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Abstract

Line clouds, though under-investigated in the previous work, potentially encode more
compact structural information of buildings than point clouds extracted from multi-view
images. In this work, we propose the first network to process line clouds for building
wireframe abstraction. The network takes a line cloud as input , i.e., a nonstructural and
unordered set of 3D line segments extracted from multi-view images, and outputs a 3D
wireframe of the underlying building, which consists of a sparse set of 3D junctions con-
nected by line segments. We observe that a line patch, i.e., a group of neighboring line
segments, encodes sufficient contour information to predict the existence and even the
3D position of a potential junction, as well as the likelihood of connectivity between two
query junctions. We therefore introduce a two-layer Line-Patch Transformer to extract
junctions and connectivities from sampled line patches to form a 3D building wireframe
model. We also introduce a synthetic dataset of multi-view images with ground-truth 3D
wireframe. We extensively justify that our reconstructed 3D wireframe models signif-
icantly improve upon multiple baseline building reconstruction methods.The code and
data can be found at https://github.com/Luo1Cheng/LC2WF.

1 Introduction
Recent advancement in photogrammetry makes it possible to obtain 3D data in city-scale
from drone images. Traditional point-based methods for 3D surface reconstruction from im-
age such as multi-view stereo [3, 9, 47] rely on accurate key point matching, which usually
becomes challenging when facing texture-less surfaces (such as glass curtain) or large view-
points changes. To tackle this challenge, line segment-based methods have been proposed as
a promising solution to camera pose estimation [38, 43] and surface reconstruction [15, 30].
It is shown to be easier and more robust to extract reliable line segments than points from
multi-view images, especially in the case of lacking texture [17]. Moreover, to alleviate com-
putational costs of downstream geometry processing applications and to reduce storage cost
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Figure 1: Method Overview. Top: our method takes multi-view images (a) as input and
outputs a high-quality 3D wireframe (g). Specifically, we first extract a line cloud (b) from
the images, from which we sample line patches (c) and (e) to predict wireframe junctions (d)
and connectivities (f) respectively. Bottom: we compare to four baselines: Line3Dpp [17]
(B1) produces abstracted line clouds from the input noisy line clouds (b). Line2Surf [30]
(B2) takes (B1) as input and outputs a triangle mesh. From the point cloud (k), PolyFit [39]
(B3) produces a polygonal mesh, while PC2WF [37] (B4) outputs a 3D wireframe.

of city-scale data, there is an increasing demand for urban reconstruction with lightweight
models such as 3D wireframe models or low-resolution polygonal meshes. Besides, wire-
frame models are also widely-used in creating virtual cities or building information models.

To obtain lightweight building models, existing methods can be roughly categorized into
two groups: (1) fit multiple simple primitives such as planes or boxes to the input point cloud
to obtain a building abstraction as a polygonal mesh [8, 14, 18, 19, 28, 33, 39, 52]; (2) first
construct a dense triangle mesh from the input point cloud using standard surface reconstruc-
tion techniques, e.g. [23, 27, 46]; then apply mesh simplification or decimation techniques
to obtain an abstracted building model based on planar shape priors [2, 4, 29, 45]. However,
both types of solutions rely on discrete operations (such as RANSAC-based fitting [39] or
region-growing for mesh decimation [45]), which makes it hard to adapt existing solutions
for learning-based frameworks. To close this gap, we present the first learning-based solution
for 3D building wireframe reconstruction. We choose wireframe models as output since they
are best suited for piece-wise planar objects such as urban buildings [37]. A wireframe is a
graph representation of an object described by a set of junctions connected by line segments.
Wireframe models have become popular for characterizing the contours of objects in both
2D [26, 57, 60, 61] and 3D [37]. However, learning a 3D building wireframe from a point or
line cloud is a challenging and under-explored task, which still remains an open problem.

In this work, we propose a solution to extract the 3D building wireframe from a line
cloud. As observed in [14, 19], line clouds potentially provide more structural information
such as corner points and boundary edges of buildings, which are much harder to extract
from point clouds. Moreover, a line cloud is more compact to characterize a building than
a point cloud. For example, our method can output a reasonable building wireframe from a
line cloud containing around 1K line segments. To achieve comparable result, a dense point
cloud containing 50K-100K points is required for baseline methods such as PolyFit [39].

To summarize, our main contributions are: (1) a novel learning-based solution to re-
construct 3D building wireframe from multi-view images; (2) LC2FW: a transformer-based
and the first network to process line clouds based on line patches; (3) an adapted synthetic
dataset with annotated multi-view images and ground-truth 3D wireframe models.
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2 Related Work

There is relatively limited work that focuses on building wireframe reconstruction from ei-
ther multi-view images or point clouds. We mainly review related work of building recon-
struction, wireframe reconstruction, as well as existing datasets for building reconstruction.
3D Point/Line Reconstruction Structure-from-Motion [1, 5, 46, 48, 49, 51] is an effective
method to acquire 3D point clouds or line clouds for surface reconstruction from multi-view
images. Corresponding feature points extracted from multi-view images are used to estimate
camera parameters and generate 3D point clouds. Similarly, 3D line clouds can be generated
from corresponding 2D line segments detected from multi-view images [17]. In our work, we
focus on line clouds since the building shapes can be easily characterized by line structures.

Building Reconstruction Multiple optimization-based algorithms have been proposed for
building reconstruction from point clouds. Some works [14, 33, 34, 62] use the Manhattan-
world assumption to further regularize the building reconstruction. The reconstructed build-
ing meshes are usually dense and noisy, and thus different methods have been proposed for
simplification or abstraction [24, 32, 54]. Primitive-based building reconstruction is another
popular direction to get abstracted polygonal mesh by exploiting high-level primitives such
as cubes [14, 33, 52], planes [8, 18, 19, 28, 39], or general 3D templates [35, 40] to fit input
point clouds of buildings. However, building reconstruction from a 3D line cloud has been
rarely investigated. Existing works [14, 19, 30, 50] take 3D lines into consideration to fit
planes first, instead of directly extracting the building structure from the lines. Sugiura et
al. [50] extend the tetrahedra-carving method to the 3D point-and-line cloud setting, while
Holzmann et al. [19] use additional semantic labels from image segmentation to cluster lines
for plane fitting. Langlois et al. [30] propose a RANSAC-based method to extract planes
from the input line cloud, which are fused to form a watertight mesh. He et al. [14] estimate
planes and corners from a line cloud for box fitting. Some other works [16, 17] provide
heuristics for line cloud abstraction. In our work, we propose the first learning-based solu-
tion to process line clouds for 3D building wireframe reconstruction.
Wireframe Extraction As a special case of 2D edge detection [10, 11, 12, 21, 36, 41,
55, 56, 59], 2D wireframe detection from a single image [26, 57, 60, 61] is much more
explored compared to the 3D wireframe reconstruction setting. A recent work PC2WF [37]
proposes a CNN-based method to extract 3D wireframe models from point clouds. Zhou et
al. [62] provide a method to reconstruct partial 3D wireframe models from a single image,
from which depth maps, junction heatmaps, edge maps, and vanishing points are estimated
independently for wireframe prediction. In our work, a complete 3D wireframe model is
reconstructed from a noisy line cloud extracted from multi-view images.

Dataset There are multiple datasets that contain ground-truth 2D lines in images with se-
mantically meaningful annotations [12, 31]. Here we mainly review datasets that can be
potentially used for either wireframe or building reconstruction. [20] and [6] provide ground-
truth 2D wireframe annotations for single images of indoor or outdoor scenes. [62] proposes
a synthetic city dataset that contains 2D synthetic images with ground-truth depth and partial
3D wireframe annotations that are visible from a single view. There are also some datasets
consisting of CAD models [25] or polygonal meshes [42] that can be potentially adapted to
wireframes. The ABC dataset [25] is a recent dataset consisting of one million CAD mod-
els, most of which are mechanical parts. In this work, we build on [42] to create a synthetic
dataset with complete ground-truth 3D wireframe models paired with multi-view images.
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3 Background & Training Dataset

Notation Our method takes a set of multi-view images I = {Ii}m
i=1 as input, from which we

extract a line cloud [14, 17] that consists of a group of line segments L= {li}N
i=1, where each

line segment li is denoted by its two 3D endpoints, i.e., li = (pi,qi), pi,qi ∈ R3. We denote
G as a group of line segments belonging to L, i.e., G ⊂ L. The underlying 3D wireframe
model of the line cloud L is denoted asW =

(
V,E

)
, which is defined by a set of 3D vertices

(junctions) V and a set of edges (connectivities) E that connect those vertices. Specifically,
we have V = {vi}nv

i=1,vi ∈ R3, and E ⊂ V ×V.
Overall Pipeline The goal of our method is to output an accurate and clean wireframe model
W from a set of input images I of a building. Our method contains the following major
building blocks (see Fig. 1): (1) a line cloud extraction step where a dense line cloud is
extracted from the input images (Sec. 3.1); (2) a junction predictor which classifies if there
exists a junction in a group of lines and regresses the junction position accordingly (Sec. 4.3);
(3) a connectivity predictor that instantiates edges between the predicted junctions (Sec. 4.4).

3.1 Line Cloud Extraction
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There are roughly two groups of methods to extract a line cloud from
multi-view images: (1) reconstruct 3D lines and estimate camera pa-
rameters simultaneously [13, 44, 58]; (2) reconstruct 3D lines with
fixed camera parameters estimated from standard structure-from-
motion (SfM) methods [17, 22]. In the work, we follow the latter one
to reconstruct a line cloud, which is also adopted in Line3Dpp [17],
the current state-of-the-art line cloud abstraction method. Specifically, the camera parame-
ters are estimated from the multi-view images using SfM. Correspondences between the 2D
line segments detected from each image (using any existing line detector) are established
based on epipolar constraints, which are then used to solve 3D line segments based on the
camera parameters. We use the line cloud extractor as provided in [17]. Note that, the ex-
tracted line cloud is potentially dense, noisy, and incomplete. The inset figure shows the
histogram of the length of the line segments in the line cloud shown in Fig. 1 (b). Around
85% of the extracted line segments has a shorter length than the average edge length of the
underlying building (Fig. 1 (h)). This suggests that the extracted line clouds contain large
portion of short (and potentially noisy in orientations) line segments, which makes it chal-
lenging to extract a clean wireframe.

3.2 BuildingWF Dataset: Training Dataset

Challenges To design a data-driven solution for building wireframe reconstruction, we need
large-scale datasets with ground-truth 3D wireframe annotations paired with either multi-
view images or point clouds. However, it is quite challenging to obtain such datasets. Exist-
ing building datasets can be roughly categorized as follows: (1) single image with ground-
truth 2D line segments [12]; (2) single image with ground-truth 2D wireframe [6, 20]; (3)
single depth image with ground-truth partial 3D wireframe that is visible in the image [62].
On the other hand, the dataset used in PC2WF [37] are indeed in large-scale but only con-
tain ground-truth 3D wireframe for man-made objects such as mechanical objects [25] and
furniture.
BuildingWF Dataset In this work, we introduce a synthetic dataset with ground-truth 3D
building wireframe models based on the Roof-Image dataset proposed in [42], which con-
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(a1) p=0.9997 (a2) p=0.9999 (a5) p=0.0191 (a6) p=0.0009

(b1) p=(0.997, 0.000) (b2) p=(0.000, 0.998) (b5) p=(0.053, 0.002) (b6) p=(0.000, 0.000)

(a3) p=0.5834 (a4) p=0.5414

(b3) p=(0.490, 0.297) (b4) p=(0.005, 0.143)

Line patches for junction prediction

Line patches for connectivity prediction

Figure 2: Example line patches (red lines) w.r.t. the sampling points (blue). Top: we report
the probability for each line patch to have a junction. Bottom: we report two probabilities
for a pair of sampling points, i.e., (1) two points are connected, and (2) two points that
potentially have graph distance of 2. Note all the line patches have the same number of lines.

tains around 3.6K polygon meshes of residential buildings (denoted as Mi). See supple-
mentary materials for some examples. We first extract the ground-truth wireframe Wgt =
(Vgt,Egt) from the provided building meshM. We then synthesize multi-view images I of
the buildingM in Blender with synthetic textures based on the provided face labels. A 3D
line cloud L is extracted from synthetic images I as mentioned in Sec. 3.1. We then use the
ground-truth wireframeWgt and camera parameters to label each 3D line segment in the line
cloud L.

Specifically, we first project the 3D ground-truth wireframe Wgt to image planes using
the corresponding camera parameters to get the ground-truth 2D wireframe for each image
Ii ∈ I, which allows us to check if a 3D line li ∈ L is part of the wireframe Wgt or not.
If the 2D line segments, that are used to reconstruct the 3D line li, are close enough to the
ground-truth 2D wireframes, li will be classified as part of Wgt and be labeled as 1. For a
line li with label 1, we further associate it with two ground-truth junction vertices that are
the endpoints of the corresponding edge inWgt that li belongs to. In summary, each line li
has a 5-dimensional label: ( f , i1,d1, i2,d2) where f is binary indicating if this line is part of
the wireframe, i1, i2 are the junction index in Vgt and d1,d2 are the distances from li to the
two ground-truth junctions respectively if f = 1. Note that the label f is used to supervise
our junction classifier, and the remaining labels are used to supervise our junction regressor.

4 LC2WF: Line Cloud to Wireframe

In this section, we present the key component of our framework, LC2WF network that re-
constructs a 3D wireframe from a line cloud. Before we dive into the architecture details,
we would like to first motivate our design choices. The core problem is how to correctly
predict the junction positions and the connectivities between junctions from a line cloud.
Similar to a point cloud, a line cloud is nonstructural, dense, noisy, and potentially incom-
plete. However, on the other hand, the orientation and length is properly defined for line
segments, which makes the neighborhood in a line cloud potentially more informative than
the neighborhood in a point cloud, where only the distance between points is defined.

In the following, we first introduce line patches to define the neighborhood in a line
cloud. We then propose our line-patch transformer[53], LPT, that is designed to process line
patches to effectively extract information for junction and connectivity prediction, which are
combined to produce the final 3D wireframe.
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4.1 Line Patches
In our setting, a line patch is defined as a group of 3D line segments collected w.r.t. sampling
points. Specifically, given an arbitrary point x ∈ R3, the corresponding line patch G(x) is
defined as: G(x)=

{
l ∈L|dist(x, l)≤ ε

}
, where dist(x, l) measures the point-to-line distance

between a point x and the 3D line where the line segment l lies. We can similarly define the
line patch w.r.t. a pair of sampling points as G(x,y) = G(x)∪G(y). We observe that the line
patches encode sufficient information to predict junction positions and connectivity between
junctions. Specifically, the line patch G(x) of point x can be used to estimate the probability
of having a junction located around point x, while the line patch G(x,y) can be used to
estimate the probability of having an edge connecting the point x and point y.

See Fig. 2 for an illustration: In example (a1) and (a2), the lines in the red patch have
multiple dominant orientations, suggesting that the blue sampling point is indeed close to a
wireframe junction. This aligns with the fact that a 3D junction is formed by the intersection
of at least three planes, and the corresponding intersecting lines shape the contour of the un-
derlying building, which would lead to dominant line clusters in images. The blue sampling
point in example (a5) is located on a roof plane, where the roof texture (see Fig. 1) contains
structural lines. In this case there exists only one dominant direction, which is not enough
to support a junction. Example (a6) shows the line patch of an outlier point, where the lines
in the patch are extremely unstructured. Similar for the examples in (b1-b6), we can see that
if two sampling points are likely to be connected to each other, the corresponding line patch
will reveal strong pattern (e.g., having duplicated lines) to support it. All these observations
of line patches perfectly align with the properties of the wireframe models of planar objects:
the junctions are formed by the intersection of planes with at least three dominant direc-
tions determined by the intersecting lines. As a comparison, other points such as corners in
textures or noisy points do not have comparably strong signals.

4.2 Line-Patch Transformer (LPT)
Given a line patch G(x) or G(x,y), how can we tell if there exists a junction or an edge? We
propose a line-patch transformer, LPT, to extract features from line patches, which can then
be used to predict the junctions/edges. Specifically, a line patch G(x) can be represented as
a 2D tensor (N,F in), that stores N neighboring lines in G(x), and each line has F in features
including the coordinates of the two endpoints and the distance between the line and the

TRM attended
on neighbors

(G, N, F in )

(G, N, F)

(G, F)

FC

TRM attended
on groups

LPTsampling point x. We then collect G groups of line patches in a 3D tensor
(G,N,F in). LPT contains two transformers (see inset figure): (1) the first
transformer attends to the N neighbors for each line patch, to potentially find
the most prominent lines for junction predictions; (2) the second transformer
attends on the G groups, to potentially attend to the junctions that are co-planar.
We believe the attention mechanism inside the transformers is more effective
in capturing local geometry information in line patches as well as the global geometry in the
line cloud. We similarly use LPT to process line patches G(x,y) for connectivity prediction,
where the initial features can be obtained by concatenating the features of G(x) and G(y).

4.3 Junction Predictor
We sample G points {xk}G

k=1 from all the line endpoints of the line cloud L to construct
line patches for junction prediction. Specifically, we first sample a smaller set of points
(around 25%) according to the endpoint density and then sample the remaining points via
Farthest Point Sampling (FPS) [7]. We then obtain the corresponding line patch G(xk) for
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each sample xk as discussed in Sec. 4.1. The line patches {G(xk)} are fed into LPT to extract
patch features, which are used to classify if there exist a junction close to xk, and regress
the potential junction position pk. We then collect the predicted junctions pk in Vpred. The
classifier can help to filter out junctions with a low confidence. During the training phase, we
first draw samples that are close to the ground-truth junctions, then sample via density and
FPS to get G sampling points for constructing the line patches. This guarantees that we draw
both positive line patches (containing a junction) and negative line patches. Specifically, a
line patch is considered as a negative sample if there are more than half of the line segments
in the patch are labeled as noise (introduced in Sec. 3.2). The loss function for the classifier
is a binary cross-entropy Ev-clf. The loss function for the regression is L2 distance between
the predicted position and the ground-truth position.

4.4 Connectivity Predictor

We first sample G pairs of predicted junctions (pk,qk) ∈ Vpred×Vpred w.r.t. the predicted
probability. We can then construct the line patches {G(pk,qk)} and feed them into LPT to
extract patch features, which is used to classify the junction pair (pk,qk) into five groups:
(A) labeled as -1 if at least one of (pk,qk) is a false positive junction (i.e., does not belong
to the underlying wireframe); (B) two vertices are true positive junctions and the pair is
labeled by the graph distance in the underlying wireframe, i.e., (B.0) with graph distance 0
(pk is identical to qk), (B.1) with graph distance 1 (pk is connected to qk), (B.2) with graph
distance 2 (pk,qk are adjacent to the same vertex), or (B.3) having graph distance larger than
2. The proposed fine-grained classification with 5 categories can provide more informative
labels and more balanced distribution (which leads to better results as justified in Tab.6 in
the supplementary) than a naive binary classification, which implicitly assumes all predicted
junctions are true positive and are not redundant. Note that the edge labels can help to
further prune the false positive junctions besides the probability produced by the junction
classifier. During training, we sample from Vgt×Vgt and Vpred×Vpred to learn junction
connectivity. A vertex from Vpred is regarded as a false positive junction if its distance to
the nearest ground-truth junction is larger than a threshold ε . Any vertex pair that contains
a false positive junction is labeled as -1. The rest vertex pairs is labeled according to the
graph distance in the ground-truth wireframe, where for a pair of predicted junctions, we use
the graph distance between their nearest ground-truth junctions. The loss function for the
classifier is standard cross-entropy Ee-clf.

4.5 Implementation Details

Network Details Our LPT architecture includes fully-connected (FC) layers (with batch
normalization and ReLU activation) and two transformer encoder layers (with layer nor-
malization, ReLU activation, and pre-normalization). The output sizes of the FC layers
are set to 64/64/128/128/256 resp. In the transformer encoder layer, the input size and the
latent layer size are set to 256. The classifier/regressor for junction prediction, and the clas-
sifier for connectivity prediction similarly include FC layers, ReLU activation, and batch
normalization. The output size of the FC layers are 256, 128, 64, 32, and 2/3/5 (for junction-
classifier/junction-regressor/connectivity-classifier resp.). See the supplementary for more
details.
Training Loss The total training loss for our complete networks is: Etotal =Ev-clf+λvEv-reg+
λeEe-clf, where λv,λe are balancing weights.
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Post-processing For post-processing, we first use non-maximum suppression (NMS) to re-
move duplicated vertices and redundant edges that are close to each other. We then use the
connectivity predictor to further prune the predicted junctions that tend to be false positives.
Specifically, if a vertex pair is categorized to be identical (i.e., with label 0), then the junction
with a lower confidence will be removed. For two vertices with similar Hamming distance in
adjacency and small Euclidean distance, the vertex with a lower confidence will be removed.
We also remove the isolated edges from the final wireframe.

5 Experiments

We compare different methods for building mesh/wireframe reconstruction on our Build-
ingWF dataset with ground-truth annotations (introduced in Sec. 3.2). We briefly introduce
the baselines and the metrics for evaluation in Sec. 5.1. In Sec. 5.2 we show quantitative
and qualitative results on building wireframe reconstruction. See supplementary materials
for ablation study, more results and discussions. Code and data will be released.

5.1 Baselines & Evaluation Metrics

Table 1: Baselines
Method

Input
type

Input
size

Output
type

Runtime
(sec)

line3Dpp lines 1,388 lines 33.1
line2Surf. lines 120 mesh 220.8
PolyFit points 86,396 mesh 45.6

PC2WF points 86,396 wireframe 31.7
Ours lines 1,388 wireframe 0.9

To the best of our knowledge, there is no existing baseline for
reconstructing building wireframes from multi-view images di-
rectly. We therefore mainly compare to the state-of-the-art 3D
line cloud abstraction method, line3Dpp [17], building recon-
struction methods, Line2Surface [30] and PolyFit [39], and 3D
wireframe reconstruction method PC2WF [37]. Specifically,
line3Dpp [17] outputs an abstracted line cloud from a dense line cloud based on heuristics
for line clustering. Line2Surface [30] is an optimization-based method that extracts planes
from a line cloud via RANSAC to form a building mesh. PolyFit [39] is the state-of-the-art
optimization-based method for building mesh reconstruction from a potentially noisy point
cloud. PC2WF [37] is a novel learning-based method to reconstruct a 3D wireframe from
a point cloud, which achieves plausible results on man-made objects such as mechanical
objects and furniture. For evaluation, we follow PC2WF[37] to measure the precision and
recall on both predicted junctions and wireframes, and the Wireframe Edit Distance(WED):
(1) vAPη and vRecallη show the precision/recall on the predicted junctions. (2) sAPη and
sRecallη report the structural quality of the predicted wireframes. Specifically, it checks
if a predicted edge is a true positive or if a ground-truth edge is retrieved according to the
distances between the edge endpoints. (3) WED reports the number of operations and the
editing distances of adding/removing predicted junctions/edges that are needed to transform
the graph structure of the predicted wireframe into the ground-truth wireframe.

5.2 Results and Comparisons

We compare to baseline methods on 757 test buildings. The line clouds (for line3Dpp,
line2Surf, and our method) and the point clouds (for PolyFit and PC2WF) are extracted
using the same camera parameters. Note that we use a commercial software to extract high-
quality point clouds (See Fig. 1 (k) and Fig. 3 (a) for some examples). Moreover, to make
a fair comparison to line2Surface [30] and PolyFit [39], we post-process the output meshes
into wireframes by merging co-planar faces and parallel adjacent edges, removing interior
edges and isolated vertices, etc. For PC2WF we use the provided NMS for post-processing.
We report the evaluations on the results after post-processing (Tab. 2).
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(a) Precision/Recall of the predicted junctions
(vAP/vRecall) and the predicted wireframe models
(sAP/sRecall) on results after post-processing. We
highlight the best and the second best results.

vAPη /vRecallη (%) sAPη /sRecallη (%)

Method
η = 0.15 η = 0.25 η = 0.35 avg. η = 0.25 η = 0.35 η = 0.50 avg.

line2Surf. 26.7/83.9 27.4/85.8 27.6/86.6 27.2/85.4 24.2/58.8 25.1/61.0 25.8/62.6 25.0/60.8
PolyFit 52.1/70.8 62.0/84.3 64.3/87.4 59.5/80.8 45.5/53.8 58.7/69.5 65.5/77.5 56.6/66.9
PC2WF 11.9/26.8 43.2/54.3 58.5/65.2 37.9/48.8 0.84/7.61 7.68/23.3 23.0/40.4 10.5/23.8

Ours 91.3/92.2 93.4/93.9 94.4/94.8 93.0/93.6 76.8/84.7 80.6/87.1 83.9/89.5 80.4/87.1

(b) Wireframe Edit Distance (WED) of the
reconstructed wireframes. We report the
number of operations (Num) and the editing
distances in meters (Dist).

(WED) +vertex (WED) +edge (WED) -edge (WED) Total
Method

Num. Dist Num Dist Num Dist Num Dist

line2Surf. 1.012 13.78 6.223 35.76 9.427 48.77 16.66 98.31
PolyFit 1.681 3.170 4.811 21.41 0.969 5.285 7.463 29.86
PC2WF 5.216 3.445 17.01 87.94 4.622 33.38 26.84 124.8

Ours 0.766 1.810 2.880 11.49 1.655 14.03 5.301 27.33

Table 2: Precision/Recall and Wireframe Edit Distance results after post-processing
(a) commercial

software
(b) line clouds (c) line3Dpp (d) line2Surface (e) PC2WF (f) PolyFit (g) Ours (h) ground-truth

Figure 3: Comparison to baselines on building wireframe reconstruction.

Tab. 2a shows a fair comparison to line2Surf and PolyFit, where all the output meshes are
post-processed into cleaner wireframes (see Fig. 3 for some examples of the post-processed
results; see Fig. 1 (B2,B3) and supplementary materials for examples of direct outputs from
different methods). we report the number of vertex/edges, and the precision/recall of the
predicted junctions/wireframes on the results after post-processing. We do not compare to
Line3Dpp in this case since it outputs a nonstructural line cloud. The results show that our
method outperforms all the baselines on building wireframe reconstruction.

Note that, PolyFit shows visually comparable results to ours in Fig. 3, but its accuracy
is much lower as shown in Tab. 2a. The reason is that in PolyFit, the junction positions
are determined by the intersections among the estimated planes, and their L2 distance to the
ground-truth junctions can be large even though the overall shape looks alike. At the same
time, redundant faces will be generated to satisfy the watertight hard constraint in PolyFit.

Tab. 2b shows the wireframe edit distance for different methods, where our method
achieves the least number of editing operations and the smallest editing distances. Fig. 3
shows a qualitative comparison of different baselines. We can see that line3Dpp can in-
deed provide more abstracted line clouds, but they are still far from clean wireframe models.
Line2Surf can robustly recover planes from the line cloud (from Line3Dpp), but it is not
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robust to the noise. PC2WF is trained on point clouds from mechanical objects and fur-
niture, which are likely to have a large domain gap to the rooftop structures. Therefore,
the wireframes constructed by PC2WF can only recover the walls in building point clouds.
Moreover, we also observe that the point clouds stemming from our scenes are more noisy
(though they are accurate enough) than the point clouds that PC2WF is trained on. This can
also lead to the less satisfactory results that PC2WF obtains. PolyFit is a powerful method
for building reconstruction that is robust to noisy point clouds. However, PolyFit can be
computationally costly when the input point cloud is too dense since the algorithm involves
integer linear programming. As a comparison, our method can achieve visually comparable
and quantitatively better results in a much more efficient way. For example, on average it
takes our method 0.9s to infer a building wireframe while it takes PolyFit 45.6s to optimize
a building mesh (see Tab. 1). We show more results of our reconstructed wireframes in the
supplementary materials.

input
real scan

extracted LC
& our results

Figure 4: Two real-data examples (without finetun-
ing): we overlay our reconstructed wireframe (red) on
top of the extracted line cloud (gray).

Fig. 4 shows some preliminary
but reasonable results on two real-
world noisy scans without finetun-
ing. One of the main challenges
of our task is the lack of large-
scale real-world buildings paired
with clean and complete wireframes
(e.g., manually created by artists).
Adapting existing datasets is almost as hard as designing a new one as discussed in Sec.3.2.
Inspired by PC2WF where synthetic point clouds are generated for training and testing, we
therefore justify our LC2WF on synthetic dataset. We believe our LC2WF can be fine-tuned
on future real-world datasets to get better performance.

6 Conclusion, Limitation & Future Work
In this work, we present the first learning-based solution for building wireframe reconstruc-
tion from line clouds, which can be efficiently extracted from multi-view images. We con-
struct a synthetic dataset, BuildingWF, containing multi-view images of 3.6K buildings and
the corresponding ground-truth wireframe models. The key component of our method is a
Line-Patch Transformer which can be used for junction and connectivity prediction from line
patches, a group of neighboring line segments that potentially encode the contour informa-
tion of the underlying building. Our method outperforms multiple state-of-the-art building
reconstruction methods on both accuracy and efficiency.

Our method still has some limitations. For example, we assume the input multi-view im-
ages cover the overall region of the underlying buildings, and we expect to extract a building
wireframe from a noisy but relatively complete line clouds. Therefore, no prior knowledge
or extra regularizers are investigated to complete a wireframe from a partial line cloud with
large missing regions. We would like to leave it as future work to investigate wireframe
reconstruction from partial line clouds. Moreover, in this work we do not investigate how to
convert a wireframe into a watertight mesh. We believe it would be interesting to try to learn
face information from line patches as well, which we leave as future work.
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