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Abstract

Instance segmentation of nuclei and glands in the histology images is an impor-
tant step in computational pathology workflow for cancer diagnosis, treatment
planning and survival analysis. With the advent of modern hardware, the recent
availability of large-scale quality public datasets and the community organized
grand challenges have seen a surge in automated methods focusing on domain
specific challenges, which is pivotal for technology advancements and clinical
translation. In this survey, 126 papers illustrating the AI based methods for nuclei
and glands instance segmentation published in the last five years (2017-2022) are
deeply analyzed, the limitations of current approaches and the open challenges
are discussed. Moreover, the potential future research direction is presented and
the contribution of state-of-the-art methods is summarized. Further, a general-
ized summary of publicly available datasets and a detailed insights on the grand
challenges illustrating the top performing methods specific to each challenge is
also provided. Besides, we intended to give the reader current state of existing
research and pointers to the future directions in developing methods that can be
used in clinical practice enabling improved diagnosis, grading, prognosis, and
treatment planning of cancer. To the best of our knowledge, no previous work
has reviewed the instance segmentation in histology images focusing towards
this direction.

Keywords: Histopathology, Nuclei, Glands, Instance Segmentation, Survey,
Digital Pathology, Cancer treatment planning

1. Introduction

In the last few decades, the advent of computational pathology has catalyzed
the advancements in clinical diagnosis, expedited development of new interac-
tive models for pathology education and paved way for incredible rise in whole
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slide image analysis tools. It has revolutionized the entire tissue specimen analy-
sis process for pathologists. From manually analyzing thousands of tissue slides
via microscope requiring specialized doctors to automatic digital slide genera-
tion via scanning and using AI based deep learning techniques has spawned fatal
disease diagnosis such as cancer using image analysis. In digital pathology nu-
clei and gland instance segmentation in whole slide images is of pivotal value for
abnormality assessment. It plays a key role in histopathological image analyses
whether it be identification of major chronic disease including tumor localiza-
tion through segmentation or classification as benign or malignant. Glands are
often considered as one of the main histological structures present in most of the
organs as primary mechanism for proteins and carbohydrates secretion. How-
ever, it has been observed that adenocarcinomas, regarded as the most severe
type of cancer, originates from glandular epithelium as malignant tumors. In
figure 1, left patch shows histopathological image of a colon tissue stained with
routinely used Haematoxylin and Eosin technique while right patch is individual
gland of a colon tissue with sub structures. This makes understanding of glands
morphology a pivotal step for assigning degree of malignancy of major adeno-
carcinomas e.g in breast, colon, lung and prostate. Thus accurate gland instance
segmentation is considered as a necessary step for obtaining valid morphology
information.

Fig. 1: left: An image of a colon tissue, right: an individual gland colon tissue with sub struc-
tures.

Accurate segmentation and classification is of crucial importance during ex-
amination of crisscrossing cellular events in the process of wound healing by
Oswal et al. [1], cancer grading which is grade assignment on the basis of trends
observation of molecular and morphological changes i.e variation in shapes, size,
texture and orientation as well as other clinical assessments in cell nuclei quan-
tification which is of strong prognostic significance during bio marker determi-
nation for immune tumor infiltrate quantification and other various pathological
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assessments is studied by Jung et al. [2] and Benjamin et al.[3, 4]. In com-
parison to various other medical fields including neuroscience, cardiology, ra-
diology, ophthalmology and dermatology. Cell Microscopy and Computational
Pathology as referenced by Ahmed et al. [5] is the most prominent application
of neural networks because of expeditious transition of classical histopathology
to computational pathology has revolutionized the entire image analysis work-
flow. From manually reading and annotating thousands of slides to digitizing
biopsy process resulted in an increased demand for predictive analysis that en-
ables the election and stratification of patients for further treatment [6]. Medical
Imaging competitions have been an effective approach to crowd source the de-
velopment of new techniques and are a major reason behind increase research
interest towards whole slide image analysis because of the introduction of grand
challenges after every new public dataset launch including NuCLS [7], BACH
[8], MoNuSeg [9] and CoNIC [10].

Various medical image analysis studies regards segmentation of cell nuclei as
a preliminary step for extracting meaning biological insights. In research studies
including protein localization, moving population track, phenotype classifica-
tion, profiling treatments and many more are considered as a reliable candidate
for identification of single cells microscopy images. It also serves as a prerequi-
site for CAD systems in computational pathology, where features such as nuclear
pleomorphism and cytology of the nucleus can assist in making a prognosis as
discussed by Graham et al. [11].

However, nuclei and glands instance segmentation cannot be regarded as a
simple task for non experts in pathology labs. Despite being continuous advance-
ments in learning algorithm, nuclei segmentation is still an extremely challeng-
ing task because of blurred nuclei boundaries, differences in size and shape high-
lighted by Vahadane et al. [12], uneven staining, pathological changes on patho-
logical images, morphological abnormalities [13] and substantial color variations
described by Rashmi et al. [14]. Similarly, varying morphology of glands at dif-
ferent histological grades, different intrinsic features of glands WSIs poses ma-
jor challenge during segmentation of instances. Firstly, applying mathematical
shape model for instance segmentation gets difficult due to shapes heterogeneity.
Figure 2 shows structural variations of nuclei in different organs. Secondly gran-
ule filled cytoplasm cause nucleus extrusion to flat shapes as compared to oval
or round structures in normal cases mentioned by Yan et al. [15]. Thirdly, cellu-
lar matrix variations results in anisochromasia thus resulting in additive noise in
background compared to normal intensity gradients.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2: A catalogue of morphological variation in nuclei at 20x magnification for different
organs. (a) Pancreas (b) Esophagus (c) Adrenal Gland (d) Cervix (e) Bile duct (f) Liver (g) Oral
(h) Colon

Improper staining often times result in similarity in nuclei to cytoplasm or
background colors thus yielding blurred boundaries [16]. Moreover occurrence
of several overlapping nuclei in whole slide images causes further difficulty in
objects segmentation. Major challenge in model development is varying types
of nuclei e.g nerve cell nuclei are typically triangular in shape [17], while glial
and oligodendrocytes nucleus are usually round in appearance but the later one
have light rings as, astrocytes have oval shape, endothelial cells are usually slen-
der in structure [18], while malignant tumor cells have irregularly shaped nuclei
[19]. Developed model is supposed to be robust enough to detect all these kinds
of nuclei without any mislabelling. Digital image quality variation, background
clutter, image artifacts are some other extremely important yet least discussed
problem in this domain. Nuclei curvature variation also impacts detection since
normally in pathology images, nuclei contour points curvature changes smoothly
[20]. However, given a single contour having two or more touching or occluding
nuclei, results large curvature change at touching points. Already existing au-
tomated medical image analysis tool use classical segmentation including active
contour models, watershed or thresholding techniques for nuclei instances iden-
tification. These tools needs configuration with respect to each data to accurately
analyze distinct microscopic modalities including scales and experimental vari-
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ation, thus leading to an evident requirement of technological domain expertise
for accurate algorithm selection and parameters adjustment. Still for proficient
ones too, this choice can be daunting, considering that every year numerous pa-
pers are published, presenting new research techniques for gland and nucleus in-
stance segmentation. Even after examining under controlled experimental con-
ditions, no single technique can be generalized for segmenting all microscopy
images correctly, since classical machine learning algorithms are either sensitive
to technical artefacts or often fails in adapting to biological samples heterogene-
ity. Altogether, this situation yields slows pace of research and at times inhibits
research laboratories from adopting newer image analysis technologies owing to
the time and expertise required.

Many methods have been proposed for the task of nuclei and glands instance
segmentation and broadly these can be divided into two major categories: hand-
crafted feature extraction approaches and deep learning based approaches. In-
stance segmentation techniques can be divided into major two approaches in-
cluding image understanding approach based on pixels as well as artificial fea-
tures utilization including shape, size, color, and texture for fulfilling instance
segmentation. This majorly targets heuristic methods including K-means clus-
tering, adaptive thresholding i.e local thresholding method for unevenly illumi-
nated images, active contour model, watershed, graph-cuts and other morpholog-
ical operations while the second approach is learning based approach that uses
different variants of deep learning based techniques primarily based on neural
networks.

1.1. Motivation of the Review
Cell nuclei segmentation in whole slide images is often considered as the step-

ping stone towards whole slide image analysis in any biomedical and biological
applications. The quality of chronic disease diagnosis, survival prediction, phe-
notype classification, feature extraction and cell tracking highly depends on seg-
mentation accuracy of instances. It gives us the challenging opportunity to study
tissue and cellular phenotyping and to draw biological conclusions at large scale.
In recent years, challenges organized specifically for nuclei and gland instance
segmentation has definitely brought significant improvement, including public
accessibility of large annotated segmentation dataset and 2-D architectures ex-
tension for 3-D nuclei images. As compared to natural objects, nuclei detec-
tion and instance segmentation seems easier and simpler due to homogeneous
properties in representation. However, despite research on nuclei detection and
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segmentation topic for decades, still there is no publicly available model sup-
porting nuclei instance segmentation and detection across whole slide images
(WSIs) from various labs generated at different conditions. As described by Xu
et al. [21] till date, even today, this debate towards a generalized architecture or
a bench mark solution for all types of nuclei image segmentation is alive. Be-
fore arrival of convolutional neural networks, conventional nuclei segmentation
methods were based on either geographical or statistical image features for seeds
generation. A major domain shift from hand crafted feature segmentation tech-
nique to using CNN variants for feature extraction has also been observed. This
review has been conducted with an aim to provide a comprehensive overview of
techniques being used in last 5 years for nuclei and glands instance segmentation
tasks as well as identification of most used approach amongst all as a common
interactive method for instance segmentation.
1.2. Scope of the Review

For this survey we have targeted 126 research papers published in top confer-
ences and journals for the span of last 5 years ranging from 2017-2022. For eval-
uating advantages and draw backs of each segmented technique a critical review
is compiled having existing deep learning computational approaches for nucleus
instance segmentation, focusing both hand-crafted morphological feature-based
techniques as well as deep neural deep neural network-based methodologies. We
provide a comprehensive coverage of the major publicly available datasets be-
ing used for the task of nuclei and glands instance segmentation, an extensive
summary of grand challenges held globally for the task of instance segmentation
as well as classification including Data Science BOWL Challenge (DSB-2018),
MoNuSeg, MoNuSAC, GlaS, and CoNIC. There are review articles available
in kindred domain [22, 23], but this is the first review paper that comprehen-
sively covers most recent approaches being developed for the task of both nuclei
and glands instance segmentation. Through this critical analysis we aim to pro-
vide a recapitulation of nuclei and gland instance segmentation techniques for
fatal disease diagnosis via integrating automated tools and complex semantic
networks. We have discussed some of the existing challenges being faced dur-
ing analysis, including varying staining impacts, insufficient data causing over
fitting, disparate nuclei and glands structure, models specificity to a single image
set. Also, we have highlighted key challenges as well as major problems along
with outlining future directions. Finally, we present potential future possibilities
in generalizing this pivotal task.
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1.3. Comparison with other Reviews
A survey published in 2019 by Hayakawa et al. [24] on computational nu-

clei segmentation methods in digital pathology discusses major challenges faced
in digital pathology and nuclei segmentation due to staining variations during
slides preparation and image modality as well as morphological differences in
nuclei. Majors categorization was on the basis of pre and post processing and
techniques discussed seeds detection, color normalization, thresholding, water-
shed, active contour models, graph cut and kmeans. It is similar to our study in
terms of key element (nuclei instances) and partially for techniques (deep learn-
ing and machine learning). However, 82 papers were reviewed in their study
while we review 126 papers. Another recent survey in 2022 by Hollandi et al.
[25] for nucleus segmentation. They have provided an overview of currently
available datasets and annotation tools for training and testing models.Further
pre and post processing techniques and challenges related to each is briefly de-
scribed followed by insights into nuclei segmentation available automated tools
and methods covering both classical approaches as well as deep neural based
models. For catering issues faced in 3D WSI processing a set of most successful
methods yielding promising results are discussed as well. We have compared
main points in Figure 3.

Fig. 3: Comparison with Recent Reviews

This review related to our study in terms of context (nuclei segmentation) how-
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ever, it was majorly focusing on automated tool kits available for segmentation
with a brief summary of methods used while we will be focusing on generaliza-
tion of techniques adopted in the span of these 5 years with respect to challenges
held and datasets used. For comparative analysis of our review with Hayakawa
et al. [24] and Hollandi et al. [25].

2. Survey Methodology

In this section, we have discussed the study selection criteria for selection
of articles reviewed in this paper. We have also segregated articles according
to publication databases (journals or conferences), types (nuclei, gland), impact
factor and technique for segmentation (handcrafted feature extraction, deep neu-
ral network learning). We have segregated learning-based techniques into the
following categories on the basis of their technical contributions:

1. Hand crafted segmentation techniques
2. Deep learning based segmentation

• Encoder decoder based segmentation

• Region based segmentation

• Adversarial models based segmentation

• Attention-based segmentation

2.1. Study Selection
We have mentioned quantitative measures of articles searched and included for

review through preferred reporting items for systematic review and meta analysis
(PRISMA) criteria. Figure 4 shows papers selection summary.
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Fig. 4: PRISMA- Papers Selection Process Summary

We have searched research papers on Springer, Science Direct, IEEE Xplore
and lastly Google Scholar. From applying different search queries we have found
261 articles, amongst these 9 were duplicates and are removed. Out of remaining
256 articles, 106 were excluded on the basis of title or abstract. Since they were
not fulfilling the criteria of this review, in some of those articles segmentation of
cell was discussed instead of nuclei or gland, while rest of the papers were based
on general histology image segmentation. After final full text screening further
46 articles were eliminated for not addressing nuclei or glands segmentation di-
rectly. In the PRISMA we have represented papers selection distribution for final
126 included papers. Our PICO question for this study was: Comparison of all
new techniques devised during the last 5 years for nuclei instance segmentation
and their efficiency on evaluation for various datasets.
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2.2. Data Extraction Methods
We targeted top journals and conferences for extracting from different plat-

form including Springer, Science Direct and IEEE Explore for extracting re-
search articles. We extracted deep learning, machine learning and handcrafted
based features extraction approaches on nuclei and glands instance segmenta-
tion articles published between 2017 and 2022. This specific time frame is
chosen due to rapid advancement in techniques proposed for segmentation dur-
ing this specific tenure and domain shift from classical towards deep networks
learning. Also, large number of grand challenges were held from 2017-2022 on
histopathological image analysis. We used oriented search string by combining
different key words with the logical operators ‘AND’, ‘OR’ to get the relevant
papers. Following are the search terms being used for research papers selection.

• Nuclei segmentation, Nuclei detection, Gland segmentation, Nuclei in-
stance segmentation, Gland instance segmentation

• H&E, Whole slide imaging, Pathology, Histopathology

The inclusion and exclusion criteria for papers is represented in table 1. Ini-
tially, papers were selected based on their titles, further abstract, conclusion and
methodology is considered for selection where titles did not match inclusion ex-
clusion criteria.

Table 1: Inclusion Exclusion Criteria.

Inclusion Criteria Exclusion Criteria

Articles published during 2017-2022
Articles that were not targeting nuclei in-
stance segmentation directly

Paper describing detailed techniques and
parameters

Articles based on general medical image
segmentation

Articles having nuclei segmentation, nu-
clei instance and gland segmentation
keywords in title

Articles that are merely book chapters
and not part of any conference journal

Papers describing datasets
Papers published in conferences other
than mentioned one
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We collected the keywords from all the reviewed article included in our review
and generated the word cloud which is shown is Figure 5.

Fig. 5: A visual depiction of most frequently used keywords in the reviewed articles

As our primary objective in this review is to summarize the techniques used
for nuclei and glands segmentation, this tag cloud majorly highlights (pathology,
histology, deep learning, nucleus, gland, segmentation, cancer detection, classi-
fication) terms.

2.3. Papers Distribution
In this section we have represented the distribution of papers across various

journals, conferences, impact factors, and nuclei or glands types. Major of these
division statistics is to give an eagle eye view of published research work, during
last 5 years and amount of variation.

The figure 6 shows reviewed articles distribution in last few years. It can
be analyzed from the bar chart that the literature for nuclei and glands instance
segmentation has seen a spike throughout the years from 2017 to 2022 since
the rise of medical imaging competitions for better diagnostic and prognostic
techniques.
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Fig. 6: Stacked bar chart indicating year wise papers statistics for nuclei and gland

Figure 7 shows Impact Factor wise papers distribution. Vertical axis shows
the count of papers for each Impact Factor while horizontal axis shows impact
factors.

Fig. 7: Visual representation of selected research publications from top tier journals along with
their impact factor
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The distribution of papers per source is shown below in Figure 8. From the fig-
ure count of nuclei and glands based medical image segmentation articles taken
from various top journals and conferences can be depicted. Each bubble repre-
sents the number of papers taken from a specific journal or a specific conference.

Fig. 8: Bubble graph representing number of articles chosen from top ranked journals and
conferences

3. Datasets

The dataset reviewed in this study covers a wide range of image sets fea-
turing prominent open-source image databases from the PanNuke, Multi-Organ
Nucleus Segmentation and Classification (MoNuSAC), CryoNuSeg, Lizard to
small private datasets thus enhancing diversity of research study. Major tissues
included in datasets includes breast, liver, bladder, colon, stomach, lung, kidney,
prostate, cervix, gland and brain. Table 2 summarize all the details of the given
datasets including their source.

3.1. Nuclei Datasets
3.1.1. CoNSeP

CoNSeP (Colorectal Nuclear Segmentation and Phenotypes Dataset) is one
of the first fully annotated open source dataset that enabled the development
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 9: A catalogue of morphological variation in nuclei at 20x magnification for different
organs. (a) CoNSeP (b) Kumar (c) PanNuke (d) MoNuSAC (e) Lizard (f) CryoNuSeg (g) CRAG
(h) GlaS
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of models for simultaneous nuclear segmentation and classification approaches
in Computational Pathology. It consists of 41 Haematoxylin and Eosin (H&E)
images of size 1,000×1,000 px from colorectal adenocarcinoma (CRA) Whole
slide images (WSIs) [26].

3.1.2. Kumar
Kumar dataset contains 30 H&E stained image tiles of 1,000×1,000 px size

from seven different organs including breast, liver, kidney, prostate, bladder,
colon and stomach acquired from The Cancer Genome Atlas (TCGA) database
at 40× magnification. Boundaries of each nuclei within that image are fully an-
notated.

3.1.3. PanNuke
PanNuke [27] (An Open Pan Cancer Histology Dataset for Nuclei Instance

Segmentation and Classification) is the biggest and the most diverse semi-
automated datasets created till date for nucleus instance segmentation task. Its
nuclei boundaries have been created automatically and further validation is per-
formed by experienced pathologists. This is formulated by formalin fixed and
paraffin embedded samples having about 200,000 nuclei spanning over 19 dif-
ferent organs comprising of 481 visual fields forming patches of size 256 x 256
at different magnifications. These patches are further randomly distributed into
training, testing and validation subsets. It is of significant clinical importance
because of its clinical importance specifically with respect to tissue phenotyping
and technical significance as well.

3.1.4. MoNuSAC
The multi organ nucleus segmentation and classification (MoNuSAC) [28] is

a large and diverse dataset having boundary annotations for each nuclei along
with class labels. Previously released public datasets for nucleus segmentation
were either not having multiple organs data or are not curated to the level of
individual nuclei. It comprises of over 46,000 hand-annotated nuclei from 71
patients spanning over 31 hospital and four organ cell types including epithelial,
macrophages, lymphocytes and neutrophils.

3.1.5. Lizard
Lizard [29] (A Large-Scale Dataset for Colonic Nuclear Instance Segmen-

tation and Classification) is the largest known dataset available for nuclei seg-
mentation and classification in digital pathology having nearly half a million
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annotated nuclei along with their class label, consists of whole slide image re-
gions of colon tissue having six different dataset sources including GlaS, CRAG,
CoNSeP, Digest Path, PanNuke and TCGA at 20× magnification. Its fully an-
notated dataset for about 495,179 nuclei. In particular we provide the nuclear
class label for epithelial cells, connective tissue cells, lymphocytes, plasma cells,
neutrophils and eosinophils.

3.1.6. CryoNuSeg
CryoNuSeg [30] is the first fully annotated H&E stained dataset formulated by

frozen samples (FS) derived images and the organs images used in dataset com-
pilation have not been a part of any prior dataset. It comprises of 30 digitized
H&E stained images derived from 10 different organs. Tissue types includes
gland, larynx, adrenal, lymph nodes, pancreas, skin, pleura, mediastinum, thy-
roid gland, thymus, testes. It can be used as a stand alone benchmark dataset
or in combination with other publicly available datasets for training supervised
machine learning and deep learning models.

3.2. Glands Datasets
3.2.1. GlaS

Gland Segmentation Challenge dataset (GlaS) is first used as part of MICCAI-
2015. This data is extracted from 16 Haematoxylin and Eosin H&E stained
Whole slide images (WSIs) scanned through MIRAX MIDI Slide Scanner pixel
resolution at 20 x magnification. It consists of total 165 images out of which 85
are used as training (48 malignant and 37 benign) and 80 test images including
(43 malignant and 37 benign). Size of images is 775 x 522 pixels each having as-
sociated instance-segmented ground truths highlighting glands boundaries align
with accurate lumen annotations for glands.

3.2.2. CRAG
CRAG (Colorectal Adenocarcinoma Glands) dataset is primarily comprised of

gland images. It consists of colon adenocarcinomas usually referred as colorectal
gland (CRAG) dataset developed by University Hospital Coventry and Warwick-
shire (UHCW) NHS Trust Coventry UK. It composed of 213 H&E stained CRA
images from 38 whole slide images (WSIs) scanned by VL120 scanner at 20
x objective magnification and are mostly of size 1512 x 1512 px along with in-
stance level ground truth. Training and testing images are 173 and 40 specifically
with varying cancer grades.
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Table 2: Nuclei and Glands Segmentation Datasets in public domain

S.No Dataset # Nuclei Label Type Magnifi-
cation # Organs Organs Source

1 CoNSeP 24319 Instance + Classifica-
tion 40x 1 Colon UHCW2

2 Kumar 21623 Instance 40 x 7
Breast, Liver, Kidney,
Prostate, Bladder, Colon,
Stomach

TCGA1

3 MoNuSAC 46909 Instance + Classifica-
tion 40x 4 Breast, Kidney, Lung,

Prostate UHCW2

4 Lizard 495,179 Instance + Classifica-
tion 20x 1 Colon TCGA1

5 GlaS n/a Instance 20x 2 Colon, Prostate n/a

6 CRAG n/a Instance 20x 1 Colon UHCW2

7 PanNuke 205,343 Instance + Classifica-
tion 40x 19

Adrenal, Bile-duct, Blad-
der, Breast, Colon, Cervix,
Esophagus, Head, Neck,
Kidney, Liver, Lung, Ovar-
ian, Pancreas, Prostate, Skin,
Testis, Stomach, Thyroid,
Uterus

TCGA1

8 CryoNuSeg 7596 Instance+ Classifica-
tion 40x 10

Adrenal gland, Larynx,
Lymph node, Mediastinum,
Pancreas, Pleura, Skin,
Testis, Thymus, Thyroid
gland

TCGA1

Figure 10 shows percentage occurrence of nuclei and glands publicly avail-
able datasets used in the reviewed articles. The graph shows that most of the
nuclei instance segmentation papers have used MoNuSeg, ISBI, MICCAI chal-
lenge and Kumar covering 18%, 10%, 8% and 8% respectively. Similarly, glands
instance segmentation articles have used Warwick-QU, CRAG and GlaS datasets
comprising over 8%, 8% and 6% distribution respectively. Similarly, figure 11
shows datasets usage frequency from various sources in the reviewed articles.

1The Cancer Genome Atlas
2University Hospital Coventry & Warwickshire
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Fig. 11: Tree map representing frequency of datasets and its sources

Fig. 10: Reviewed articles wise percentage distribution of nuclei and glands datasets

Figure 12 depicts most frequently used tissue slides for the task of nuclei and
glands segmentation within publicly available datasets or via privately generated
whole slide images. The plot shows that most of the research has been done on
breast, kidney and colon datasets with a count of 28, 27 and 25 simultaneously
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out of total reviewed. Similarly, prostate, liver and bladder have also been uti-
lized for research purposes. Finally, cervix, neck and skin are the least used ones
with occurrence in 8, 6 and 3 papers.

Fig. 12: Most frequently used tissue slides in research articles

4. Grand Challenges

Grand Challenges have always been an effective approach towards crowd
sourcing the development of best performant algorithms as well as pointing out
new research directions. Despite a lot of effectiveness towards techniques en-
hancement and in facilitating innovation, these competitions also suffers from a
set of limitations. Most of the times validations of the resulting algorithms have
not been typically performed independently by the algorithm developers which
later on leads towards a technically bias techniques not reproducible for a gen-
eral setup. This lack of algorithms validation also poses great doubt towards
generalization capability to cater underlying critical issue, rather than merely
fine tuning for a particular competition design setups. Figure 13 shows data col-
lection statistics from various data sources, number of organs and types used
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in each grand challenge. Table 3 shows the dataset details that are released for
grand challenges.

Fig. 13: The bar chart illustrates precise summary of data collection, tissue and nuclei counts
specific to dataset launched for above mentioned grand challenges. Here data sources counts
of various distinct hospitals, universities and databases referred for data collection. Similarly,
Tissue type shows distinct variety of tissues in each dataset i.e. kidney, breast, colon. Lastly,
Nuclei type count is depicting variation of nuclei kinds specific to each dataset.

4.1. Nuclei Segmentation Challenges
4.1.1. MoNuSeg

Multi Organ Nucleus Segmentation Challenge was organized for reducing
time to develop and validate visual bio markers for new whole slide image
datasets. Preprocessing techniques used by participants includes color normal-
ization being used by most of the participants while Unit Variance, Range Stan-
dardization and Histogram Equalization have also been used by some of the par-
ticipants. Similarly, Segmentation techniques used includes U-Net[31], Mask-
RCNN [32], FCN [33], FPN [34], PANet, ResNet [35], VGG-Net [36], DenseNet
[37] and Distance Map. Cross Entropy and Dice Loss are the most used loss
functions.
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4.1.2. MoNuSAC
Multi-Organ Nuclei Segmentation and Classification Challenge has been or-

ganized with an aim of detecting, segmenting, and classifying different types of
nuclei around the tumor matrix and it holds a special importance in character-
izing the tumor micro-environment for cancer research and prognostication thus
freeing up pathologists time for other major tasks. This also helps in reducing
chances of errors being caused while doing this task manually. For this challenge
a dataset having 46000 nuclei of 4 different organ and types have been used.
Majority of participant have used following techniques for achieving better re-
sults including pre-processing by color normalization, data augmentation, major
CNN architectures used includes U-Net [31], FPN [34], FCN [33], HoVer-Net
[38], DenseNet [37], VGG-Net [36] and Efficient-Net [39] followed by water-
shed, morphological operations and thresholding techniques for post processing
to fatigue and subjectivity.

4.1.3. Data Science Bowl 2018
Around 3890 teams all over the globe participated in this first ever challenge

targeting nuclei segmentation. Top participants succeeded in developing a deep
algorithm that can be applied to any 2-D image [40]. For this competition around
37,333 manually annotated nuclei from a set of 841 images have been generated
after 30 different experiments for varying samples. Majority of participants have
used deep convolutional neural networks (DNN’s) based techniques due to its
better results for various microscopy image as well as pathology problems. Dif-
ferent variants of CNN architectures have been designed for accurate image seg-
mentation and improving accuracy. Techniques used by majority of participants
include ensemble of U-Net [31], fully convolutional neural network [33], Mask-
RCNN (Region-based CNN) model [32] and feature pyramid network (FPN)
[34].

4.2. Gland Segmentation Challenge
4.2.1. GlaS

Gland Segmentation in Colon Histology Images (GlaS) [41] challenge has
been organized by MICCAI-2015. Major objective of this competition was solv-
ing gland segmentation problem in Haematoxylin and Eosin (H&E) stained im-
ages. Algorithms developed by participant were applied to both colonic carci-
nomas and benign tissues. Around 165 images derived from 16 H&E stained
histological slides of stage T3 or T42 colorectal adenocarcinoma have been
used for this competition. Best performing algorithms in this competitions have
used Fully Convolution Neural Network(FCN) [33], Contour based U-Net [31],
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Object-NET, MSER based techniques as well as data augmentation and pre-
trained models have been utilized as well.

Table 3: Nuclei and Gland Competition Statistics

S.No Reference Year Challenge Participants Organ Type No. of objects

1 Verma et al.[28] 2020 MoNuSAC 170 4 Nuclei 46000

2 Juan et al. [40] 2018 DS-Bowl 17929 1 Nuclei 37333

3 Kumar et al. [9] 2018 MoNuSeg 80 7 Nuclei 21623

4 Graham et al. [10] 2022 CoNIC 520 1 Nuclei 431913

5 Gorsuk et al. [41] 2015 GlaS 200 1 Gland 52

5. Nuclei & Glands Instance Segmentation Methodologies in Histology Im-
ages

Nuclei & Glands Segmentation instance segmentation task basically gives in-
formation about distinguishing class, location, number of objects and contours
in an image. Considering the need and applications of nuclei and gland segmen-
tation many automated algorithms have been designed for this task. These seg-
mentation approaches can be categorized into two major categories including:
conventional segmentation methods and deep-learning based methods. Tradi-
tional segmentation methods primarily targetting handcrafted image features i.e
the variation, gradient, distribution and other color features includes following
techniques such as thresholding followed by morphological opening or closing
operations, active contour models, graph-based techniques, deformable meth-
ods, marker controlled watershed segmentation and their other variants alongside
multitudes of other pre and post-processing step addition for achieving segmen-
tation results. Techniques based on deep learning from their ability to learn shape
and color variations can achieve better accuracies. In last few years, deep neu-
ral networks (DNNs) have rapidly dominated the field of image segmentation
and classification. Using the recognizing ability of neural networks, fully con-
volutional neural networks improves the efficiency of semantic segmentation.
Widely speaking, deep learning based nuclei segmentation frameworks can be
divided into two major categories. Firstly, CNN-based nuclei detection having
deformable models. In this approach,deep neural networks is applied for gen-
erating probability map of nuclei centroid while for post processing clustering,

1The Cancer Genome Atlas
2University Hospital Coventry & Warwickshire
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watershed or active contour based techniques are sued for nuclei boundary seg-
mentation and algorithms like the watershed transform, clustering, and active
contour are utilized to post-process the boundary of nuclei. Second majorly used
technique is FCN based pixel wise end-end segmentation. It comprises of an en-
coder decoder based architecture including fully convolutional layers embedded
with a refining technique i.e watershed transform and conditional random field
(CRF).

5.1. Nuclei Instance Segmentation
Nuclei instance segmentation play major role toward the automatic diagnosis

of cancer and medical image processing and analysis. Plenty of research has
been done to efficiently segment out nuclei and gland instances. In this section
we have reviewed selected articles segregated primarily in two categories i.e.
hand crafted and deep learning based feature extraction techniques. Table 4 en-
list the details of the reviewed articles along with highlighting top performing
technique for each category.

5.1.1. Handcrafted features extraction methods
Variability in size, shape, textural and tissue appearance make the detection of

cell nuclei exigent, which is vital for the automatic analysis of digital pathology
slides. The analysis of pathology slides is crucial in the quantification of the
phenotypic information contained in tissue sections. An approach is proposed
by Brieu et al. [42] that dealt with the variability in size by treating this detection
problem as local maxima detection on center probabilistic map, where a nuclear
surface area map with a-priori knowledge on the size of the object of interest
used for detecting local maxima. This method exhibited good quantitative dis-
played. Xu et al. [43] presented a generalized Laplacian of Gaussian (gLoG)
filter based automatic technique for automatic nuclei detection in digital pathol-
ogy slides. gLoG filters with different scales and orientation are first piled up
and then set of response maps is obtained by performing convolution operation
on contender image using directional gLoG kernels. Further they used mean
shift algorithm to detect and cluster the local maxima of response map based on
special closeness. In each group the point with maximum response is selected as
the nucleus. Proposed technique is evaluated on two datasets, shown a good per-
formance in nuclei detection. Rojas-Moraleda et al. [44] introduced an abstract
simplicial homology approach based on the principles of persistent homology to
address the problem of cell nuclei segmentation which identify salient region in
the image that exhibit pattern of persistence, by dealing with the persistence of
disconnected sets. This topological image representation reduced dependency
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of the segmentation task on variation of color or texture. Images of liver tissue
acquired from histological sections is used to determine the efficiency of the ap-
proach. The proposed method recognized hepatocyte and non-parenchymal cell
nuclei combinely, with an accuracy of 84.6%, and hepatocyte cell nuclei alone
with an accuracy of 86.2%. Gautam et al. [45] proposed a contrast based adapt-
able versions of mean-shift and SLIC algorithms for the segmentation in pap
smear images. This algorithm is then followed by an intensity weighted adapt-
able thresholding. The proposed model evaluated using Herlev dataset, achieved
effective performance on images having inconsistent contrast in comparison with
state-of-the art clustering-based method. Similar, accelerated acquisition Diffu-
sion filter based kmeans clustering approach is used by Battistella et al. [46]
for segmentation on thalamic brain anatomy dataset, model reported 84% accu-
racy. Reljin et al. [47] presented an inverse multifractal analysis (IMFA) for
segmentation of nuclei in fluorescence in-situ hybridization (FISH) images. At
first the matrix of Holder exponent from blue channel of FISH image, along
with one-by-one conformity with the RGB image is determined. The proposed
semi-automatic method, initially apply predefined hard thresholding to perform
segmentation from the matrix of Holder exponents then segmentation is refined
by changing the threshold as a result of user evaluation. The evaluation of the
IMFA segmentation method carried out over 100 clinical cases, showed that the
benefits of the proposed method compared to already reported methods. Zhang
et al. [48] presented a four stepped method for robustly and efficiently seg-
menting overlapped nuclei. These steps are contour extraction, concave point
detection, contour segment grouping and ellipse fitting. Contour extraction al-
gorithms are used for the estimation of the level of the image blurriness, which
determines parameters in following steps for increasing the segmentation ac-
curacy of the blurry nuclei. Different algorithms are proposed for extracting
obvious and unobvious concave from the contender points. Grouping rules are
proposed for grouping segments of the concave points. Kostrykin et al. [49] pro-
posed a second order optimization technique for intensity based segmentation
on fluorescence microscopy images. It targeted only below threshold haema-
toxylin intensity based areas within nuclei while all higher areas of intensity in
background. It resulted in 75% accurate segmentation results on NIH3T3 and
ISBI-2013 datasets. Hameed et al. [50] adopted gray-level co-occurrence matrix
based cross entropy thresholding approach via taking histogram of input image
for minimizing entropy for optimum threshold value assignment followed by
post processing segmented objects via watershed transform this enhanced seg-
mentation DSC score to 96%. However on gray scale images this thresholding
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based segmentation resulted in poor DSC score which is improved via pre pro-
cessing.

Similarly, Quachtran et al. [3] also worked on fluorescence images instance
segmentation using iterative radial voting techniques, however there results ac-
curacy is slightly less 64% dice score compared to optimization based approach.

Lee et al. [51] identified the contender nuclei seeds as extrema in a Laplacian-
of-Gaussian space. Similarly, non-nuclei seeds are removed from clusters ac-
quired by ellipse fitting. Local and global thresholding is combined to define
region of interest. shape and roughness of shared boundaries connected nuclei is
modeled for repeatedly merging and splitting these regions. The model shows a
success in splitting boundaries of connected nuclei and recognizing the nucleus
region. Saha et al. [52] detect and segment nuclei by merging over-segmented
SLIC super pixel regions using a novel image consolidating technique based
on pairwise special contrast and image gradient contour evaluation, from cer-
vical cytology images in ISBI-2014 dataset. First overlapping cervical cytol-
ogy image segmentation is used for the evaluation of the proposed framework.
The framework surpasses the performance from the state-of-the-art detection and
segmentation algorithms. Guo et al. [53] proposed algorithm for segmentation
of overlapped nuclei. The algorithm identifies contenders with point pair con-
nection and evaluates abutted point connections with a contrive ellipse fitting
quality criterion. After the establishment of the connection relationship, the en-
sue dividing paths are recovered by following the path of certain eigenvalues
from the image hessian in a contrived searching space. Qualitative and quan-
titative evaluation, carried on 560 image patches from two classes shows the
promising results of the algorithm. Semedo et al. [54] proposed an algorithm
for the segmentation of the thalamic nuclei, a central part of the nerve prop-
agating the impulses between sub cortical regions and the cerebral cortex. The
algorithm is dependent on thalamic nuclei priors and local fiber orientation. Tha-
lamus connectivity-based parcellation methods is used for the validation of the
algorithm. Algorithm successfully segmented the anatomical plausible thalamic
nuclei. Li et al. [55] segmented hepatocellular carcinoma (HCC) nuclei by us-
ing structure convolutional extreme learning machine (SC-ELM) and case-based
shape template (CBST). First pathology images are globally segmented where
each connected region is treated as nucleus clump. Then contour refinement of
nucleus clumps is done through a probability model of three energy function.
And at last, a combination of CBST method and pixel-based classification is
used for the obscure boundary inference. This method, evaluated on 127 liver
pathology images shows a good result in comparison with other related work.
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Song et al. [56] designed a representation learning decision trees based sparse
coding ensembles network where fast Intra-decoders and Inter-Encoder is used
for enhancing connectivity patterns as well as iterative regression, via decision
tree based ensemble mappings through regularization, pruning and random sam-
pling for increasing model generalization.

Jie et al. [57] proposed an improved multi layer sparse convolution model
(ML-BSC) where handcrafted approach is utilized for robust feature extraction
and optimized computation via integrating discriminative probability based de-
cision tree ensemble for enhancing classification performance. Luna et al. [58]
addressed the problem of pinpoint boundary delineation of adjacent nuclei by in-
troducing a novel deep neural network. The network makes the prediction about
the instances that whether they from individual grouped nuclei. It uses the de-
cision making with Siamese network for learning the relation between the two
adjacent instances and surrounding features of the adjacent nuclei. The network
further predicts the class and their overlapping dice score through a decoding
network improving classification accuracy. The network exhibit significant im-
provement in cell separation accuracy. A joint contour based boundary extraction
method is used by Kurmi et al. [59] via 3 stage cascaded network for slides pre-
processing, nuclei points extraction and region refining via canny edge detector,
and composite nuclei segmentation through contour estimation. Rashmi et al.
[14] developed an unsupervised model for segmenting the nuclei from breast
histopathological images based on Chan-Vese model. It pre-processes images
via color normalization for discriminating foreground instances and background,
followed by multi-channel learning based on color features for efficient segmen-
tation. Song et al. [60] used a combination of watershed and GVF snake model
for nuclei separation from the background followed by Convex hull detection
and concave point detection for splitting of overlapped nuclei and yielded 91%
precise results [61]. Lapierre-Landry et al. [62] proposed a regression based
joint V-Net and watershed based approach in 2021 for 3-D microscopy nuclei
segmentation on embryonic heart dataset having high cell density, with an ac-
curacy of segmenting 1000 nuclei centroids in under a minute. In SEENS [63]
mathematical morphology operators are integrated with selective search for seg-
menting nuclei from cervical images while eliminating non-nuclei regions and
avoiding repeated segmentation. Canny edge operator is used for extracting edge
information for enhancing nuclei edge selection precision. Ramirez et al. [64]
focused on morphological transformations and adaptive intensity adjustments
for segmentation. Karthick et al. [65] used wavelet decomposition technique
followed by random forest classifier for nuclei segmentation on thalamus dataset
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and further post processed segmentation output for refinement reporting 75%
Accurate segmentation results.

Roy et al. [20] proposed an energy maximization function for nuclei instance
segmentation. They segmented cell nuclei via contrast adaptive technique fol-
lowed by intensity adaptive weighted thresholding and energy maximization seg-
mentation on Kumar dataset resulting in 87% dice accuracy.

Stand out Method. Among all hand crafted feature extraction method Hameed
et al. [50], a global entropy thresholding-based segmentation technique, outper-
formed all other state-of-art hand crafted feature extraction methods for nuclei
instance segmentation by achieving MAD of 0.478, DC of 0.967 and accuracy
of 0.970.

Table 4: Hand Crafted featured based nuclei instance segmentation strategies

S.No Reference Year Organ Dataset Feature Extraction
Method Performance

1 Rojas-Moraleda et al.
[44] 2017 Liver Liver dataset Topological features

based approach 51% F1 Score

2 Gautam et al. [45] 2017 Cervix Herlev dataset
SLIC, mean shift clus-
tering, adaptive thresh-
olding

70% Accuracy

3 Reljin et al. [47] 2017 Fish images
Institute of Pathology,
University of Bern,
Switzerland

Matrix of holders expo-
nent thresholding 90% Accuracy

4 Brieu et al. [42] 2017 Breast 30 H&E images Local maxima detec-
tion 75% F1 Score

5 Xu et al.[43] 2017 Skin, Breast Skin histopathological
images dataset

gLoG kernel, mean
shift clustering 91% F1 Score

6 Battistella et al.[46] 2017 Brain thalamus Thalamic Brain
Anatomy dataset

ODFs, K-Means clus-
tering 84% Dice Score

7 Hameed et al. [50] 2017 Breast OSCC Entropy, Thresholding,
Watershed, GLCM 96% DSc

8 Song et al. [60] 2017 Kidney Farsight dataset, TCGA
LoG filter, Morphogi-
cal operation, Regres-
sion model

70% DSc

9 Saha et al. [52] 2018 Cervix ISBI-2014 Cervical cy-
tology dataset

LoG filter, Morpholog-
ical operation, Regres-
sion model

95% DSc

10 Lee et al. [51] 2018 breast BBBC006v1, U20S LoG filter, Threshold-
ing, Ellipse fitting 95% DSc

11 Kostrykin et al. [49] 2018 Flourescence mi-
croscopy images NIH3T3, ISBI-2013 Second order optimiza-

tion 75% F1- Score

12 Li et al. [55] 2018 Liver Hepatocellular carci-
noma (HCC) Mean shift clustering 92% Accuracy

13 Quachtran et al. [3] 2018 Flourescene confocal
microscopy images CLARITY Dataset Iterative radial voting 64% Dice Score

14 Semedo et al. [54] 2018 Thalamus Thalamic nuclei dataset Local fibre orientation
segmentation 70% F1- Score
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15 Guo et al. [53] 2018 breast Flourscene Microscopy
Dataset

Curvature point detec-
tion, Ellipse fitting 69% Accuracy

16 Karthick et al.[65] 2019 Thalamus, Brain Private dataset
Wavelet decomposi-
tion, Random forest
classifier

75% Accuracy

17 Song et al.[57] 2019
Breast, Prostate, Kid-
ney, Liver, Stomach,
Bladder

Kumar, KIRC, Farsight Decision trees 78% Dice Score

18 Song et al.[56] 2021 Cervical cytology ISBI-2015 Depth first search strat-
egy, Decision trees 95% F1 Score

19 Dongyao et al.[61] 2021 Breast, Cervix BJTU BIT, U20S
NIH3T3

Watershed, GVF snake
model, Ellipse fitting,
Convex detection

87% Dice Score

20 Zhao et al. [63] 2021 Cervix 18 Whole slide cervical
cell images

Selective search, Canny
edge, Morphological
operation

92% Dice Score

21 Ramirez et al. [64] 2021 Breast BreakHis database
Morphological trans-
formation, Adaptive
intensity adjustment

78% Dice Score

22 Roy et al. [20] 2021

Bladder, Stomach, Col-
orectal, Breast, Kidney,
Liver, Prostate

Kumar, KMC MAHE
(80 H&E stained im-
ages)

Thresholding, Energy
maximization function 87% Dice Score

5.1.2. Deep Learning based methods
Region based Nuclei localization . Regional proposal based segmentation ap-

proach was initially designed for natural images segmentation. However, in last
few years they have been proved extremely influential for other domains as well
and are highly adapted for medical images segmentation too specially in nuclei
and gland segmentation tasks. Main idea behind proposal base architecture is
detecting regions according to the variations in similarity metrics and color dif-
ferences, followed by classification for regions having high probability of object
existence, they are often regarded as region wise prediction as well. Mask base
region proposal network also called as Mask-RCNN comprising of CNN as base
for feature extraction and region proposal network for suggestion about object
regions which are further used for prediction of binary masks. Mask-RCNN
along with U-Net has been widely used in various nuclei segmentation tasks in
past few years. Table 5 is showing the details of the articles reviewed. In 2018
Liu et al. [66] combined (Mask-RCNN) and fully connected conditional random
field (LFCCRF) for segmenting cervical nuclei via localizing nuclei boundaries
through multi-scale feature maps through regional proposals followed by en-
hancing segmentation by passing spatial information to LFCCRF for further re-
finement. However, accuracy of this model required further enhancement. Voula
et al. [67] comparatively analysed both regional proposal and U-Net segmenta-
tion techniques and ensembled architecture. For circular shaped medium sized
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nuclei Mask-RCNN model gave excellent results but its performance degraded in
case of elliptical shapes however ensembled model resulted in overall accuracy
enhancement.

Baykal et al. [68] used object detection models including Faster-RCNN, re-
gion based convolution neural network and Single Shot Detection model (SSD)
for the first time for pathology image nuclei detection. However, SSD results for
detection were not up to the mark while Faster-RCNN along with ResNet yielded
best results. A similarity learning based approach is used by Sun et al. [69], they
introduced an embedding layer for building networks and training through em-
bedding loss function. These networks were able to learn distinguishing features
on the basis of similarity score which is further used for instance classification.
A unique module incorporating guided anchoring into regional proposals is used
in [70] for candidate proposals generation along with a new branch for regress-
ing intersection over union(IoU) between ground truths and detection boxes for
bounding box localization. They also passed FBS to soft non maxima suppres-
sion for true positive box preservation.

Stand out Method. The solution of Liang et al. [71] was found significantly
better than all other previous state of the art region proposal based patch extrac-
tion techniques for instance segmentation of nuclei and glands. It yielded best
performance results for generalization and other metrices on two major publicly
available datasets including DSB-2018 and MoNuSeg.

Table 5: Nuclei Instance Segmentation via two stage Patch Extraction techniques

S.No Reference Year Organ Dataset Technique Performance

1 Liu et al.[66] 2018 Pap smear images Herlev, BNS, MOD Mask-RCNN, CRF 84% F1

2 Naylor et al.[72] 2019
Bladder, Stomach, Col-
orectal, Breast, Kidney,
Prostate

IIT U-Net, FCN, Mask-
RCNN 81% F1

3 Sun et al.[69] 2019 Breast, Kidney, Liver,
Prostate, Bladder, Colon MoNuSeg R-CNN, ResNet 85% F1

4 Feng et al.[70] 2019 Breast, Kidney, Liver,
Prostate, Bladder, Colon DAPI, TNBC Mask-RCNN 0.54 AJI

5 Vuola et al. [67] 2019 Colon Fluorescence Images Mask-RCNN, U-Net 72% DSc

6 Jung et al. [2] 2019 Breast, Kidney BNS, MOD Mask-RCNN 86% F1

7 BayKal et al.[68] 2020 Lungs Pleural Effusion Cytol-
ogy Images Faster- RCNN, SSD 98% F1

8 Liang et al.[71] 2022 Breast, Kidney, Lung,
Prostate, Bladder, Colon DSB-2018, MoNuSeg Mask-RCNN, FPN 84% F1

Encoder Decoder based segmentation techniques. Convolutional neural net-
works have always been the most used techniques for vision problems and have
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achieved great success in detection and segmentation tasks in medical image
analysis. However, in deep neural network based learning it was observed that
CNNs despite having the ability of learning major features via layer wise propa-
gation at times results in lost spatial information. Compared to simple deep neu-
ral networks, fully convolutional neural networks (FCN) based nuclei segmenta-
tion frameworks were found more efficient in nuclei and gland segmentation in
histopathology images. For instance, while classical CNNs works by classifying
individual pixels via sliding window approach, FCN allows up scaling classical
features hence segmenting images in single pass. For resolving shortcomings of
CNN during segmentation, encoder decoder based approaches were proposed. It
works on the principle of down sampling first for better feature learning followed
by upsampling for final segmentation. In this architecture during down sampling
network reduces activations size through feed forward neural network, while in
upsampling deconvolution network or unpooling operations are primarily used
for regaining lost information. The table 6 summarizes details about encoder
decoder based segmentation techniques. In 2017, Zhang et al. [73] used FCN
for segmenting whole cell into cytoplasm, background and nuclei probabilistic
map. It captured nuclei deep features precisely however accurate boundaries lo-
calization for segmented results was still an issue. As a resolution, graph based
segmentation is incorporated on FCN segmented features thus improving nucleus
boundaries detection via probability map. Similar encoder decoder architecture
for nuclei instances segmentation is proposed by Graham et al. [11]. They used
down sampling operation for strong gradient features while in back propagation
residual blocks and max pooling operators are used, similarly for upsampling de-
convolution operators were incorporated for fine image rebuilding. A new stain
aware auxiliary loss function resulted in better performance by targeting only
low haematoxylin intensity based areas within nuclei and high intensity areas in
background. Xu et al. [21] proposed a joint segmentation detection module using
U-Net and SSD for reducing segmentation inaccuracies of previous approaches.
It dynamically integrated nuclei location output and semantic segmentation re-
sults for joint performance boost. A deep regression distance based approach
by Naylor et al. [72] resolved the segmentation issues faced for closed touching
nuclei. In this architecture pre-trained weights of VGG-16 and training results of
three different models including FCN, Mask-RCNN and U-Net were compared
for prediction of unnormalized intra nuclear distance map. Despite having up to
the mark accuracy, high computational complexity and generalization inability
were still a major challenge of this approach. On the other hand stage wise seg-
mentation approach was used by Qu et al. [74] and Zhao et al. [75]. Two similar
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SU-Net architectures were utilized in this approach where first stage aimed at
segmenting nuclei regions, while second stage was designed for segment over-
lapping nuclei regions. Finally for instance segmentation results output of both
stages were merged together. This multi stage learning approach outperformed
all previously existing state of the art approaches.

A shape prior regularized network architecture is proposed by Tofighi et al.
[76]. In this technique initial learnable layers, learns from prior information
(generated edge map through raw input image and predefined shapes) via fixed
processing and performs nuclei detection consistent to boundary.

Cui et al. [77] proposed a model for simultaneously predicting nuclei and their
contours at the same time via a nuclei boundary prediction model using attention
based segmentation and fast non parameter dilation based post-processing after
contour based segmentation via fully convolutional neural network.

Narotamo et al. [78] devised a model that initially divides image into equal
sized overlapping patches and segments nuclei and boundary map by fully con-
volutional neural network (FCN). Detecting nuclei boundary in each patch en-
abled splitting touched and overlapped nuclei thus improving accuracy. Han et
al. [79] focused on unsupervised learning approach via generating 3D nuclei
data using Recycle-GAN along with Hausdorff distance loss for nuclei shape
preservation. For segmentation and classification of synthetically generated data
a 3D CNN is employed. Similar, 3D nuclei segmentation method has been pro-
posed by Ho et al. [80, 81] and Guan et al. [82] via distance transform, adaptive
histogram equalization, and a 3-D convolution neural network for classification
CNN by searching nuclei centers and spatial & channel attention module for nu-
clei segmentation is proposed in 3D encoder decoder model trained on initially
generated synthetic volumes. An enhanced approach for resolving over fitting
issue faced during multi resolution feature extraction of conventional U-Net and
enhancing convergence performance Majdi et al. [83], [84] and Xie et al. [85]
proposed a residual U-Net based technique for segmentation where they incorpo-
rated batch normalization and drop out layers in architecture with the addition of
scale-wise triplet learning and count ranking for vanishing gradient and explod-
ing loss risks mitigation during segmentation. Mandal et al. [86] proposed a Y
shaped model where a novel forked decoder is tied to segmentation and deblur-
ring, this additional element in model resulted in fine tuning output for normal
as well as blurred out of focus images. Similar technique is proposed by Aatresh
et al. [87] with a slight enhancement of dimension wise convolution combined
with atrous spatial pyramid pooling for improved encoder decoder architecture
and multi task learning based on nuclei region and boundaries extraction. Simi-
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lar architecture is proposed by Pan et al. [88] and Dabass et al. [89] where along
with features learning, diminishing gradient issue is alleviated as well. For re-
solving problems faced by model during small objects features capturing a dual
encoder architecture is proposed by Narotamo et al. [78]. They utilized prior
features information in encoding network and input feature maps are utilized
in attention skip modules for segmentation performance boost. Vahadane et al.
[12] used post processing approach for separating touching nuclei and seman-
tic segmentation of nuclei. Firstly, objects are thresholded followed by boundary
map substraction for nuclei instance map segregation, then instance based energy
map is generated for pixel to background distance calculation. Erosion is used
for marker generation which are then passed to watershed along with distance
map for final processing.

Sparse reconstruction based deconvolution technique is used in [90, 91, 92, 93]
and [94]. They used dilated dense block with exponential increase in dilation rate
for encoding cascaded multi stage neural networks information which is further
trained via gradient descent technique and attention score map is used here as
regularization factor thus avoiding binding and interposed nuclei overlaps. Im-
age level and instance level alignment based on domain shift minimization ap-
proach is proposed by Wang et al. [95] where INA initially extracted instance
features through nuclei locations via a temporal ensembling based Nuclei Lo-
calization (TENL) module, this resulted in automatic candidate nuclei location
generation. Huang et al.[96] proposed a shared decoder path instead of con-
ventional two path decoder technique used by Qingbo et al. [97] thus increas-
ing recognizability range generated through new half path served as a natural
proxy for curriculum learning model. Kablan et al.[98] designed a SegNet based
architecture, which is one of the best model for problems dealing with image
segmentation tasks due to its property of direct information transfer instead of
convolution.

For accurately segmenting overlapping and cluttered nuclei Wang et al. [99]
proposed a bending loss regularized network using multi task learning approach
inspired from HoVer-Net architecture by Graham et al. [38]. It introduced gener-
alization by training decoders for 3 streams including nuclei distance map predic-
tion, overlapped nuclei distance map and instance segmentation via using high
penalty bending loss for large curvature contour points and low penalty for small
curvature for simultaneous concave or convex transformation. While in HoVer-
Net 3 branches were nuclei pixel branch (for pixels separation from background),
hover branch in which nuclei horizontal and vertical distances with respect to
center of masses is used for separating clustered nuclei thus resulting in accu-
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rate segmentation specially for cases having large number of overlapping nuclei
segmented instances and lastly nuclei classification where segmented instances
were further passed to a dedicated upsampling branch for type classification.
HoVer-Net was also the first ever technique achieving both segmentation and
classification via same network. Zhao et al. [100] also used similar 3 branch
architecture having RGB branch, segmentation branch and haematoxylin branch
simultaneously. In this technique RGB branch was used for raw features extrac-
tion for segmentation task, H branch for H&E aware feature extraction for the
task of nuclei contour detection task and segmentation branch fused both RGB
and Haematoxylin contour features for final results prediction. Braga et al. [101]
also used contour based boundaries detection and encoder decoder based learn-
ing approach.

Li et al. [102] improved shortcomings of previous regression based segmen-
tation and devised a multi task learning fusion based approach for improving
glioma nuclei segmentation accuracy via boundary and region information they
adopted a U-Net based encoder decoder where paired upsampling paths are used
for boundary classification and touching nuclei separation while in other path
regression model is used for nuclei region distance map prediction approach.
These layers are further fused together for final segmentation. In 2017 Fu et al.
[103] utilized watershed for cell nuclei quantification in parallel with CNN based
segmentation. Luna et al. [58] used an encoder decoder based approach where
contextual information is captured via harnessing multi level CNN capabilities
and features concatenation along with up sampled features using skip connec-
tions followed by post-processing via morphological operations. This model de-
tected malignant cases accurately but failed in case of some benign test samples
due to erosion during noise removal process. A modification to this approach
was proposed in region proposal and encoder decoder based joint nuclei detec-
tion and segmentation technique given by Cheng et al. [104] where both shallow
and deep layers are merged via skip connections for accurate detection of nu-
clei locations using bounding boxes and detected patches are further passed to
U-Net for segmentation. Voula et al. [67] gave a comparative analysis of both
regional proposal and U-Net model based nuclei segmentation as well as ensem-
bled architecture. For circular shaped medium sized nuclei, Mask-RCNN model
gave excellent results but its performance degraded in case of elliptical shapes.
It had some trouble in approximating bounding boxes for the nuclei while U-Net
performed better in such cases, similarly it was also found that an ensembled
model resulted in overall accuracy enhancement. A novel kernalized correla-
tion filters are used for nuclei detection in [105] due to its dependence on small
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training dataset as well as interpretable and computationally efficient nature as
compared to other deep learning based models and can give state of the art re-
sults. Similar approach is used in [106] where spatial structure is incorporated
via constructing a dense graph based on different deep features across different
nuclei components then correlation filter is used for discriminating nuclear and
non-nuclear region. Similarly, Salvi et al. [107] used watershed segmentation
in multi scale framework after progressive weighted mean detection for object
detection and area based correction for aligning over or unsegmented objects.
In this technique watershed transform is specifically used for nuclei detection
purpose. In [108, 109] color de-convolution is used for image preprocessing for
H&E stain highlighting which are then trained on deep CNN followed by marker
controlled seeded watershed technique for splitting touching nuclei but this pro-
cess specially semantic segmentation used in CNN results in a computationally
expensive model and performance degraded in case of highly overlapped nuclei
further resulted in over segmentation as well. An ensembling based improved
architecture is proposed by Zhao et al. [110] and Liu et al. [111] having a U
shaped ensembled convolution network as backbone with dense blocks for ef-
fectively transferring features information alongside overcoming vanishing gra-
dient problem of prior architectures. Another feature added in this model was
deformable convolution for dealing with nuclei of different sizes and irregular
shapes thus enhancing model flexibility. A point annotation based architecture is
presented by Yoo et al. [112] as PseudoEdgeNet. In this a guided segmentation
network is trained for recognizing nuclei edges without prior annotations through
multi scale pyramidal model and backbone ResNet in Kanwal et al. [113]. An-
other similar one click approach for quick annotation collection is proposed by
koohbanani et al. [114] where they used a single click for precise annotation for
single as well as for structures comprising of multiple nuclei such as glands. In
2021, Valkonen et al. [115] proposed a supervised transfer learning model via
applying unsupervised domain adaptation for model generalization on seen as
well as unseen labeled images data and achieved 77% accuracy. Another trans-
fer learning and logistic regression based approaches is used by Li et al. [116]
via unsupervised sparse auto encoder (SSAE) and case based post processing
module (CPM) technique. They extracted high level features via transfer learn-
ing followed by logistic regression classifier(LRC) on extracted features and fine
tuning via CPM.

Stand out Method. Internal co-variance shift based U-Net architecture proposed
by Wan et al. [117] in 2021, stood out as a top performing model due to its
generalized network across diverse set of images, experimental inputs variation
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for a heavily imbalanced dataset. With 80% of training images it yielded an
accuracy of 95%. Similarly, FPN based encoder decoder architecture proposed
by Yang et al. [118] outperformed previous state of the art result with 97% F1-
Score.

Table 6: Encoder Decoder based Segmentation Methods

S.No Reference Year Organ Dataset Technique Performance

1 Zhang et
al.[73] 2017 Cervix Herlev FCN 92% Zijdenbos similarity

2 Ho et al.[80] 2017 Kidney Rat kidney dataset FCN 92% Accuracy

3 Pan et al.[90] 2017 Breast David Rimm’s dataset FCN 83% F1 Score

4 Fu et al. [103] 2017 Kidney Rat kidney dataset SegNet, Watershed 94% mAP

5 Graham et
al.[11] 2018 Breast CPM-17 SAMS-NET 80% Dice Score

6 Ho et al.[81] 2018 Kidney Rat Kidney dataset CNN, seed candidate se-
lection 94% F1 Score

7 Hofener et
al.[4] 2018 Breast, Colon Warwick-QU FCN, Pmap 82% F1 Score

8 Naylor et
al.[91] 2017 Breast, kidney U20S FCN & PangNet 80% F1 Score

9 Zhao et
al.[110] 2019 cervix Herlev U-conv + deformable

conv 93% Zijdenbos similarity

10 Zhao et
al.[75] 2019 Breast University Hospital

Poland FCN, Bayesian Inference 83% accuracy

11 Tofighi et
al.[76] 2019 Cervix Herlev U-conv + Deformable

convolution 93% Zijdenbos similarity

12 Kingbo et
al.[97] 2019 multiple Kumar, TNBC Stacked U-Net 80% F1 Score

13 Lee et
al.[119] 2019 Breast Fluorescence Image

Dataset OS-NET 70% Dice Score

14 Zeng et
al.[84] 2019 multiple TCGA Residual Inception U-Net 77% F1 Score

15 Voula et
al.[67] 2019 Colon UW dataset SP-CNN 85% F1 Score

16 Cui et al.[77] 2019 multiple MOD, BCD FCN 84% F1 Score

17 Xu et al.[21] 2019
Bladder, Stomach,
Breast, Kidney, Liver,
Prostate

MoNuSeg SSD + U-Net 80% Precision Accuracy

18 Navid et
al.[114] 2019

Bladder, Colon, Stom-
ach, Breast, Kidney,
Liver, Prostate

GlaS, CRAG, MoNuSeg NuClick 91% Dice Score

19 Li et al.[102] 2019 multiple Glioma, MoNuSeg U-Net, Distance Map, Fu-
sion Module 76% F1 Score

20 Pan et al.[88] 2019
Bladder, Colon, Stom-
ach, Breast, Kidney,
Liver, Prostate

BNS, MOD ASU-Net 87% F1 Score

21 Yoo et
al.[112] 2019

Bladder, Stomach,
Breast, Kidney, Liver,
Prostate

MoNuSeg, TNBC FPN, ResNet-50 60% Accuracy
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22 Graham et
al.[38] 2019

Bladder, Stomach,
Breast, Kidney, Liver,
Prostate

CoNSeP, Kumar U-Net 80% Dice Score

23 Qu et al.[93] 2019 Lungs Lung Cancer Dataset FCN + U-Net 88% F1 Score

24 Liu et al.[111] 2019
Bladder, Stomach,
Breast, Kidney, Liver,
Prostate

Kumar, TNBC Stacked U-Net 80% F1 Score

25 Long et
al.[94] 2020

Bladder, Stomach,
Breast, Kidney, Liver,
Prostate

DSB-2018 U-Net & 62% Accuracy

26 Zhao et
al.[100] 2020

Bladder, Stomach,
Breast, Kidney, Col-
orectal adenocarcino-
mas, Prostate

MoNuSeg, CoNSeP,
CPM U-Net & 83% Dice Score

27 Kowal et
al.[109] 2020 Breast David Rimms dataset FCN + watershed 90% Accuracy

28 Qu et al.[120] 2020
Bladder, Stomach,
Breast, Kidney, Liver,
Prostate

Lung cancer dataset,
MOD Bayesian CNN 83% F1 Score

29 Cheng et
al.[104] 2020

Bladder, Stomach,
Breast, Kidney, Liver,
Prostate

DSB-2018 UNet, FPN & 77% Accuracy

30 Xie et al.[85] 2020
Bladder, Stomach,
Breast, Kidney, Liver,
Prostate

MoNuSeg Res-UNet 65% accuracy

31 Qu et al.[74] 2020 Lungs, Prostate Lung Cancer, U-Net, K-Means 75% F1 Score

32 Yang et
al.[118] 2020 Cervix Herlev FPN, Encoder decoder 97% F1 Score

33 Baykal et
al.[98] 2020 Breast, Lung Lung Cancer Dataset,

U20S FCN, SegNet, U-Net 95% Dice Score

34 Han et al.
[79] 2020 Kidney Kidney dataset U-Net, Recycle-GAN 82% F1 Score

35 Hussain et
al.[19] 2020 breast Smear dataset FCN 96% ZSI

36 Xei et al.[108] 2020 Breast, Prostate, Kid-
ney, Stomach Kumar, MICCAI-2017 Marker controlled water-

shed 87% F1 Score

37 Narotam et
al.[78] 2021 Retina Mouse-Retina Dataset U-Net 63% Score

38 Huang et
al.[96] 2021 Deep sea archea Fluorescence microscopy

images Encoder decoder 70% F1 Score

39 Vahadane et
al.[12] 2021

Bladder, Stomach,
Breast, Kidney, Liver,
Prostate

CPM-17, Kumar, CoN-
SeP

U-Net, Attention skip
module 81% Dice Score

40 Wan et
al.[117] 2021

Bladder, Stomach,
Breast, Kidney, Liver,
Prostate

MoNuSeg, TNBC U-Net, Internal, Co-
variance Shift 95% F1 Score

41 Kim et al.[92] 2020 Brain Diffusion weighted MRIs DCN-Net 87% Dice Score

42 Wang et
al.[99] 2020

Bladder, Stomach,
Breast, Kidney, Liver,
Prostate

MoNuSeg Bending loss, U-Net 83% Dice Score

43 Valkonen et
al.[115] 2021

Bladder, Stomach,
Breast, Kidney, Liver,
Prostate

MoNuSeg VGG, Transfer learning,
FCN 77% F1 Score
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44 Mandal et
al.[86] 2021

Bladder, Stomach,
Breast, Kidney, Liver,
Prostate

Fluorescence image
dataset U2OS 84% F1 Score

45 Maryse et al.
[62] 2021 Heart Heart Dataset V-NET, Centroid calcula-

tion 95% F1

46 Braga et
al.[101] 2021 Cervical cytology im-

ages ISBI-2014, Herlev Multi scale narrow band
level set algorithm 85% Dice Score

47 Kanwal et
al.[113] 2022

Bladder, Stomach,
Breast, Kidney, Liver,
Prostate

MoNuSeg, TNBC, Cry-
oNuSeg

Distance map, Skip Con-
nection, U-Net 90% F1 Score

48 Javed et al.
[106] 2021

Bladder, Stomach,
Colorectal adenocarci-
nomas, Breast, Kidney,
Liver, Prostate

100 H&E stained CRC
histology, CoNSeP, Pan-
Nuke

Correlation filter 85% Dice Score

49 Asif et
al.[105] 2017 Large Intestine 100 H&E Colorectal ade-

nocarcinomas Correlation filter 84% F1Score

Adversarial Models based Segmentation . Generative Adversarial Networks
(GANs) were first introduced by Good fellow et al. [121] in 2014 with the
basic idea of generating synthetic images by mimicking the content of actual
training datasets as described by Skandarani et al. [122]. With the introduc-
tion of GAN based models in several image processing tasks it was found that
approaches relying on Generative Adversarial Networks have exhibited the ca-
pability of reducing the large annotated dataset requirements, thus reducing the
potential barrier of automated image analysis in several medical imaging modal-
ities as reviewed by Tschuchnig et al. [123]. Table 7 summarize details about
adversarial models based segmentation techniques. In the field of computational
pathology recent GAN based developments have not only improved measures
but have also enabled novel applications. Thus tasks relying on supervised tech-
niques can now be performed via unsupervised techniques. In 2018, Zhang et
al. [124] proposed GAN based nuclei segmentation model as a dual contour en-
hanced adversarial network. In this approach contour highlighted and distance
transformed masks are incorporated via adversarial network for improving cell
nuclei segmentation. This approach outperformed previous state of the art mod-
els on MICCAI-2017 dataset, however this model was generalizable. Mahmood
et al. [125] proposed an improved model in 2020, via utilizing conditional GANs
based training for nuclei segmentation on both real as well as synthetic data thus
ensuring spatial consistency compared to conventional CNNs. A data augmen-
tation based approach proposed by Pandey et al. [126] employed multi-GANs
for improving performance of conventional segmentation approaches, one for
generating synthesized mask which is incorporated into second GAN for per-
forming conditional generation of synthesized image. Han et al. [79] focused
on unsupervised learning approach via generating 3D data using Recycle-GAN
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along with Hausdorff distance loss for nuclei shape preservation. For segmen-
tation and classification of synthetically generated data a 3D CNN is employed.
Yao et al. [127] generated Scafold-A549 a very first synthetically generated
nucleus segmentation dataset for training on varying density nuclei in 3D cell
culture via recycle-GAN approach. Xing et al. [128] proposed an adversarial
two-directional domain adaptive method for nuclei detection on multiple modal-
ities. Specifically, this method learns via a deep regression model through source
to target and target to source image translation for each nuclei.

Table 7: GAN based Segmentation Methods

S.No Year Reference Organ Dataset Technique Performance

1 2018 Zhang et al. [124] Head, Neck, Squamous
cell, tumors MICCAI-2017 GAN 70% F1 Score

2 2020 Pandey et al. [126]
Bladder, Colon, Stomach,
Breast, Kidney, Liver, Pan-
creas, Colorectal

DSB-2018 Multi-GAN 82% Dice score

3 2020 Mahmood et al.
[125]

Bladder, Colon, Stomach,
Breast, Kidney, Liver TCGA GAN 86% F1 Score

4 2020 Han et al. [79] kidney kidney dataset Recycle-GAN 82% F1 Score

5 2021 Yao et al. [127] Lungs 3D Fluorescence im-
age data Cycle GAN 50% Dice Score

6 2021 Xing et al. [128] Colon DAPI, TMI Cycle GAN 71% F1 Score

Attention based Sequential Models . Attention mechanisms can be regarded as
one of the hottest areas of deep learning research since last few years, originat-
ing primarily for natural language processing and now yielding excellent results
in computer vision domain as well. They works exactly on the principle of hu-
man eye, while viewing a scene in form of partial glimpses and paying enhanced
attention to parts relevant to the context. In this way it not only focuses on se-
lected regions but also concludes object interpretations at that particular point
thus improving visual structure understanding. It explores global contextual in-
formation via building associations amongst features using attention mechanism,
alongside adaptively aggregating long range contextual details, thus improving
feature learning for accurate object segmentation. It can be considered as a tool
for fair divisioning of allocated resources according to the quantity of informa-
tion carried by signal. In most models its often used on top of higher level
contextual information representing layer for better adaption amongst objects.
Table 8 summarize details about attention based nuclei instance sequential mod-
els technique.

For medical image segmentation, first specific attention based model for nu-

38



clei segmentation task has been proposed in 2019 by Zhang et al. [129]. They
designed a binary tree network with two path fusion attention module via con-
catenating both low and high feature information followed by convolution for
generating fused feature similar to a binary tree structure. A joint attention model
based on Neural Architecture Spatial and channel weighting effect is proposed
by Liu et al. [130] using NAS search strategy for attention module automation
with the addition of multiple attention module architectures searching within
same network. A self supervised attention based nuclei segmentation approach
is devised by Sahasrabudhe et al. [131] from the assumption that nuclei texture
and size could yield slide magnification thus generating self-supervised signal
points for nuclei localization. For resolving prior noise issues a weakly super-
vised learning model is proposed by Guo et al. [132] using nuclear centroid
annotations for segmentation via generating boundaries and super pixel masks
as ground truth labels. Salvi et al. [107] worked on weakly supervised learning
approach for mitigating high quality annotated datasets requirement for training.
They trained nuclei segmentation module via nuclei centroid annotation which
were used for generating boundary and masks as ground truth label for segmen-
tation and further performance enhancement is done through mask guided atten-
tion auxiliary network.

For further refinement in previous approaches an encoder decoder based archi-
tecture and spatial channel joint attention module for abnormal nuclei detection
is proposed by Ma et al. [133] via using attention based merging technique for
merging extracted varying and fixed features generated via R-CNN and fixed
proposal module. Efficient feature extraction based approach is focused by Va-
hadane et al. [134] and Lal et al. [135] using 3 block architecture including
residual bottleneck and attention decoder blocks. Robust residual blocks yielded
high level object semantic maps while object localization is performed via atten-
tion module, thus improving accuracy. Zhao et al. [16] employed a post pro-
cessing pipeline for final segmentation from attention segmented image. They
used a combination of morphological operations (binary opening and closing) for
coarse and fine object enhancements followed by distance transform and Gaus-
sian blurring for local maxima identification and in the end watershed is used for
final results.

Table 8: Attention based Nuclei Segmentation

S.No Reference Year Organ Dataset Technique Performance

1 Lal et al.[135] 2021 Liver, multiple KMC Liver, Kumar
Dataset

Attention Mechanism, En-
coder Decoder 70% Dice Score

2 Liu et al.[130] 2020
Bladder, Colon, Stomach,
Breast, Kidney, Liver,
Prostate

MoNuSAC
Neural architecture based
Spatial & Channel Joint
Attention Module

86% F1 Score

3 Aatresh et
al.[87] 2021 Kidney, Breast TNBC SegNet based attention mod-

ule 92% F1 Score
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4 Ma et al.[133] 2020 Cervix Herlev Dataset SE-FPM based Self-attention 92% F1 Score

5 Sahasrabudhe
et al.[131] 2020

Bladder, Colon, Stomach,
Breast, Kidney, Liver,
Prostate

MoNuSeg Self-Supervised attention
module

86% F1 Score, 0.53
AJI

6 Vahadane et
al.[134] 2021

Bladder, Colon, Stomach,
Breast, Kidney, Liver,
Prostate

CPM-17, CoNSeP, Ku-
mar

U-Net, Attention, skip mod-
ule 81% Dice Score

7 Zhang et al.
[129] 2019 Cervix ISBI-2014 Dataset ResNext, Two path fusion bi-

nary tree 90% F1 Score

8 Gunesli et al.
[136] 2020 Colon Pathology Department

Hacettepe University FCN 94% F1 Score

9 Guo et al.
[132] 2021

Bladder, Colon, Stomach,
Breast, Kidney, Liver,
Prostate

MoNuSeg, TNBC Mask guided attention net-
work 83% F1 Score

10 Zhao et al.
[16] 2021

Bladder, Colon, Stomach,
Breast, Kidney, Liver,
Prostate

ISBI-2014 Dataset, BNS,
MoNuSeg U-NET, Attention 72% AJI

Stand out Method. SegNet based attention guided architecture proposed by Aa-
tresh et al. [87] and Mask guided attention network by Guo et al. [132] resulted
in 92% F1- Score and stood as top performing attention based instance segmen-
tation techniques.

5.2. Glands Instance Segmentation Methods
Handcrafted features extraction. For medical image analysis, traditional hand-
crafted feature based techniques are more prevalent for segmentation compared
to learning based approaches. Table 9 summarize details about features ex-
traction techniques for glands instance segmentation. Classical methods de-
pends heavily on image features including its color, shape and texture primar-
ily. Similarly, for instance segmentation of natural images mostly pipeline com-
prises of object detection and masking. In 2017, Zarei et al. [137] proposed
a gland segmentation pipeline via integrating classical techniques. Firstly, dig-
itized histopathological images are constructed using sixteen light wavelengths
followed by RGB construction by Principal Component Analysis (PCA). For
glands segmentation unsupervised clustering is applied and utilized morphologi-
cal cleaning operation for small objects removal and then eroded processed gray
scale image for further segmentation. Despite being novelty of this technique,
generalizability and dataset size variation was the major loop hole. Similarly,
Wang et al. [138] used contour based energy minimization technique for effi-
ciently segmenting glands instances from background. Two level sets are uti-
lized including energy based and region based models. Model divided image
into 2 parts, glands with lumens and glands without lumens. Glands with lu-
mens were localized and segmented via edge-based level set. Similarly, glands
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without lumens stromal were segmented via region based technique. For out-
put prediction results of both these models are combined together. Manivannan
et al. [139] combined both traditional handcrafted multi scale features, with
features learned through deep convolutional network trained for mapping im-
ages to respective segmentation output.They used structured learning approach
for capturing structural information of image e.g (location between glands and
neighbouring glands identification as separate instance). These were then used
for training support vector machine classifier and is further combined and post
processed for segmentation output. Rezai et al. [140] preprocessed input data
via invariant local binary pattern based classical features processing, extracted
features were further passed to LinkNet for glands segmentation training.

Deep learning based Glands Instance Segmentation . In 2017 Xu et al. [15]
proposed neural networks glands segmentation algorithm based on image-image
prediction model using deep multi channel model for automatic fusion of com-
plex multi-channel information based on regional, local and boundary pixel fea-
tures. This model reduced heavy feature designs issue due to the use of CNNs.
Similarly, alternate channels resulted in better feature learning resulting in bet-
ter performance for training single scale objects. However, problem with multi
stage learning was still there. For incorporating multi scale objects segmenta-
tion a minimal information dilated network is proposed by Graham et al. [141]
where for segmenting varying sized glands, maximal information is retained dur-
ing feature extraction on which atrous spatial pyramid pooling is applied. Final
level evaluation of keeping or discarding predictions is done through object level
uncertainty score. Considering the computational cost issues in prior approaches
a cost efficient and adaptive multi stage attention based learning module is de-
signed by Gunesli et al. [136] for adaptively learning hard to learn pixels at
each stage on given image data without any prior preprocessing via multi stage
boosting network for in parallel adaptive learning and pixels correction at the
same time by adjusting loss weight for each predicted pixel. A unique boundary
adjustment loss function is used for paying focused attention to pixels nearer to
boundaries.

Previously designed glands segmentation methods used several deep learning
features and auxiliary contour prediction output maps for modeling segmentation
tasks. However, they fail to capture complex structural variations in gland im-
ages thus resulting in contour imbalance problem due to limited performance. To
overcome these problems, Mei et al. [142] proposed a dense contour-imbalance
aware (DCIA) framework including convolutional neural network (DenseNet)
and focal loss (FL). In this technique features generated via DenseNet were
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explored for “optimal” image representation and focal loss function mitigated
the contour imbalance problem in the training stage. Finally, for fine tuning
predicted confidence maps, post-processing is done via morphological opera-
tions and convolutional conditional random fields (ConvCRFs). A single deep
learning shape adversarial domain adaptation model for accurate segmentation
of glands is proposed by Yan et al. [143] where a segment level shape similarity
measure is used for curve similarity calculation between each annotated bound-
ary and corresponding boundary segment detection, images down sampled at
multiple scales were integrated for context enabled global as well as local fea-
tures training. Ding et al. [144] proposed a multi scale fully convolutional net-
work and three class classification (TCC-MSFCN) framework for better segmen-
tation approximation. Multi scale architecture extracted varying receptive field
features corresponding to object size. Similarly, for global information loss com-
putation, separate high-resolution branch is included in model. Finally, for ac-
curate segmentation of touching glands, three-class classification based on edge
pixels is applied. Rastogi et al. [145] proposed an encoder decoder based mod-
ule for better capturing of contextual information via harnessing multi level CNN
capabilities as well as features concatenation and features upsampling via skip
connections and harnessed the exceptional power of neural networks for captur-
ing contextual information and features concatenation via upsampling. For fine
tuning raw predicted samples are processed using morphological opening and
closing operators yielding 85% accuracy. Xie et al. [146] proposed a pairwise
relations learning module for enhancing image representation ability by exploit-
ing the semantic consistency between image pairs and transferring learned fea-
tures to S-Net an encoder decoder based network for improving segmentation.
Salvi et al. [147] proposed a rapid gland identification module for prostate gland
segmentation via similar multi-channel algorithm. However, in this approach
both traditional and deep learning techniques are exploited and fused together
via a hybrid instance segmentation strategy based on stroma detection for accu-
rate detection and delineation of target gland contours. Dabass et al. [89] with
a slight enhancement of dimension wise convolution combined with atrous spa-
tial pyramid pooling for improved encoder decoder architecture and multi task
learning based on region and boundaries extraction along with feature learning,
diminishing gradient issue is alleviated as well. Similarly, Wen et al. [148] pro-
posed Gabor encoder based module for texture enabled feature learning through
cascaded squeeze parsing to Bi-Attention mechanism for capturing both channel
and spatial information at multiple scales followed by class balancing.
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Stand Out Method. In comparison to segmentation results obtained through
handcrafted segmentation techniques, we found that FCN based Atrous spatial
pyramid pooling technique by Graham et al. [141] outperformed all previous
state of the art proposed minimally tuned classical algorithms through a large
margin, producing better segmentation outputs over all coverage thresholds.

Table 9: Glands Instance Segmentation Techniques Summary

S.No Reference Year Organ Dataset Technique Performance

1 Zarei et al.[137] 2017 Prostate TMA PCA, Clustering, Morphological
Operation 80% Dice Score

2 Xu et al.[15] 2017 Colon Warwick-QU 3-channel Conv-Net, FCN, HED
edge detection 83% F1Score

3 Wang et al.[138] 2017 Endometrial West China Hospital Level set edge based energy mini-
mization & region 75% Dice Score

4 Wenqi et al.[139] 2018 Colon Warwick-QU FCN & SVM classifier 89% Dice Score

5 Rezai et al.[140] 2019 Colon Warwick-QU FCN & LinkNet & Local binary
pattern 82% Dice Score

6 Graham et al.[141] 2019 Colon GlaS FCN & Atrous Spatial Pyramid
Pooling 94% F1 Score

7 Gunesli et al.[136] 2020 Prostate Pathology Dept.
Hacettepe University

Attention Boost, Iterative Multi-
stage Learning 95% F1 Score

8 Mei et al.[142] 2020 Colon Warwick-QU CRF, Morphological Operations,
CNN 79% F1 Score

9 Yan et al.[143] 2020 Liver bone CRAG Weighted Matrix Adversarial Loss NA

10 Ding et al.[144] 2020 Colon, Liver CRAG Warwick-QU TCC-MSFCN Network 91% F1 Score

11 Yutong et al.[146] 2020 Colon CRAG, GlaS Pairwise Relational Module, S-Net 87% Dice Score

12 Rastogi et al. [145] 2021 Colon Warwick-QU U-Net 85% F1

13 Wen et al. [148] 2021 Colon,
Prostate GlaS dataset, CRAG Gabor Filter, Attention Module 83% F1 Score

14 Salvi et al. [147] 2021 Prostate gland GlaS dataset RINGS, ACM 90% Dice Score

15 Dabass et al.[89] 2021 Colon GlaS, CRAG U-Net, Attention Mechanism 93% F1 Score

6. Discussion & Future Prospects

This is the first study that reviewed both nuclei and glands instance segmenta-
tion techniques evolved during last 5 years for multiple organs included but not
limited to liver, kidney, prostate, bladder, colon, stomach, lung, and brain cancer.
This survey covers both handcrafted features extraction methods as well as deep
convolutional neural networks based techniques emerged during this time span.
Overall, This has been observed that deep learning methods outperformed all
traditional segmentation methods. Best performing model was attention based
U-Net techniques covering both local as well as global features mapping and
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multi scale refinement. Region proposal based Mask- RCNN accuracy also re-
ported upto the mark accuracy with different optimization parameters and loss
functions. For MoNuSeg dataset, Mask-RCNN models performance was found
even better than U-Net. Transfer learning based feature pre-training also yielded
better results and model trained independent of tissue type for nuclei and glands
instance segmentation respectively. This review summarises major evolution and
advancements adopted by researchers in model designing for the task of instance
segmentation. Overall, In histopathology whole slide image analysis, base tech-
niques provide novel architectures for clinical workflows automation via auto-
matic WSI feature extraction that serves a pivotal role in diagnosis, treatment,
and survival prediction of various lethal diseases. Till date, advancements in
digital pathology has automated complete histopathological cancer grading pro-
cess, mitosis detection, cancer sub-typing, tumor classification & segmentation.

This all has been made possible via deep learning based networks that enabled
training possible for large scale highly varying whole slide images at contrast-
ing magnifications. Rapid advancements in the field of oncology will lead novel
innovations and insights in tumor nuclei instance segmentation and feature ex-
traction thus yielding better cancer treatment selection methods. One such way
would be AI driven diagnostic techniques leveraging deep leaning architectures.

Encoder Decoder based U-Net techniques gave excellent results for biomedi-
cal images segmentation. Despite its great performance model struggles during
classification of closely touching instances. Symmetrical network architectures
further possess an opportunity to modify model structure and improve perfor-
mance accuracy. Since, initial U-Net architecture followed a typical CNN based
structure, having repetitive convolution, activation, and pooling layers for feature
maps calculation.

However, with the rising complexity of data, training DCNNs resulted in fur-
ther network architecture advancement and leads towards other novel networks
including HoVer-Net [38], SegNet [87], ResUNet [83], ResNet [84], PR-Net
[146], ResNext [129], OS-Net [119] and various others. These comparatively
new approaches have embarked excellent state-of-the-art instance segmentation
results with better feature extraction thus minimizing vanishing gradient prob-
lem, and improving network convergence. Performance boost primarily resulted
by modification from base network architecture to modified architectures, ei-
ther through replacement of initial skip connection layers with longer ones or
by layers addition in base U-Net model for deeper neural network. Symmetrical
network architectures further possess an opportunity to modify initial network
structure and improve performance accuracy.
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Figure 14 shows cumulative techniques occurrence in research articles re-
viewed for this paper.

Fig. 14: Sum of Research Occurrence for each Tool. Color shows details about Tool. Size shows
sum of Research Occurrence. The view is filtered on sum of Research Occurrence, which ranges
from 1 to 28.

Multistage learning architectures have attained huge success in domain of
medical imaging specially segmentation tasks. However information loss at mid-
dle layers along with inconsistent features learning is the major common draw-
back of these architectures. Another primary limitations observed is often times
they leads to a redundant information usage when similar low level feature are
repeatedly extracted several times at multiple scales.

Similarly, whole slide images are usually regarded as texture images while
fixed encoder decoder based architecture of U-Net doesnot serve as an appro-
priate model for texture based learning models because of its inability to extract
features at different scales and orientations. It has been observed that malignant
tumors have a particularly higher growth rate compared to benign and greater
density as well causing nuclei overlapping or occlusion during squeezing op-
eration. One important challenge is sufficient networks training to yield good
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generalizations for hard-to-learn pixels. A typical group of such hard-to-learn
pixels are boundaries between instances. In spite of the huge success of FCNs
trained on very large datasets, training becomes difficult when small quantities
of annotated data are available and when pixels of background and foreground
classes are highly imbalanced. In such cases, without further adjustments, net-
work tend to yield poor generalizations for pixels of a minority class as well as
for hard-to-learn pixels. Similarly, in some approaches for long-range, features
dependencies were not modeled efficiently thus leading to non-optimal discrim-
inative representation of features.

Two stage learning based Mask-RCNN network is proposed for instance level
annotations generation. In first stage it proposes class probability maps while
its CNN backbone provides input feature map which is then fed in both regres-
sion as well as classification layer. Regression layer predicts region proposals
while classification layer predicts object existence probability within the region
proposal. Similarly, second stage of Mask-RCNN utilized generated region pro-
posals for object classification, bounding box prediction and final segmentation.

Region of interest (RoI) alignment was introduced with Mask-RCNN. It incor-
porated bilinear interpolation for floating point values calculation from sampling
points. It resulted in reduced computational time, by taking RoI defined feature
maps and its scaling to fixed sized patches. Mask-RCNN variants output bound-
ing box coordinates, objects classification and segmentation map for each object
instance.

Although, R-CNN, Faster-RCNN and its other variants have achieved good
performance in general target detection tasks by combining semantic segmen-
tation and target detection, but their performance in histopathology tasks such
as abnormal cell detection was still not as per expectations causing issues like
over and under segmentation which later yielded incorrect estimation of the nu-
clear density, size and morphology. Another primary limitation of the region
proposal based methods is their difficulty in merging instances prediction while
processing neighbouring tiles e.g in a condition when a nuclei sub segment at
boundary is assigned a label this thing needs to be ensured that rest of the nuclei
part present in neighbouring patch should be assigned same label.

Similarly, deep learning models also lacks theoretical understanding thus lead-
ing to degraded performance when limited training data is provided.

Pre-deep learning techniques performed exceptionally well for small amount
of data where training and testing inputs were taken from single feature space.
Handcrafted segmentation techniques primarily used in majority of the ap-
proaches were intensity based thresholding, morphological operations including
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erosion & dilation, marker controlled watershed transform, active contour mod-
els, with machine learning classifiers such as RVM [149], SVM [150], KNN
[151] clustering and other supervised classification methods.

Thresholding and morphological transformations are usually regarded as basic
image processing operations but for nuclei having complex image background,
segmentation via these operations gets difficult since thresholding techniques
such as Otsu usually works with the assumption of nuclei having distinct inten-
sity and thus fails in most cases where tumor cells display high level of variability
in chromatin appearance. Watershed performance was fine given target locations
but in all other scenarios shows poor performance, since it considers a relatively
homogeneous nuclei or gland appearance and a pre requisite of initially detected
seed points before segmentation.

Active contour models or level Sets deals with change in spatial temporal re-
lations (i.e combination of image and shape features inside nuclei) but fails in
handling boundary events and alike watershed this technique is also dependent
on initialization of good seed points. Thus despite being in use for long, there
are still problems in segmentation results of these techniques because they are
based on simple assumption about the nucleus appearance characterstics includ-
ing low intensity or circular borders which may not be true in all cases (e.g. some
nuclei exhibits high intensity and irregular shapes [73] thus yielding low accu-
racy or poor precision. Similarly clustering and graph based methods have been
used too, but their computationally expensive nature and shallow feature learning
consideration makes them a misfit for training large scale data [11]. Similarly,
Radiating gradient vector flow (RGVF) snake and graph cuts techniques were
used for fine segmentation but these do not involve inherent shape constraints
for the segmented boundary, thus resulting in irregular nucleus boundary.

For sparse data conditions, transfer learning techniques can be utilized using
pre-trained weights of a comparatively larger model for training similar smaller
dataset networks given the domain similarity checks.

A training limitation in majority of datasets is small amount of available data
for learning, validation and further testing due to the limited number of open
source datasets. Similarly, data collection and preprocessing stages during sam-
ples collections such as manual H&E staining or varying slide scanners at times
results in color inconsistency [152] and unclear nuclear boundaries and this
drawback later effects entire model training and testing stages. Future work in-
volves expanding tissue types and number of images included in the dataset. Ad-
versarial learning based generative adversarial networks (GANs) serves as dual
learning techniques that first generates synthetic whole slide images followed by
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segmentation network for data training. GANs are considered as a promising
way of data synthesis, that generates H&E stained synthetic histopathological
images yielding ground truths from learned features from training data.

7. Conclusion

Segmentation of nuclei and glands instances from histopathological images,
is the focus of attention because of its vitality in biomedical and biological
applications. Automated glands and nuclei segmentation is fundamental to
chronic disease diagnosis, survival prediction, phenotype classification, feature
extraction and cell tracking. It also has significance in cancer diagnosis, grading,
and analysis as they are highly dependent on the quality of nuclei segmentation.
Despite the significant advancement in automated segmentation, separation of
large cluster of nuclei, irregular glands structure and outlining their boundaries
with a high precision and speed is still considered as a challenge. Apart from
that, researchers are still lacking a generalized benchmark solution for all types
of nuclei and glands instance segmentation from distinct histopathological
images under various condition. Due to emergence of Convolutional neural
networks (CNNs) the classical hand-crafted feature extraction techniques are
replaced by CNNs. This review article covers the most recent approaches of
last five years for nuclei and glands instance segmentation, along with major
publicly available datasets and summary of the grand challenges held specific
to this task. The review compiled deep learning computational approaches,
hand-crafted morphological feature-based approaches for evaluating advantages
and draw backs of each segmented technique. The hindrances in the nuclei
instance segmentation such as varying staining impacts, insufficient data causing
over fitting, disparate nuclei and glands structure, models specificity to a single
image set are discussed.
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