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Abstract

Federated learning (FL) has emerged as a promising privacy-preserving distributed
machine learning framework recently. It aims at collaboratively learning a shared
global model by performing distributed training locally on edge devices and aggre-
gating local models into a global one without centralized raw data sharing in the
cloud server. However, due to the large local data heterogeneities (Non-I.I.D. data)
across edge devices, the FL may easily obtain a global model that can produce more
shifted gradients on local datasets, thereby degrading the model performance or
even suffering from the non-convergence during training. In this paper, we propose
a novel FL training framework, dubbed Fed-FSNet, using a properly designed
Fuzzy Synthesizing Network (FSNet) to mitigate the Non-I.I.D. FL at-the-source.
Concretely, we maintain an edge-agnostic hidden model in the cloud server to
estimate a less-accurate while direction-aware inversion of the global model. The
hidden model can then fuzzily synthesize several mimic I.I.D. data samples (sample
features) conditioned on only the global model, which can be shared by edge de-
vices to facilitate the FL training towards faster and better convergence. Moreover,
since the synthesizing process involves neither access to the parameters/updates
of local models nor analyzing individual local model outputs, our framework can
still ensure the privacy of FL. Experimental results on several FL benchmarks
demonstrate that our method can significantly mitigate the Non-I.I.D. issue and
obtain better performance against other representative methods.

1 Introduction

Machine deep learning has made tremendous success in the past few years across multiple real-world
applications [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30]. With the advances in computing capability of edge devices (e.g., mobile phones),
various machine learning (ML) applications [23, 31, 32, 5, 33, 2, 34, 35, 13, 12] are usually deployed
locally on user-sides to directly perform training or inference, rather than relying on a centralized
cloud server-based training framework for better privacy preservation [36, 37, 38, 39, 19, 40, 29].
More specifically, users can either train an ML model individually upon their local data or download
a pre-trained learned from external data from the cloud server. However, under such a paradigm, the
former scenario may usually be quite stuck with local devices because the models cannot generalize
well to massive new data, while the latter may result in a too mediocre model for each user by using
only external data resources. For example, as one of the most ubiquitous edge devices in our daily life,
the mobile phone can constantly generate privacy-sensitive data across multiple users, such as images,
texts, voices, and so on. These data can represent sufficient diversity of various user patterns and
thus are of great value to be utilized to train a better ML model for all participated users. However,
due to privacy concerns, it is not applicable to upload and share these data in the cloud server for
centralized model training, where the limitation is considered as the isolated-data-island that hinders
the further improvement of the model [41]. To facilitate the usage of such privacy-sensitive data and
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training a more generalized model, federated learning (FL) has emerged as a promising paradigm
of privacy-preserving distributed ML framework [42, 43, 44, 45, 46, 47, 48, 49]. FL enables each
device to train a model locally based on its own data, and communicates with other local models in
the cloud server for aggregating a more generalized global model, without collecting and sharing any
privacy-sensitive information from users.

However, unlike the standard cloud server-based distributed ML training framework, the FL is
fundamentally posed with some challenges that limit its further development. Among them, due
to the large heterogeneities across multiple devices, their data samples are usually not independent
and identically distributed (Non-I.I.D.) [50, 51]. In such a scenario, the conventional FL is not able
to efficiently train a shared global model and may thus degrade the performance or even encounter
non-convergence during training. To mitigate the Non-I.I.D. FL, existing methods mostly follow two
mainstreams. The first usually considers properly sampling several devices (or local training data) to
participate in each round of FL to counterbalance the bias introduced by non-I.I.D. data [42, 52, 47].
Such treatment is based on the assumption that there may exist (partially) I.I.D. cases across devices.
The second considers exploring a balanced aggregation strategy for each local model (or model
updates) to offset the Non-I.I.D. issue [53, 54, 48, 55], of which each device is assumed to contribute
differently to the overall model. Despite the progress made, these methods can only make use of
limited statistical observations associated with local devices, e.g., local model parameters/updates or
sketchy data distributions, which are not sufficient to address the data Non-I.I.D. issue at-the-source.
Worse still, unlike the secure aggregation-based methods [56, 57] where the cloud server can only
observe the final sum of model parameters/updates, the above-mentioned methods assign the priority
of observing the parameters/updates of each local model to the cloud server, thereby making the FL
training not fully privacy-preserved if the cloud server is adversarial-oriented and may potentially
reconstruct raw data of local devices.

In this paper, we consider a novel strategy to synthesize mimic I.I.D. data samples (sample features)
in a global view and offload them to participating local devices to directly mitigate the Non-I.I.D.
FL at-the-source. Specifically, we propose a well-designed Fuzzy Synthesizing Network (FSNet)
that maintains an edge-agnostic hidden model in the cloud server, by using an encoder-decoder
architecture associated with the global model to estimate an inversion of it. This inversion is typically
achieved by sampling Gaussian mixture with variational mixture coefficients, to perform encoding
and reconstruction process by the global and the hidden model, respectively. Notably, since the
sampling is not equivalent to the real data distribution, the obtained hidden model is not really
accurate. However, it is expected that by inverting the parameters of the global model, the hidden
model can more or less capture some statistical characteristics of the global data distribution, and
can thus provide direction-aware information towards I.I.D. cases. This hidden model can then
fuzzily synthesize several mimic global I.I.D. data samples (sample features) with sampled softmax
distribution of classes (i.e., decoded by hidden model), which will be further utilized to regularize the
training process of each local model by a well-designed simple yet efficient bias-rectified objective.
To simplify, we denote our model as Fed-FSNet. Moreover, it should also be noted that since our
proposed method is edge-agnostic and only synthesizes fuzzy mimic global I.I.D. data conditioned
on only the global model, we thus can still ensure the FL privacy [56, 57].

In summary, the contributions of this paper are three-fold:

• We propose a novel FL training framework, dubbed Fed-FSNet, involving a well-designed
FSNet to mitigate the Non-I.I.D. FL at-the-source. Our method can greatly narrow the gap
between fully I.I.D. FL models.

• The proposed FSNet makes no inroads on the parameters/updates of local models nor
analyzing individual local model outputs, thus can retain and ensure the privacy of the
training process similar to conventional secure aggregation-based FL models.

• Experimental results on several FL benchmarks verified the effectiveness of our model on
the superior mitigation of Non-I.I.D FL.

2



2 Related Work

2.1 Non-I.I.D. Data in FL

Since different users usually have different habits and usage environments, the data samples generated
on their devices are usually not independent and identically distributed (Non-I.I.D.) in real-world
applications. Typically, during the FL training process, the Non-I.I.D. data means the differences
between the data distributions Pi(x) and Pj(x) for any different devices Ci, Cj ∼ Q, where Q
denotes the entire participating devices. Ideally, an I.I.D. (or at least quasi-I.I.D.) assumption of the
training data is of crucial importance to ensure that the stochastic gradient is an unbiased estimate
of the full gradients and thus makes the entire training convergence. In practice, it is however not
realistic to assume that the local data on each device is always I.I.D. To mitigate the Non-I.I.D. issue
in FL, MOCHA [43] proposed a multi-task learning framework to handle the statistical Non-I.I.D.
challenge which is robust to practical systems issues. But this solution differs significantly from the
previous work on FL. FedAvg [42] has demonstrated that the iterative model averaging can work
with certain non-I.I.D. data. FedAtt [54] proposed an attention mechanism in FL considering the
contribution of each local model for aggregation and constructed a more generalized mobile keyboard
suggestion model. More recently, AFL [52] proposed a simple and intuitive active device sampling
scheme for FL training, with a probability conditioned on the current model and the data on the
devices to offset the Non-I.I.D. Similarly, FAVOR [47] proposed a deep reinforcement learning-based
experience-driven control framework that can intelligently sample devices to participate in each
FL round to counterbalance the non-I.I.D. bias. Recently, knowledge distillation has been utilized
to refine the server model aggregation using aggregated knowledge from heterogeneous users and
obtained promising results, the representative methods include FedDF [48] and FedGEN [55].

2.2 Inference Attacks as a Preliminary

Recently, some generative models, e.g., auto-encoder (AE) [58, 28, 59, 8] and generative adversarial
network (GAN) [60, 61, 62], and some optimization approaches are utilized for the inference attack
on networks. With the ability to synthesize data samples of the target distribution [58, 60, 26],
the generative models have proven to be efficient for inference attacks on ML models and thus
can be used to recover privacy-sensitive data for certain purposes. For example, Hitaj et al. [63]
proposed an inference attack model against collaborative deep learning that allows the attacker to
reconstruct sensitive information on the victim’s device. mGAN-AI [64] incorporated a novel multi-
task discrimination process on the reality, category, and identity of the target device for inferring
user-level class representatives. Differently, DLG [65] applied an optimization method to match the
gradients of the model on the malicious attacker and the gradients of the model trained on the target
device to recover privacy-sensitive information.

Motivated by inference attacks, we can also have the idea to make use of the related tools, especially
the generative models to synthesize mimic I.I.D. data for participated devices, and mitigates the
Non-I.I.D. FL at-the-source. Specifically, it is noticed that the above inference attack models usually
require device-level information, e.g., individual local model parameters/updates or outputs, to recover
device-level data distribution, which however, naturally violates the FL privacy. Different from the
above inference attack methods, we consider maintaining an edge-agnostic hidden model by training
an encoder-decoder architecture conditioned on only the global model, to fuzzily synthesize mimic
I.I.D. data in a global view. Our intuition is that although the synthesized mimic I.I.D. data is not fully
accurate due to the absence of local model parameters/updates, it can still retain certain statistical
characteristics of the overall global distribution that can provide direction-aware information towards
I.I.D. cases. Such information is further utilized to regularize the FL training towards faster and better
convergence.

3 Methodology

We first give the problem definition of the FL training. Next, we introduce our proposed method and
formulation in detail. More specifically, our motivation is that since the Non-I.I.D. brings about the
biased estimation of each local model, we thus can make use of the mimic I.I.D. data (synthesized by
the proposed FSNet) to properly regularize the training process of each local model and offsets such
bias at-the-source.
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Figure 1: Illustration of the proposed FL training framework: an edge-agnostic hidden model is
maintained in the cloud server to synthesize mimic I.I.D. data samples (sample features) conditioned
on only the global model. These synthesized data will be offloaded along with the shared global
model/parameters to each local device and further regularize the FL training.

3.1 Problem Definition

We start by formalizing the FL training and then introduce our proposed method. Given K edge
devices (e.g., mobile phones) {C1, C2, · · · , CK} ∼ Q, whereQ denotes the entire participated devices.
Each Ci holds a private dataset belonging to {D1,D2, · · · ,DK}, where the data distributions Pi(x)
and Pj(x) for any different devices Ci, Cj ∼ Q differ significantly. During the FL training, all
participating devices are expected to collaboratively learn a shared global model. Without loss of
generality, we consider the shared model to deal with a multi-class classification task, and thus each
device trains a local model as:

min
θ

E(x,y)∈D [−y logPθ (ŷ | x)] , (1)

where Pθ(·) is the classifier with trainable parameter θ, and ŷ is the probability distribution (e.g.,
softmax outputs) that a data sample x is predicated on all classes compared with the ground-truth y.
Considering K participated devices during the FL training, we can rewrite the objective (1) as:

min
θ1,θ2,··· ,θK

K∑
k=1

E(x,y)∈Dk
[−y logPθk (ŷ | x)] , (2)

where all K devices are trained collaboratively for a shared global model, i.e., Pθ(g)(·). Specif-
ically, Pθ(g)(·) is obtained by iteratively performing local update and model aggregation in each
communication round as:

• Local Update: Each participated device updates the local model on its private dataset using
stochastic gradient descent (SGD) as θk ← θk − η∇Pθk(Bk), where Bk denotes the batch
samples for one local iteration.

• Model Aggregation: After the local update, the cloud server aggregates the updated local
model parameters as θ(g) =

∑K
k=1

Nk

N θk, where Nk and N denote the number of data
samples in Dk and the total number of all datasets, respectively. The updated global model
is then distributed to all participating devices and repeats the steps.

3.2 Fuzzy Synthesizing Network (FSNet)

To synthesize mimic I.I.D. data, we introduce the fuzzy synthesizing network (FSNet). As demon-
strated in Figure 1, our proposed FL training framework involving the FSNet can be decomposed
into three major components: 1) the FL base training pipeline which is similar to FedAvg [42]; 2)
the FSNet that maintains an edge-agnostic hidden model in the cloud server conditioned on only the
global model, which can be used to synthesize mimic I.I.D. data samples (sample features); and 3)
the joint training scheme of the proposed Fed-FSNet that offloads synthesized mimic I.I.D. samples
(sample features) to each participated device and rectifies the bias caused by heterogeneous local data
distribution, which can then mitigates the Non-I.I.D. FL at-the-source.
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3.2.1 Training the FSNet

In our method, we use the encoder-decoder architecture to train the FSNet, of which the shared global
model acts as the encoder that takes data samples as inputs and maps them to the label space (i.e.,
normalized probability distribution such as softmax outputs), and a newly designed hidden model
acts as the decoder to reconstruct the data samples. The training process can be described as:

min
ω

Ez∈Gs
‖Hω (Pθ(g) (z))− z‖2 , (3)

where Pθ(g)(·) andHω(·) are the shared global model with fixed parameter θ(g) and the hidden model
with trainable parameter ω, respectively. ‖·‖2 is the L2 distance that measures the difference between
the input sample and the reconstructed counterpart. Specifically, z denotes the samples sampled from
a priori, e.g., Gaussian mixture with variational mixture coefficients

∑K
k=1 πkN (µk,Σk), where πk

denotes the variational mixture coefficients.

Notably, in our method, to better achieve the inversion of the shared global model, each local device
is required to upload two simple scalars including its local mean µk and variance Σk to form the
Gaussian mixture in the cloud server, which will not violate the FL privacy. Since there is no real data
sample available in the cloud server for privacy preservation, we thus cannot have the observation on
the real global distribution to train the hidden modelHω(·) for an accurate reconstruction. However,
we can expect that if the shared global model Pθ(g)(·) is properly trained from all participated
devices, it can certainly more or less retain some statistical characteristics of the global distribution
in learned parameters θ(g). Thus, in our method, when the fixed shared global model Pθ(g)(·)
and the hidden model Hω(·) are trained in an end-to-end manner with variational samplings from∑K
k=1 πkN (µk,Σk), we can still expectHω(·) to be a less accurate inversion of the shared model

Pθ(g)(·) that can provide direction-aware information, e.g., gradients that towards the global one, to
facilitate the FL convergence.

Moreover, since the hidden model Hω(·) is edge-agnostic and makes no inroads on the parame-
ters/updates or outputs of each local model, it is thus can still ensure FL privacy. Hereby, we give
a brief mathematical explanation of the privacy guarantee of our method. We define two scenarios
S1, S2 as:

S1 :=

N∑
k=1

αkPθk (Dk) , (4)

S2 := {Pθ1 (D1) ,Pθ2 (D2) , · · · ,PθK (DK)} , (5)

where S1 can be presented as the form of the shared edge-agnostic global model Pθ(g)(·) and S2

denotes each local model separately. We assume Pθk ∈ Rd and we can rewrite S1 as the following
matrix expression as:

S1 := M


Pθ1 (D1)
Pθ2 (D2)

...
PθN (DN )

 , (6)

where M can be denoted as:

M =

α1

. . .
α1

α2

. . .
α2

· · ·
αN

. . .
αN

 . (7)

Note: {
rank (M) = d

dim (ker (M)) = nd− d , (8)

for n > 1, nd− d > d, it is obvious that M ~Pθ =
∑N
k=1 αkPθk (Dk) has non-unique solution which

means that an accurate estimation of S2 is impossible from the observation on only S1. As a result,
the proposed FL training framework can still preserve the privacy of each local device, which is
similar to the secure aggregation-based FL models [56, 57].
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3.2.2 Synthesizing Mimic I.I.D. Data

Next, we can use the decoder part of the FSNet, namely the hidden model Hω(·), to synthesize
mimic global I.I.D. data samples (sample features) and use them to regularize the training process of
each local model. Specifically, we can know that the latent vector space of FSNet is the normalized
probability distribution such as the softmax outputs that represent the classes. Essentially, the softmax
distribution ideally acts as both the output and input of the shared global model Pθ(g)(·) and the
hidden modelHω(·), respectively, in an end-to-end manner. To synthesize mimic I.I.D. data samples
(sample features), we can sample several representative softmax distributions from the latent vector
space, and send them to the hidden modelHω(·) to reconstruct them into the sample feature space.
The synthesizing can be described as:

D′ = Hω

S =


C1 ε · · · ε
ε C2 · · · ε
...

...
. . .

...
ε ε · · · Cn


 , (9)

where D′ is the synthesized dataset covering all global classes, and S is the sampled softmax
distributions to be used as the input of the hidden modelHω(·). More specifically, each column of S
denotes a softmax output of a sample from target classes. For example, Hω((C1, ε, · · · , ε)>) can
condition the hidden model to synthesize a mimic data sample (sample features) for class “1” out
of “n” classes, where

∑
(C1, ε, · · · , ε)> = 1 and C1 � others. It should be noted that sinceHω(·)

is conditioned on Pθ(g)(·) during training and conditioned on sampled S during synthesizing, the
obtained mimic I.I.D. data samples (sample features) are usually not fully accurate. Nevertheless, this
fuzzily synthesized dataset D′ can still retain certain statistical characteristics of the overall global
distribution that can provide direction-aware information, e.g., gradients that toward the global one,
to facilitate the FL convergence. Such information can be used to regularize the training process and
mitigates the Non-I.I.D. FL.

3.3 Joint Training on Fed-FSNet

With the mimic I.I.D. data samples x′ ∈ D′, we can then offload them (or extracted sample features)
to each local device and train jointly with local data. Our intuition is that for each local dataset, i.e.,
{D1,D2, · · · ,DK}, the local model is trained to classify its samples as accurate as possible and thus
to retain and model the real local distribution. However, since the local data is Non-I.I.D. in each local
device, the accurate modeling of each local dataset may eventually result in biased estimation of the
global distribution and degrades the global model performance. To resolve the biased estimation, we
can make use of the mimic global I.I.D. data, i.e., D′, to force each local model to have the awareness
of the global distribution as:

min
θ

E(x,y)∈D [−y logPθ (ŷ | x)]︸ ︷︷ ︸
(i)

+ βEx′∈D′ [DKL (U (ỹ) ‖ Pθ (ŷ | x′))]︸ ︷︷ ︸
(ii)

,
(10)

where term (i) corresponds to the classification loss that mainly guides the model to accurately classify
samples of each local device. Term (ii) is the Non-I.I.D. regularizer that presents mimic global I.I.D.
data, i.e., D′, in each local model and forces them to shift the discrimination towards the global
distribution. β is a hyper-parameter that controls the balance of term (ii). More specifically, DKL (·)
calculates the Kullback-Leibler (KL) divergence, a.k.a. relative entropy, between the predicted
probability distribution of the mimic global I.I.D. data Pθ (ŷ | x′) and the uniform distribution U (ỹ).
To minimize the KL divergence of term (ii), we can force the classification results, i.e., probability
distributions of all mimic global I.I.D. data samples belonging to D′, to approximate the uniform
distributions. Thus, the obtained model will result in the flat probability distributions of them
which means that the local model has endowed with the awareness of the global distribution while
maintaining the discrimination of real local distribution at the same time. We call Eq. (10) the
bias-rectified function for FL training, which resolves the biased estimation of local models and
further makes the global aggregation more accurate in the cloud server. Similarly, considering K
participated devices during the FL training, we can rewrite it as:

min
θ1,θ2,··· ,θK

E(x,y)∈Dk
[−y logPθk (ŷ | x)]

+ βEx′∈D′ [DKL (U (ỹ) ‖ Pθk (ŷ | x′))] .
(11)
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Algorithm 1: Iterative Update
1 Initialize shared global model Pθ(g)(·) ;
2 Randomly select m devices, offload the shared global model weight θ(g) to each device;
3 Local training on selected m devices with Eq. (2), obtain θ1, θ2, · · · , θm, and µk / Σk pair ;
4 repeat
5 for round = 1, 2, · · · , T do
6 Upload θ1, θ2, · · · , θm, and each µk / Σk pair to the cloud server ;
7 Cloud server updates the shared global model weight as θ(g) =

∑m
k=1

Nk

N θk ;
8 Cloud server trains the hidden modelHω(·) with Eq. (3) ;
9 Cloud server synthesizes the mimic I.I.D. data D′ with Eq. (9) ;

10 Randomly select m devices, offload the updated global model weight θ(g) and mimic
I.I.D. data D′ (or extracted sample features) to each device ;

11 Local training on selected m devices with Eq. (11), obtain updated θ1, θ2, · · · , θm, and
µk / Σk pair.

12 end
13 until convergence;

The shared global model Pθ(g)(·) is then obtained by iteratively performing local update and model
aggregation in each communication round. To cooperatively optimize Eq. (11) and obtain the shared
global model, we construct an iterative update algorithm in Algorithm 1.

4 Experiments

4.1 Task and Dataset

In our experiments, we implement the shared FL global model of the proposed Fed-FSNet as the
image classification task, and we evaluate the performance on three benchmark datasets adapted
in the “edge device FL training environment” including MNIST [66], Fashion-MNIST [67], and
CIFAR-10 [68]. For each evaluation, we set a total of 100 edge devices with one cloud server for the
FL training. In our experiments, we consider an extreme Non-I.I.D. data scenario for participated
devices. To prepare the Non-I.I.D. data for each dataset, we first split the train-set into 200 sorted
partitions and then disorder them randomly. Afterward, each edge device is offloaded with two
random partitions of the above train-set. For each dataset, its test-set is used for a global test after
each communication round. We designed three simple model architectures that fit the on-device
training Scenario for MNIST [66], CIFAR-10 [68], and Fashion-MNIST [67], respectively.

4.2 Competitor and Metric

We compare the proposed Fed-FSNet with representative FL models including FedAvg [42], AFL [52],
FedDF [48], and FedGEN [55]. Among them, the FedAvg [42] is the most standard FL training
framework using averaging aggregation, which can be regarded as the baseline of FL. The other
competitors adopt either data/devices sampling or improved aggregation strategies to mitigate the Non-
I.I.D. issue. The selection criteria for our competitors are: 1) recent work: all of these competitors
are released in the most recent years; 2) non-I.I.D. oriented models: all of these competitors address
the data non-I.I.D. issue in federated learning; and 3) competitiveness: they clearly represent the
state-of-the-art. The prediction accuracy is selected as the evaluation metric. Specifically, during each
communication round, we record two predicted results including the averaged accuracy across all
participated devices, i.e., denoted as Acclocal, and the global accuracy, i.e., denoted as Accglobal. It
is noticed that, in the experiments, the “upper-bound” is set as the performance of FedAvg [42] (most
standard FL training framework using averaging aggregation) in a totally I.I.D. data setting where
each device shares full classes, and the “lower-bound” is set as its performance in the generated
extreme Non-I.I.D. data setting.
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4.3 Hyper-parameters

In our experiments, we use stochastic gradient descent (SGD) to optimize the training. Each
evaluation is trained with only 50 global epochs, and each local model is updated with 10 local
epochs, respectively. The mini-batch size is set to 60 with a learning rate of 0.01. The hyper-parameter
β in Eqs. (10∼11) is initially set to 1 and then decreased to one-tenth (1/10) in every 10 global rounds.
During the training process, β controls the balance of the Non-I.I.D. regularizer, i.e., term (ii). The
intuition is that at every beginning, each local device has very limited global information, thus a
larger β can force local models to shift their discrimination towards the global one. As the training
goes on, β trends to be decreased because more and more real global information is learned by the
models. As to the hyper-parameter m in Algorithm 1 that denotes the number of participated edge
devices during the FL training, we set a fraction f=1.0 and f=0.1 denoting two scenarios where all
100 devices and only 10 randomly selected devices of each epoch are trained during the FL training.
Last, we force the sum of the variational mixture coefficients equals to 1 for the Gaussian mixture,
i.e.,

∑K
i=1πk = 1.

4.4 Evaluation

4.4.1 Prediction Results

The comparison of three benchmark datasets is demonstrated in Table 1 and Table 2. Specifically,
Table 1 compares the proposed Fed-FSNet with the defined upper-bound and lower-bound, respec-
tively. It can be observed from the results that our method surpasses the lower-bound by a significant
margin in the extreme Non-I.I.D. data setting. The global accuracy and averaged local accuracy of
the proposed Fed-FSNet achieve 88.2% / 85.3%, 61.7% / 60.4%, and 66.4% / 64.1% for MNIST
[66], CIFAR-10 [68], and Fashion-MNIST [67] when f=1.0, respectively. Table 2 compares the
proposed Fed-FSNet with selected representative FL methods in fully Non-I.I.D. (f=0.1) setting.
We can observe that our method constantly obtains the best performance for global accuracy and
averaged local accuracy, respectively.

In summary, the large margins with only 50 global epochs demonstrate the effectiveness of our
method in two-fold: 1) our method can efficiently mitigate the Non-I.I.D. issue in FL training; and 2)
our method is on-device friendly for the fewer training epochs and simple yet efficient architecture.

Method MNIST CIFAR-10 Fashion-MNIST

Accglobal Acclocal Accglobal Acclocal Accglobal Acclocal

Upper-bound / I.I.D. (f=0.1) 97.6 97.3 72.6 71.9 76.4 74.2
Upper-bound / I.I.D. (f=1.0) 97.9 97.4 75.6 74.3 79.3 77.1
Lower-bound / Non-I.I.D. (f=0.1) 37.1 49.8 21.1 27.6 25.4 32.7
Lower-bound / Non-I.I.D. (f=1.0) 42.1 35.2 31.8 20.0 38.6 23.3
Fed-FSNet (ours) / Non-I.I.D. (f=0.1) 81.5 85.1 56.3 58.9 59.7 61.4
Fed-FSNet (ours) / Non-I.I.D. (f=1.0) 88.2 85.3 61.7 60.4 66.4 64.1

Table 1: Prediction results compared with “upper-bound” and “lower-bound”, respectively. The
accuracy is reported in the averaged accuracy. Accglobal (%) denotes the averaged accuracy across
all participated devices, and Acclocal (%) denotes the global accuracy. The upper-bound is set as the
performance of FedAvg in a totally I.I.D. data setting, and the lower-bound is set as the performance
of FedAvg in the generated extreme Non-I.I.D. data setting.

4.4.2 Training Analysis

We visualize the training process of the proposed Fed-FSNet with Non-I.I.D. settings on MNIST [66]
in Figure 2. It can be observed from the results that the training process of our method (denoted as the
red curve) is more stable and convergences much faster and better than the conventional Non-I.I.D.
FL (denoted as green curve) by fully making use of the synthesized mimic I.I.D. data. It should be
noted that, although our method still has a small margin from the totally I.I.D. FL (denoted as the
blue curve), it greatly narrows the gap between non-I.I.D. and I.I.D., making it applicable for us to
mitigate the Non-I.I.D. problem in FL and facilitates the implementation of practical applications.
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Method MNIST CIFAR-10 Fashion-MNIST

Accglobal Acclocal Accglobal Acclocal Accglobal Acclocal

FedAvg [42] 37.1 49.8 21.1 27.6 25.4 32.7
AFL [52] 54.2 59.7 33.8 42.2 37.9 49.8
FedDF [48] 74.5 83.3 49.7 52.5 51.7 57.3
FedGEN [55] 75.1 83.9 53.1 54.0 52.8 57.6
Fed-FSNet (ours) 81.5 85.1 56.3 58.9 59.7 61.4

Table 2: Prediction Results compared with representative models in Non-I.I.D. (f=0.1) setting. The
accuracy is reported in the averaged accuracy. Accglobal (%) denotes the averaged accuracy across
all participated devices, and Acclocal (%) denotes the global accuracy.

(a) Global Accuracy (f=1.0):
Accglobal

(b) Local Accuracy (f=1.0):
Acclocal

(c) Training Loss (f=1.0)

(d) Global Accuracy (f=0.1):
Accglobal

(e) Local Accuracy (f=0.1):
Acclocal

(f) Training Loss (f=0.1)

Figure 2: The training analysis of our proposed method. The red curve denotes our method with
Non-I.I.D. settings, and the blue and green curves denote the upper bound (totally I.I.D.) and lower
bound (Non-I.I.D.) of the baseline, respectively.

4.5 Discussion on Communication Overhead

In our experiments, since the mimic dataset D′ contains very few, i.e., only 60 synthesized samples
(sample features) set in our experiment, it can result in a very limited impact on the communication
overhead. Alternatively, if larger data, e.g., a CT volume, is utilized in real-world applications, the
synthesized samples may increase exponentially. To solve this limitation, our solution is to deploy a
pre-trained feature extractor in the cloud server and only transmit the extracted feature vector (far
smaller) to each participating device, which can significantly reduce the communication overhead.
Besides, since the proposed method requires fewer training epochs and simpler model architecture,
thus it will be more suitable for on-device learning where the edge devices are usually equipped with
less computing capabilities and fewer memories.

5 Conclusion

In this paper, we proposed a novel FL training framework involving a privacy ensured fuzzy synthe-
sizing network (Fed-FSNet) to mitigate the Non-I.I.D. FL at-the-source. Our method narrows the gap
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between the non-I.I.D. and I.I.D. FLs with a large margin. Experimental results on FL benchmarks
verified the effectiveness of our model. In the future, we have two research directions to further
improve the Non-I.I.D. FL. The first investigates more efficient and generalized methods to synthesize
Non-I.I.D. data, and the second will focus on more privacy-preserved methods.
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