] = 0 and ∥Mi∥2 ≤ L for each 1 ≤ i ≤ n and some
constant L. Let M :=

∑n
i=1 Mi and v(M) = max

{
∥E[MM⊤]∥2, ∥E[M⊤M]∥2

}
. Then for all

t ≥ 0,

P (∥M∥2 ≥ t) ≤ (m1 +m2) exp

(
−t2/2

v(M) + Lt/3

)
.

Lemma 8. Assume A6. For any t ≥ 0,

P
(
∥n−1Φ⊤Φ− n−1E[Φ⊤Φ]∥2 ≥ t

)
≤ 2r exp

(
−t2n/2

(cmax
λ )2 + cmax

λ t/3

)
,

where cmax
λ is as in lemma 7.

Proof. Apply theorem 5 with Mi =
1
nϕ(Zi)ϕ(Zi)

⊤ − E[ 1nϕ(Zi)ϕ(Zi)
⊤],

∥Mi∥2 ≤ 1

n
∥ϕ(Zi)ϕ(Zi)

⊤∥2 +
1

n
∥E[ϕ(Zi)ϕ(Zi)

⊤]∥2

=
1

n
∥ϕ(Zi)∥22 +

1

n
λf1

=
1

n
f(Zi, Zi) +

1

n
λf1

≤ 1

n
cmax
λ =: L
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and

v(M) =

∥∥∥∥∥E
[(∑

i

Mi

)(∑
i

Mi

)]∥∥∥∥∥
2

=

∥∥∥∥∥E
[∑

i

MiMi

]∥∥∥∥∥
2

≤ 1

n

∥∥E [ϕ(Z1)ϕ(Z1)
⊤ϕ(Z1)ϕ(Z1)

⊤]∥∥
2
+

1

n
∥E[ϕ(Z1)ϕ(Z1)

⊤]2∥2

≤ 1

n
E
[∥∥ϕ(Z1)ϕ(Z1)

⊤ϕ(Z1)ϕ(Z1)
⊤∥∥

2

]
+

1

n
∥E[ϕ(Z1)ϕ(Z1)

⊤]2∥2

=
1

n
E
[∥∥ϕ(Z1)ϕ(Z1)

⊤∥∥2
2

]
+

1

n
(λf1 )

2

=
1

n
E
[
∥ϕ(Z1)∥42

]
+

1

n
(λf1 )

2 ≤ 1

n
(cmax

λ )2.

Lemma 9. Assume A6 and A9 with some q ≥ 1. Then for any t > 0,

P
(
∥p−1YY⊤ −ΦΦ⊤ − σ2In∥2 ≥ t

)
≤ (16)q(2q − 1)q

n2q

t2q
1

pq

(
cX(2q)1/2q + σ2cE(2q)

1/2q
)2q

where
cX(q) := sup

j≥1
sup
z∈Z

E
[
|Xj(z)|2q

]
, cE(q) := sup

j≥1
sup
i≥1

E
[
|Eij |2q

]
.

Proof. Let us write the matrix Y in terms of its columns Y ≡ [Y1| · · · |Yp] so that:

YY⊤ =

p∑
j=1

YjY
⊤
j . (56)

Observe that under the model of section 2, conditional on (Z1, . . . , Zn) the summands in (56)
are independent and as per lemma 6, the conditional expectation of YY⊤ given Z1, . . . , Zn is:
pΦΦ⊤ + pσ2In.

The main tool we use from hereon is a direct combination of the matrix Chebyshev inequality
[70, Prop. 3.1] and the matrix polynomial Effron-Stein inequality [70, Thm 4.2], applied under
the regular conditional distribution of (Y1, . . . , Yp) given (Z1, . . . , Zn). These inequalities taken
together tell us that, for any q ≥ 1, the following holds almost surely:

P
(∣∣∣∥p−1YY⊤ −ΦΦ⊤ − σ2In∥2 ≥ t

∣∣∣Z1, . . . , Zn

)
≤ 1

t2q
E
[
∥p−1YY⊤ −ΦΦ⊤ − σ2In∥2qS2q

∣∣∣Z1, . . . , Zn

]
≤ 2q(2q − 1)q

t2q
E
[
∥Σ∥qSq

∣∣∣Z1, . . . , Zn

]
.

Here ∥ · ∥Sq is the Schatten q-norm and Σ ∈ Rn×n is the variance proxy:

Σ :=
1

2p2

p∑
j=1

E
[(
YjY

⊤
j − Ỹj Ỹ

⊤
j

)2∣∣∣∣Yj , Z1, . . . , Zn

]
, (57)

where, conditional on Z1, . . . , Zn, Ỹj is an independent copy of Yj . For brevity in the remainder of
the proof we shall write Z ≡ (Z1, . . . , Zn), and to avoid repetitive statements of “almost surely”,
every inequality involving conditional expectations is to be understood as holding in the almost
sure sense.

We estimate:
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E
[
∥Σ∥qSq

∣∣∣Z]1/q =
1

2p2
E


∥∥∥∥∥∥

p∑
j=1

E
[(
YjY

⊤
j − Ỹj Ỹ

⊤
j

)2∣∣∣∣Yj , Z]
∥∥∥∥∥∥
q

Sq

∣∣∣∣∣∣∣Z

1/q

≤ 1

2p2

p∑
j=1

E

[∥∥∥∥E [(YjY ⊤
j − Ỹj Ỹ

⊤
j

)2∣∣∣∣Yj , Z]∥∥∥∥q
Sq

∣∣∣∣∣Z
]1/q

(58)

≤ 1

2p2

p∑
j=1

E

[∥∥∥∥(YjY ⊤
j − Ỹj Ỹ

⊤
j

)2∥∥∥∥q
Sq

∣∣∣∣∣Z
]1/q

(59)

=
1

2p2

p∑
j=1

E
[∥∥∥YjY ⊤

j − Ỹj Ỹ
⊤
j

∥∥∥2q
S2q

∣∣∣∣Z]1/q

≤ 1

2p2

p∑
j=1

(
2E
[∥∥YjY ⊤

j

∥∥2q
S2q

∣∣∣Z]1/2q)2

(60)

=
2

p2

p∑
j=1

E
[∥∥YjY ⊤

j

∥∥2q
S2q

∣∣∣Z]1/q
Here (58) holds by the second claim of lemma 10; 59 holds by first claim of lemma 10 combined
with the fact that x 7→ xq is convex for x ≥ 0 (recall q ≥ 1); (60) holds by lemma 10 and the fact
that Ỹj and Yj are equal in distribution.

By definition of the Schatten-q norm,
∥∥YjY ⊤

j

∥∥2q
S2q

=
∑n

k=1 λ
2q
k

(
YjY

⊤
j

)
, where λ1

(
YjY

⊤
j

)
=

∥Yj∥22 and λk
(
Y1Y

⊤
1

)
= 0 for k = 2, . . . , n. Thus:

∥∥YjY ⊤
j

∥∥2q
S2q

= ∥Yj∥4q2 =

∣∣∣∣∣
n∑

i=1

(Xj(Zi) + σEij)
2

∣∣∣∣∣
2q

. (61)

By two applications of Minkowski’s inequality,

E
[∥∥YjY ⊤

j

∥∥2q
S2q

∣∣∣Z]1/2q ≤
n∑

i=1

E
[
|Xj(Zi) + σEij |4q

∣∣∣Z]1/2q
≤ 2

n∑
i=1

E
([

|Xj(Zi)|4q
∣∣∣Z]1/2q + E

[
|σEij |4q

∣∣∣Z]1/2q)

≤ 2n

(
sup
l≥1

sup
z∈Z

E
[
|Xl(z)|4q

]1/2q
+ σ2 sup

i≥1,l≥1
E
[
|Eil|4q

]1/2q)
,

where the final inequality uses the facts that Xj , Z and E are independent.
Combining the above estimates we find:

P
(∣∣∣∥p−1YY⊤ −ΦΦ⊤ − σ2In∥2 ≥ t

∣∣∣Z1, . . . , Zn

)
≤ 2q(2q − 1)q

t2q

(
2

p

)q

4qn2q
(
sup
j≥1

sup
z∈Z

E
[
|Xj(z)|4q

]1/2q
+ σ2 sup

i≥1,j≥1
E
[
|Eij |4q

]1/2q)2q

= (16)q(2q − 1)q
n2q

t2q
1

pq

(
sup
j≥1

sup
z∈Z

E
[
|Xj(z)|4q

]1/2q
+ σ2 sup

i≥1,j≥1
E
[
|Eij |4q

]1/2q)2q

,

from which the result follows by the tower property of conditional expectation.

Proposition 7. Assume A6 and A9 with some q ≥ 1. For any δ, ϵ ∈ (0, 1), if

n ≥ 3σ2

ϵcmin
λ

∨
[
log

(
1

δ

)
+ log(4r)

]
1

ϵ2
2((cmax

λ )2 + ϵcmax
λ cmin

λ /9)

(cmin
λ )2/9

,
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and
p ≥ 1

δ1/qϵ2
21/q16(2q − 1)

9

(cmin
λ )2

(
cX(2q)1/2q + σ2cE(2q)

1/2q
)2

where cX , cE are as in lemma 9 and cmax
λ , cmin

λ are as in lemma 7, then

P

(
n⋂

i=1

BY,i(ϵ) ∩
r⋂

i=1

BΦ,i(ϵ)

)
≥ 1− δ.

Proof. Throughout the proof we shall adopt the convention λfi := 0 for all r + 1 ≤ i ≤ n and,
in several places, we shall use the fact that λi(ΦΦ⊤) = 0 for r + 1 ≤ i ≤ n which holds since
Φ ∈ Rn×r.

Consider the following decomposition for any 1 ≤ i ≤ n:∣∣∣∣ 1nλi(p−1YY⊤)− λfi

∣∣∣∣ ≤ ∣∣∣∣ 1nλi(p−1YY⊤)− 1

n
λi(ΦΦ⊤ + σ2In)

∣∣∣∣
+

∣∣∣∣ 1nλi(ΦΦ⊤ + σ2In)−
1

n
λi(ΦΦ⊤)

∣∣∣∣
+

∣∣∣∣ 1nλi(ΦΦ⊤)− λfi

∣∣∣∣ .
Combining this decomposition with Weyl’s inequality; the facts that for 1 ≤ i ≤ r, E[Φ⊤Φ]ii =

nλfi and E[Φ⊤Φ]ij = 0 for j ̸= i, hence λfi = λi(n
−1E[Φ⊤Φ]); and by lemma 3, λi(ΦΦ⊤) =

λi(Φ
⊤Φ); whilst for i ≥ r + 1, λi(ΦΦ⊤) = λfi = 0; we obtain:

max
1≤i≤n

∣∣∣∣ 1nλi(p−1YY⊤)− λfi

∣∣∣∣ ≤ 1

n
∥p−1YY⊤ −ΦΦ⊤ − σ2In∥2

+
σ2

n

+ ∥n−1Φ⊤Φ− n−1E[Φ⊤Φ]∥2 (62)

and
max
1≤i≤n

∣∣∣∣ 1nλi(ΦΦ⊤)− λfi

∣∣∣∣ ≤ ∥n−1Φ⊤Φ− n−1E[Φ⊤Φ]∥2.

Now fix any ϵ ∈ (0, 1). We have

P

(
n⋂

i=1

BY,i(ϵ) ∩
r⋂

i=1

BΦ,i(ϵ)

)

≥ P

(
n⋂

i=1

{∣∣∣∣ 1nλi(p−1YY⊤)− λfi

∣∣∣∣ < ϵλfr

}
∩
{∣∣∣∣ 1nλi(ΦΦ⊤)− λfi

∣∣∣∣ < ϵλfr

})

≥ 1− P
(
1

n
∥p−1YY⊤ −ΦΦ⊤ − σ2In∥2 ≥ ϵλfr/3

)
− P

(
∥n−1Φ⊤Φ− n−1E[Φ⊤Φ]∥2 ≥ ϵλfr/3

)
≥ 1− (16)q(2q − 1)q

1

(ϵcmin
λ /3)2q

1

pq

(
cX(2q)1/2q + σ2cE(2q)

1/2q
)2q

− 2r exp

(
−(ϵ/3)2(cmin

λ )2n/2

(cmax
λ )2 + cmax

λ ϵcmin
λ /9

)
where the second inequality holds by using λfr ≤ λfi for i = 1, . . . r, together with (62) and the
condition of the proposition n ≥ 3σ2/(ϵλfr ); and the third inequality holds by applying lemma 8
and lemma 9 and using λfr ≥ cmin

λ .
The proof is completed by re-arranging each of the two following inequalities:

δ/2 ≥ (16)q(2q − 1)q
1

(ϵcmin
λ /3)2q

1

pq

(
cX(2q)1/2q + σ2cE(2q)

1/2q
)2q

,

δ

2
≥ 2r exp

(
−(ϵ/3)2(cmin

λ )2n/2

(cmax
λ )2 + cmax

λ ϵcmin
λ /9

)
.
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Lemma 10. For any m1,m2 ≥ 1 and any matrix norm ∥ · ∥⋆ on Rm1×m2 , ∥ · ∥⋆ is convex.
For any random A,B ∈ Rm1×m2 and any 1 ≤ q < ∞ such that E [∥A∥q⋆] ∨ E [∥B∥q⋆] < ∞,
E [∥A+B∥q⋆]1/q ≤ E [∥A∥q⋆]1/q + E [∥B∥q⋆]1/q.

Proof. The convexity holds due to the fact that any norm must be absolutely homogeneous and
satisfy the triangle inequality. For the second claim, since E [∥A∥q⋆] ∨ E [∥B∥q⋆] < ∞ we have the
preliminary estimate E [∥A+B∥q⋆] ≤ 2q−1(E [∥A∥q⋆] + E [∥B∥q⋆]) < ∞. If E [∥A+B∥q⋆] = 0 then
the desired inequality is trivial. So suppose E [∥A+B∥q⋆] > 0. Using the triangle inequality for
the norm and then Holder’s inequality for the expectation,

E [∥A+B∥q⋆] = E
[
∥A+B∥⋆∥A+B∥q−1

⋆

]
≤ E

[
(∥A∥⋆ + ∥B∥⋆) ∥A+B∥q−1

⋆

]
= E

[
∥A∥⋆∥A+B∥q−1

⋆

]
+ E

[
∥B∥⋆∥A+B∥q−1

⋆

]
≤
(
E [∥A∥q⋆]

1/q
+ E [∥B∥q⋆]

1/q
)
E
[
∥A+B∥(q−1)( q

q−1 )
⋆

]1− 1
q

=
(
E [∥A∥q⋆]

1/q
+ E [∥B∥q⋆]

1/q
) E [∥A+B∥q⋆]
E [∥A+B∥q⋆]1/q

.

The proof is completed by multiplying both sides by E [∥A+B∥q⋆]1/q /E [∥A+B∥q⋆].

Lemma 11. Assume A6, and A9 with some q ≥ 1. Let Uj denote the jth column of UΦ. Then
there exists a constant b(q) depending only on q such that for any t > 0,

P
(

max
j=1,...,r

∥(p−1YY⊤ −ΦΦ⊤ − σ2In)Uj∥∞ ≤ t

)
≥ 1− n1+qr

t2qpq
b(2q)26q−1

(
max

j=1,...,p
sup
z∈Z

E
[
|Xj(z)|4q

]
+ σ4q max

i=1,...,n,j=1,...,p
E[|Eij |4q]

)
.

Proof. The ith element of (p−1YY⊤ −ΦΦ⊤ − σ2In)Uj can be written in the form:

p−1

p∑
k=1

∆ij(k)

where
∆ij(k) := Y

(i)
k Y ⊤

k Uj − E
[
Y

(i)
k Y ⊤

k Uj

∣∣∣Z1, . . . , Zn

]
and for any i, j, the random variables ∆ij(k), k = 1, . . . , p are conditionally independent and
conditionally mean zero given Z1, . . . , Zn.

Applying Markov’s inequality, the Marcinkiewicz-Zygmund inequality and Minkowski’s in-
equality, all conditionally on Z ≡ (Z1, . . . , Zn), we have for any q ≥ 1 the following inequalities
hold almost surely,

P

(∣∣∣∣∣p−1

p∑
k=1

∆ij(k)

∣∣∣∣∣ ≥ t

∣∣∣∣∣Z
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≤ 1

t2q
E
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2q
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≤ b(2q)
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|∆ij(k)|2
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2q
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≤ b(2q)

t2qp2q
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k=1

E
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|∆ij(k)|2q

∣∣Z]1/q)q

=
b(2q)

t2qpq
max

k=1,...,p
E
[
|∆ij(k)|2q

∣∣Z] . (63)
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Figure 15: First two coordinates of the data matrices corresponding to figure 6, showing much
less structure than the principal components.

Re-arranging the expression for ∆ij(k), applying the Cauchy-Schwartz inequality and ∥Uj∥2 = 1,
we estimate

|∆ij(k)| ≤
∥∥∥Y (i)

k Yk − E
[
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k Yk
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and so
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k |4q
∣∣∣Z]

= 22qnq max
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E
[
|Xk(Zl) + σEkl|4q

∣∣Z]
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(
sup
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E
[
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]
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E[|Ell̃|
4q]

)
. (64)

Combining the almost sure upper bounds (64) and (63), using the tower property of conditional
expectation and then taking a union bound over i = 1, . . . , n and j = 1, . . . , r, we find:

P
(

max
j=1,...,r

∥(p−1YY⊤ −ΦΦ⊤ − σ2In)Uj∥∞ ≤ t

)
≥ 1− n1+qr

t2qpq
b(2q)26q−1

(
sup
j≥1

sup
z∈Z

E
[
|Xj(z)|4q

]
+ σ4q sup

i≥1,j≥1
E[|Eij |4q]

)
,

which completes the proof.

E Supplementary figures for Section 4.2
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Figure 16: Third and second principal components of the data matrices corresponding to figure 6
(ordered like this to make the resemblance to Z more obvious).
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Figure 17: log-Wasserstein error for the fourth configuration in figure 6, for different error vari-
ances. As the variance increases, the optimal dimension (point achieving lowest error) decreases.
The curves are shifted and rescaled so that their maxima and minima agree.
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