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T-Person-GAN: Text-to-Person Image Generation
with Identity-Consistency and Manifold Mix-Up
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Abstract—In this paper, we present an end-to-end approach
to generate high-resolution person images conditioned on texts
only. State-of-the-art text-to-image generation models are mainly
designed for center-object generation, e.g., flowers and birds.
Unlike center-placed objects with similar shapes and orientation,
person image generation is a more challenging task, for which
we observe the followings: 1) the generated images for the
same person exhibit visual details with identity-consistency, e.g.,
identity-related textures/clothes/shoes across the images, and 2)
those images should be discriminant for being robust against the
inter-person variations caused by visual ambiguities. To address
the above challenges, we develop an effective generative model
to produce person images with two novel mechanisms. Our first
mechanism (T-Person-GAN-ID) is to integrate the one-stream
generator with an identity-preserving network such that the
representations of generated data are regularized in their feature
space to ensure the identity-consistency. The second mechanism
(T-Person-GAN-ID-MM) is based on the manifold mix-up to
produce mixed images via the linear interpolation across gen-
erated images from different manifold identities, and we further
enforce such interpolated images to be linearly classified in the
feature space. This amounts to learning a linear classification
boundary that can perfectly separate images from two identities.
To address the unstable training issue, we impose an input
regularization over the discriminator so as to prevent the training
of generator from saturation in the early steps. Our proposed
method is empirically validated to achieve a remarkable improve-
ment in text-to-person image generation. Codes are available on
https://github.com/linwu-github/Person-Image-Generation.git

Index Terms—Text-to-Person Image Generation, Manifold
Mix-up, Conditional Generative Adversarial Networks.

I. INTRODUCTION

Enerative adversarial networks (GANSs) [1] have shown

promising performance in generating sharper images.
Following that, text-to-image generation [2], [3] is greatly
advanced by a variant of GANSs, i.e., the conditional GANSs,
where one adopts the GANSs to generate an image conditioned
on the embedding of textual description. Building on such
idea, a series of approaches [4]-[9] have been successfully
developed to generate realistic images while subject to the text
input with the hypothesis that each text description describes
the objects under one specific category. Among them, the
most-widely representative art is StackGAN++ [8]. Suffering
from the bottleneck of GANs to directly generate the high-
resolution images due to the bounded capability of gaus-
sian random noise, which hence inspires turning to stacking
multiple generators and discriminators to produce multi-scale

D. Liu is with Anhui University, China.

L. Wu is with Hefei University of Technology, China.

B. Li is with Northwestern Polytechnical University, Xi’an, China.
Z. Ge is with Monash University, VIC, Australia.

images with increasing resolutions. In particular, a bottom-up
strategy comes up by initially achieving a coarse layout of
the image with lower resolution, where the feature represen-
tation is subsequently obtained to combine with embedding
of input text, so as to augment the fine-grained details of the
generated image in the next round with the higher resolutions.
This paradigm has led to impressive results on simple, well-
structured datasets containing varied specific classes of objects
(e.g., birds and flowers) cluttered at the image center, known
as center-object generation.

Due to the similar orientations and shapes of center-based
objects, a natural question is how to generate diversifying
visual objects. To this end, instead of breaking down the
bounded randomness of input gaussian noise, the efforts are
spent on increasing the randomness of input text signals.
Typical example is illustrated in Fig. 1 (a), where the most
advanced center-object generation method, i.e., StackGAN-
v2 [8], increases the randomness of the input text via a
conditioning augmentation such that more diverse visual ob-
jects can be generated. However, such a principle violates in
person image generation, which may inadvertently generate
inconsistent regions/body parts across the images (see Fig.
1 (c)) based on ground truth Fig. 1 (b). Unlike the simple
center-objects, person image generation requires person im-
ages to exhibit consistent regions/body parts such that they
are identity-consistency. To this end, our proposed method,
named T-Person-GAN-ID (Fig. 1 (d)), ensures the identity
related features, such as colored clothes/shoes, textures and
style, to be consistently generated. Thus, the generated data
are highly correlated in their feature space, and those gener-
ated person images exhibit high identity realism. Also, the
generated person images should be discriminant for being
robust against the inter-person variations caused by visual
ambiguities. Henceforth, to synthesize realistic person images,
one needs to learn its identity related features during the
generation [10]-[12], and also reinforce the generated images
discriminant against other identities.

Generating realistic person images from given texts is of
great importance to many downstream tasks such as person
appearance transferal and virtual reality. However, this prob-
lem is still understudied, we observe the following major facts:
First, unlike the center-object images, the generation should
be regularized by an identity-preserving strategy to ensure
the generated images to be identity-consistency. However,
in inference it is inaccessible to informative identity related
features regarding an unknown identity. So a natural question
arises: how can we regulate the generator to produce person
images with identity-consistency? Inspired by a recent study
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Fig. 1: The state-of-the-art center-based object generation method, i.e., Stack-GAN-v2 [8] mainly increases the randomness
of the input signal to generate different birds (a). However, if one adopts randomness in person image generation, it leads to
inconsistent regions regarding an identity. As shown in (c), the affinity matrix computed from the generated data in the feature
space shows that these images are less correlated. The proposed T-Person-GAN-ID (d) can generate identity-consistent person
images, and the proposed T-Person-GAN-ID-MM (e) can further generate discriminant person images against other identities.

[6] that can leverage hierarchical representations from multi-
scale representations, we propose to leverage the features of
generated data to be correlated in their feature space at identity
level. Second, it is challenging to ensure the generated person
images discriminant to different persons, i.e., the generative
model should achieve the inter-person variations.

A. Our Approach

In light of the above, our approach expects that generated
person images have high identity-consistency; and discrimi-
nant against the inter-person variations. To this end, we pro-
pose an approach composing two novel mechanisms (namely
T-Person-GAN-ID and T-Person-GAN-ID-MM).

Before shedding light on the two mechanisms, like the
center-object images, we remark that directly generating a
person image with a high resolution, e.g., 256 x 128, is
also difficult due to the brittle training of GANs. This is
partially due to the disjoint supports of the data distribution
and the model distribution. This problem is more salient

when training the GANs to generate higher resolution im-
age from a high-dimensional space. Following the heuris-
tics in center-based object generation [0]-[8], we adopt an
one-stream architecture to progressively generate multi-scale
person images from 64 x 32, to 128 x 64, and eventually
256 x 128. Such one-stream pipeline consists of one generator
producing resolution-increasing images, paired with a group
of hierarchical discriminators, where each discriminator plays
the adversarial games on the corresponding resolution. Our
first proposed mechanism, i.e., T-Person-GAN-ID (see Section
IV-B) is to effectively incorporate the identity related features,
such as colored clothes/shoes, textures and style [10]-[12] ,
into the generator. Specifically, we make up a set of classifiers
on top of the generated images to flatten the class-specific
representations, and thus reduce the number of directions with
significant variance. This acts as a regularizer to the feature
space for the generated images so as to encourage the identity
consistency among them.

Different from the center-object images, person images



should be not only identity-consistency within each identity
but also discriminant against the inter-person variations caused
by the visual ambiguities. Recalling our first mechanism
generates the person images that reside on the same identity
manifold in the embedding space, we observe that some
images are staying nearby the boundary of two identity man-
ifolds due to the visual ambiguities such as illuminations and
viewpoint changes, which may result into manifold ambiguity.
To address this issue, we propose the second mechanism, i.e.,
T-Person-GAN-ID-MM (expanded in Section IV-C) to linearly
interpolate the synthesized images from two manifolds, so
that the resultant mix-upped data can be linearly classified in
the embedding space, which essentially amounts to learning
linear classification boundaries that can well separate images
for different identities, such exemplar is illustrated in Fig.
7. As a byproduct, it can achieve the compactness of the
generated images on the same manifold. To fulfill the goal,
a simple manifold mix-up strategy comes up to interpolate
the generated person images from two identity manifolds at
multiple levels (multi-resolutions). Such mix-upped samples
are jointly optimized with the generator such that the generated
images residing on the manifolds are linearly separable, so that
the linear classification on the mix-upped samples are feasible,
which further endows the generator with the capacity of
synthesizing more discriminant images for different identities.
To properly train these mix-upped samples, we develop a
teacher-student type supervision with dynamic soft labeling.

In summary, our generated model comprising two mecha-
nisms can well preserve the intra-person identity consistency
and inter-person variations. Finally, to stabilize multiple dis-
criminators into one-stream generator, we add a regularization
term into the discriminator objective (see Section IV-D), to
control the Lipschitz constant of the discriminator over the
input samples, to facilitate the generator with more stable
gradients. Orthogonal to conventional StackGAN-v2 aimed
at center-object image generations, our developed pipeline
focuses on the person images generation given text input,
which, together with StackGAN-v2, belong to and enrich the
GANs paradigm for image generations.

The contributions of this paper are summarised below: 1)
We propose an end-to-end approach to generate highly realistic
person images from texts only, which mainly consists of two
major mechanisms, i.e., identity-preserving and manifold mix-
up criterion. 2) The identity-preserving mechanism exploits the
feature space of generated data w.r. t identity consistency, and
the interpolation mechanism via manifold mix-up is further
proposed to generate more robust person images against vi-
sual ambiguities. 3) Extensive experiments are conducted to
demonstrate the superiority of our method in text-to-person
image generation.

The rest of the paper is structured as follows. Section
IT describes related works. Preliminaries are presented in
Section III. Section IV details the problem setup and the
proposed method with training procedure. Section V reports
both qualitative and quantitative experiments, and Section VI
concludes this paper.

II. RELATED WORK

In this section, we review literature on topics of generative
adversarial networks, textual-to-image synthesis, person image
generation and sample mix-up.

A. Deep Generative Models

Generative adversarial networks (GANs) [1] were originally
presented as a means of learning a generative model which
captures an arbitrary data distribution from a particular do-
main. The input to the generator GG is a noise vector z drawn
from a latent distribution, such as a multivariate Gaussian.
With the resurgence of GANSs, several works have extended
GAN:Ss in different aspects. For instance, DCGAN [13] extends
GANs by leveraging deep neural networks and provides the
best practices for training GANs. InfoGAN [14] extends GANs
by additionally maximizing the mutual information between
interpretable latent variables and the generator’s distribution.
More recent studies extend GANs by feeding auxiliary infor-
mation, such as class labels [15], sentence descriptions [2],
[3], [5] into both the generator and discriminator. Meanwhile,
the theory of GANSs is investigated and the findings show
that the Jenson-Shannon divergence optimized by the standard
GANSs leads to instability and mode collapse [16]. To combat
the unstable training of GANs, Wasserstein-GAN (WGAN)
[17] is proposed to optimize an efficient approximation of the
Wasserstein distance. While WGAN attains better theoretical
property than the vanilla GAN, it still suffers from the gradient
exploding and vanishing problem because it uses weight clip-
ping to enforce the Lipschitz constraint on the discriminator.
Although those papers have demonstrated realistic images,
they are short in generating discriminative features suitable
for classification purpose. Also, those generative models are
limited in comparing the probability distribution between real
data and the generated data.

B. Text-to-Image Generation

Text-to-image synthesis emerges as an interesting applica-
tion of GAN. Reed et al. [2] introduce a method to generate
642 images by using an image-text matching aware adversarial
training. To improve fine-grained details, several methods are
developed to address the association between words and output
regions. They are mainly driven to determine where and what
the content should be generated [3], [5], [7], [18] by using,
e.g., attention-driven or hierarchically cascaded networks. For
instance, Xu et al. [7] propose to deploy the attention mech-
anism on each generator to determine relevant words and the
generated object parts. One fundamental difference of our
model from those text-to-image methods [5], [0] is that they
typically incorporate multiple generators into the adversarial
cycle in order to produce the samples with fine-grained details.
In the way of using multiple generators, the balance of
training between the generators and its corresponding texts
is not easily guaranteed. In contrast, we propose an one-
stream generative architecture with multiple discriminators
as hierarchically nested objective. More recently, a variant
of GANS, i.e., conditional GANs have made great progress



in learning a continuous textual embedding from a low-
dimensional manifold to a complex real image distribution
[6], [8]. However, all above approaches are developed based
on center-object generation, which is not applicable to person
image generation. Some other recent approaches such as SSA-
GAN [19], RiFeGAN [20] and MirrorGAN [21] use different
priors, e.g., masks and enriched textual knowledge to improve
the generation realism. In this paper, we aim to generate person
images conditioned on texts only.

C. Person Image Generation

Current generative models for human images are often
conditioned on a source image and a target pose specification.
This pipeline have been investigated with great attention [22]—
[27]. One typical approach is [24] (ClothNet-Body), which
presents a generative model based on CVAEs for clothes of
segmented people conditioned on the pose. Their generative
model requires an image-to-image translation network [28] to
render natural images. Ma et al. [22] deploy the U-Net based
architecture [29] to allow to synthesize person images with
any arbitrary pose. The input of their model is a conditioning
image of the person and a target new pose defined by 18 joint
locations. However both [24] and [22] work in two stages:
pose generation and texture refinement, due to the challenges
of training a complete end-to-end framework to handle poses
and human appearance simultaneously. To overcome this
challenge, a large body of research [23], [25], [26] propose
generative models by disentangling pose from other latent
factors of variations, e.g., background and clothing. These
approaches show that a single-stage end-to-end training frame-
work can be developed for obtaining higher qualitative results.
Different from aforementioned works, we are motivated to
consider a more challenging setting: generating human images
only conditioned on natural language descriptions. This is to
eliminate the training dependency on a reference image from
a particular subject, which is often difficult to be obtained
in real applications. Also, without being limited to human
poses, the image generation process can produce a lot of
images with full descriptions on each identity. To this end,
we propose to use continuous variables from texts to generate
human images on manifolds. And the discriminative power
of generation is achieved by leveraging the perceptual loss of
CNN features into the GAN loss. [30] also proposes a WGAN
based formulation that uses a discriminative supervised loss
function, in addition to the unsupervised adversarial loss. In
this model, the supervised loss enforces the WGAN generator
to produce samples that are correctly classified according to a
pre-trained classifier of seen classes.

III. PRELIMINARIES

Our model follows the principle of Generative Adversarial
Networks (GANSs) [1], comprising a generator G and a dis-
criminator D that compete in a two-player min-max game.
The discriminator D is optimized to distinguish synthesized
images from real images, meanwhile G is trained to fool D
by synthesizing fake images. Overall, the optimal G and D

can be obtained throughout the following two-player min-max
game,
G,Dzargménmng(G,D,I,z), (D

where I and z ~ N(0,1) denote the training images and
random noises, respectively. V'(-) is the overall GAN objec-
tive, which usually takes the form of E;.,,.,.[log D(I)] +
Eqmp. [log(1 — D(G(2)))).

Conditional GANs are variants of GANs, where both the
generator and discriminator receive additional conditioning
variables ¢ (e.g., ¢ can indicate a semantic label, a source
image, or textual descriptions), yielding G(z,c¢) and D(I,c).
This formulation allows G to generate images conditioned on
c. Our network is developed based on conditional GANs by
including the text into G to generate a person image with
growing resolutions.

IV. OUR METHOD

We propose a generative adversarial network to generate
person images from texts only, which works based on one-
stream generative model, including 1) one generator to pro-
duce increasing-resolution images, and 2) a group of hier-
archical discriminators at multi-scale intermediate layers to
play multiple adversarial games, i.e., differentiate real/fake
patches as well as real/fake image-text pairs. Note that this
unification of generator and discriminator is different from the
conventional multi-stage framework e.g., StackGAN++ [8], by
stacking multiple generators and discriminators for optimizing
different resolution distributions. To simultaneously achieve
intra-person identity consistency and inter-person variations,
we propose two mechanisms: 1) an identity-consistency net-
work over intermediate layers of the generator to ensure the
identity-consistent (namely T-Person-GAN-ID); and 2) a linear
interpolation amid synthetic images via manifold mix-up to
ensure the discriminant against inter-person variations (namely
T-Person-GAN-ID-MM).

A. One-Stream Generator with Multi-Adversarial Objectives

We adopt the one-stream generator GG to produce images
at increasing resolutions, where a group of discriminators at
multi-scale intermediate outputs can play multiple adversarial
games. Specifically, G takes texts as its input and produces
multiple intermediate outputs:

X1,...,Xs =G(c,2), 2)

where ¢ ~ pgqi, denotes a sentence embedding (e.g., it can
be generated from a pre-trained char-RNN text encoder [2]).
Instead of relying on a fixed conditioning variable c, we
follow the practice of StackGAN++ [8] and sample a stochas-
tic vector for ¢ from an independent Gaussian distribution
N(u(pe), > (¢¢)), where ¢, is the text embedding of a text
description ¢. The mean u(¢;) and diagonal covariance matrix
> (¢) are functions of the text embedding ¢;. The set of
{X1,..., X} are images with growing resolutions, where X
represents the final output with the highest resolution. In our
case, we produce person images with increasing resolutions
from 64 x 32 to 128 x 64, and ultimately 256 x 128.
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Fig. 2: The proposed person image generation from texts. The network is composed of an one-stream generator, hierarchical
discriminators and an identity-preserving network. For each intermediate output, the corresponding discriminator D; computes
the matching-aware pair loss with given texts as well as the local image loss from coarse to finest. The identity-preserving
technique regularizes the feature space of mid-level representations of generated images. Such a regularization is shown to
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Being conditioned on ¢, we train G with hierarchical
discriminators D;, (i = 1,...,s), at different scales s by
minimizing both Lp for D, and L for G via the following

objectives:
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where I; indicates a real image at different scales. E[(z —1)?]
is the mean-square loss, where the shape of x and I varies
w.r.t the output size of the generator. Hence, minimizing Lp
involves two loss branches: the image loss, i.e., D;(X;) and
D;(I;) — I, together with the matching-aware pair loss, i.e.,
D;(I;,¢;), D;i(X;,¢;) and D;(I;,¢;). During training, each
D, takes real images and their corresponding texts as positive
sample pairs ({I;,¢;}), whereas negative pairs consist of two
groups: the real images with mismatched text embeddings
{I;,¢;} and the synthetic images with their corresponding
text embeddings {X;, ¢;}. The output of matching-aware pair
loss is a real value. For the image loss, following [6], we
adopt the hierarchical global-to-local structure to compute the
loss at different resolutions (see Fig. 2). As suggested in [6],
[28], low-to-high resolution discriminators at hierarchy are
supposed to focus on global structures and local image details,
respectively. Specifically, for each D;, we compute the 2-
dimensional probability map O; € R *Ei where the shape
of O; varies in accordance to the resolution. For example,
R; = 1 refers to the global range. The local loss R; can be
adjusted to control the receptive field of each element in O;,

where o; denotes the ¢-th largest singular value of

which determines whether a corresponding local patch is real
or fake.

To optimize G, Eq. (3) minimizes L by involving two
terms: D;(G(c,2z);) and D;(G(c,z);,c;), which try to fool
the discriminator with a fake image, and a pair of fake image
with its corresponding text. As suggested in [8], to enforce
the smooth sampling over the text embedding distribution, a
regularization term, Dy, (N (u(¢pe), > (¢:))|IN(0,1)), ie., a
Kullback-Leibler divergence between the standard Gaussian
distribution and the conditioning Gaussian distribution) should
be added into the objective of the generator during training.

1) Model Architecture: Following [6], G can be simply
seen as a CNN backbone, which is composed of three modules,
namely K-repeated residual blocks, stretching layers, and
linear compression layers. Analogous to the standard residual
block [31], each res-block from the K-repeated res-blocks
contains two convolutional layers with batch normalization
(BN) [32] and ReLU. To reduce the sparse gradients, we
remove the ReLU after the skip-addition of each residual
block. The stretching layer, which contains a scale-2 nearest
up-sampling layer followed by a convolutional layer with
BN+ReLU, is to change the size and dimension of feature
maps. The linear compression layer is a single convolutional
layer followed by a Tanh function to directly compress feature
maps to the RGB space. To compute the text embedding
¢+, we adopt the BERT model [33] to produce a 768-dim
text vector, which is further combined with the Conditioning
Augmentation (CA) [8] to yield a final 128-dim embedding.
The generator starts from a 128 x4 x 4 embedding anchored on
B K-repeated res-blocks, which are connected by B — 1 in-
between stretching layers until the resolution of the feature
maps equal to the targeting resolution. For example, for a
256 x 128 resolution, we set K = 1 and apply B = 6 1-
repeated res-blocks, together with 5 stretching layers.

In our model, the discriminator contains consecutive convo-
lutional layers with stride-2 and BN+LeakyReLU. On top of



the discriminator, two branches are made: a fully convolutional
layer to produce the probability map O; at each resolution, and
classify each location as real or fake, with another branch that
concatenates a 512x4 x4 and a 128 x4 x4 embedding (formed
by replicating the 128-dim text embedding), and subsequently
uses an 1 x 1 convolution to fuse the text and image features,
followed by a 4 x 4 convolution to classify an image-text pair
to be real or fake.

B. Mechanism 1: Identity-Consistency Generation

We argue that the generated person images for the
same identity at different resolutions should exhibit identity-
consistency, i.e., always present the identity-related details,
such as clothing/shoes color, texture and style. To this end,
we deploy an one-stream architecture coupled with multiple
discriminators. The discriminators are hierarchically nested
into the generator for resolution-increasing images. Such an ar-
chitecture facilitates the consistency by incorporating identity-
related features into the multi-scale outputs. Fig. 2 shows our
one-stream generative model, which integrates the hierarchical
discriminators and an identity-consistency network. To embed
the identity-consistency into the multi-scale outputs, we add
an identity regularization into the generative objective, which
is formulated as L below:

Lo =Y El-log Di(Gle2)0)] + BD(Glem)ie]
i=1

+ )\ILCE(G(C7 Z)i) y)a

where Lo (G(c,z);,y) denotes the cross-entropy loss applied
on the generated image at the ith scale , and A; is the
balance parameter. Specifically, Lo (G(¢, z);,y) is computed
as follows:

e
Lop(Gle2)iy) = —5 > vk - log i), ®)
k=1

where C' denotes the total number of identities; y; is the
ground truth label and ¢ is the predicted label severing as
the output from a soft-max classifier over an input G(c,z);
represents the ith scale. Intuitively, the cross-entropy loss aims
to minimize the mis-classification of the generated images w.r.t
the class of identities. We remark that explicitly minimizing
Lcr(G(e,2z),y) is equaling to encouraging G to produce
person images that possess identity-related features. As such,
the soft-max classification g can make the correct predic-
tion on each identity k. Intuitively, forwarding the generated
images into the identity classification module (parameterized
by Lcog(+)) can ensure these images to be identity-correlated.
Meanwhile, by jointly optimizing with Lo g(-), the generator
can receive the identity-related gradients to generate different
person images under the same identity with high identity-
consistency.

1) High Correlation between Synthesized Images: Recall-
ing section IV-B, where the rationale of the identity-preserving
network is to encourage the identity consistency across person
images for the same identity at different resolutions. To do
this, the term Lcg in Eq.(4) comes up to regularize the

A=0.5 A=0.4 A=0.2

Fig. 3: The mix-upped image by linear interpolation between
generated images from two identities. For a generated image
X, from identity b, the mix-upping outcome tends to show
more patterns from identity a, as the modulation parameter A
increases. Best viewed in color.

intermediate outputs of the generator in the feature space.
Herein one may wonder how could we evaluate the consistency
of these generated images, and can we further explicitly
quantify it? To answer this question, we perform the singular
value decomposition (SVD) on the data matrix formed by
the feature vectors of generated images extracted from the
ID network, as shown in Fig. 2.

Mathematically, suppose A € R™*" to be the data matrix
with m, n dimensional image vectors regarding one person
identity, we decompose A as A = USVT, where U and V
are the orthonormal vectors and ¥ is a diagonal matrix (the ¢th
entry of X, denoted as o;, represents the ith singular value).
The hypothesis of taking the k largest singular values of A
(replacing the rest with zeros in ¥) and recomputing USV 7
implies the provably-best k-rank approximation to the matrix.
Based on that, the summation of the first kksingular values
normalized by all the singular values, i.e., %’ Z’ reveals how
much information those singular values contain. For example,
if k=1, then the ratio p = Zgilai can measure the correlation
between those samples: the higher p is, the stronger the
correlation is, further lead to the higher rank-1 approximation
to A. We empirically find that p is greater than 0.25 for all
identities for Mechanism 1. (see more details in section V).

Up-to-now, we have achieved the identity-consistency
across multi-scale person images from the same identity
(i.e., intra-person closeness). As aforementioned, person image
generation is fundamentally different from center-object gener-
ation in the sense of requiring generated images discriminant
against inter-person variations caused by visual ambiguities.
To this end, we propose a manifold mix-up mechanism to
achieve the generated images discriminant against inter-person
variations in the next section.



Fig. 4: Mix-up samples in their embedding space. The mix-up
formulation allows more stronger correlation between samples
(the ratio p is higher), and also robustness between different
classes (discriminant). Best viewed in color.

C. Mechanism 2: Manifold Mix-Up for Discriminant Person
Image Generation

The first mechanism can produce identity-consistency per-
son images, which, as we observed, reside on the identity
manifolds. However, due to the visual ambiguities, some im-
ages may stay nearby the boundary of two manifolds, causing
manifold ambiguities. To this end, we propose to linearly
separate these manifolds by learning the linear boundary
between them. For the first glance, one may combine the above
identity-consistency mechanism with a contrastive loss [8]
to achieve both the intra-person compactness and the inter-
person difference. However, such a strategy has to measure
the distance between the generated data with potential cross-
identities during generation; worse still, this loss cannot induce
the well-clustered images in these manifolds so as unable to
separate the images via the linear fashion.

To address the challenge above, we propose to interpolate
the generated images between varied identity manifolds, and
linearly classify these mix-upped images in the embedding
space. By doing so, we learn linear boundary between mani-
folds so as to well differentiate images for different identities
(This can demonstrated by the t-SNE visualization in Fig.
7). More specifically, for a generated image X! over the ith
scale from identity a, and another generated image X, from
identity b (a # b), we apply the manifold mix-up formulation
to produce the virtual image X* as follows:

Xi=XNX.+(1-N-X], (6)
where A ~ Beta(a,«) for a € (0,inf), and A € [0,1].
The mix-up parameter « controls the strength of interpolation
between the synthetic-synthetic pairs. « is empirically set to
0.5. Intuitively, Eq. (6) aims to leverage these interpolations
across identities, which is modulated by A. We offer an
illustration of manifold mix-up on generated images in Fig.3.

To use the combinations of feature representations of gen-
erated data, we also conduct the same linear interpolation
between the pair of labels, leading to the mixed data with
soft targets. For example, the soft label for the mixed data X
is gy = A-a+ (1)) - b. To impose the mix-up loss into the
network, we add the following additional regularization to the
generator optimization:

- ZETS(F(Xi)ag)v (7)
=1

where the 7 serves as a soft-label. F(-) is a soft-max clas-
sification, along with the loss function Lrg(,). Hence, the
generator objective function becomes:

[:G = Z; E[f log Di(G(c7 Z)l)] + E[Di(G(c’ z)i’ CZ)] (8)

+MLop(G(e,z)i,y) + M R(G),

where \; and Ao are balance parameters for two regularization
terms, which are empirically tuned as A; = 0.5 and Ay = 0.1.
We argue that such manifold mix-up between generated data
can squash the representation variance, leading to reduced
directions of sample volume in the feature space. Inspired by
this, we jointly optimize the generator and perform the linear
classification on these interpolated images, so as to encourage
the linear arrangement of generated data representations. As a
result, the identity-representations are flattened into a minimal
amount of directions of variation. In term of the feature
space, the representation computed from the generated images
occupy a smaller volume, yielding more stronger correlations
within the same identity. Thus, images at different identities
are well separated, as shown in Fig. 4.

1) Training with Mix-Up Samples: To encourage the gener-
ated images to be discriminant against different identities, we
optimise the network by training a classifier over mix-upping
data at multi-scales. This classification loss can be interpreted
as a regularizer encouraging the generator to construct discrim-
inant features. The generative model is designed to leverage
synthetic examples to linearly classify the identity manifolds.

Recent studies indicate the possibility to treat the generated
images as training samples [10], [26], [34]. However, due
to the inter-class variations in the interpolated images, it is
difficult to determine the exact label for these composed
images. Thus, we adopt the teacher-student type supervision
with the dynamic soft labeling. Specifically, we use a teacher
model to dynamically assign a soft label to X b depending on
its interpolation from X, and X3, which is further modulated
by A. The higher A is, the more X b similar to X,. The teacher
model is a simple CNNs trained identification loss on the
original training set. To train the mix-up model for more dis-
criminant images, we minimize the KL divergence between the
probability distribution p(X?) predicted by the mix-up module
(student) and the probability distribution ¢(X?) predicted by
the teacher:

p(m|X3)

M
Lrs = X1 9
TS = mz::lq m| Og q(m\X}L’))], 9



where M is the number of identities. In comparison with the
fixed one-hot label [26], or static smoothing label [35], this dy-
namic soft labeling is valid in our scenario since each synthetic
image is formed by interpolating from images with different
identities. However, training the above two mechanisms with a
GAN is difficult, due to the unstable training from GANS, par-
tially due to the disjoint between the synthetic data distribution
and the real data distribution. This problem is especially severe
for person image generation, which incurs the instability due to
the inaccuracy of discriminator in estimating the density ratio
in such high-dimensional space. Moreover, in multi-resolution
generation, when the support of the model distribution and that
of the target distribution in low-resolution are disjoint, there
exists a discriminator that can perfectly distinguish them. Once
such discriminator is learned, the training for generator will
terminate since the derivatives of such discriminator w.r.t the
input will be zeros. To address this challenge, we propose a
more stable training strategy for person image generation.

D. More Stable Training for Person-Image Generation

To prevent the early-stopping of generator in multi-
resolution generation, we propose an input based regulariza-
tion that allows for an easy formulation based on the input
sample. Recalling that the conventional formulation of GANs
takes the form ming maxp V(G, D) = Eyyg,.,. [log D(x)] +
Eypg [log(l — D(2'))], where ggatq is the data distribution,
and pg is the model (generator) distribution to be learned
through the adversarial min-max optimization. It is known
that, for a fixed generator GG, the optimal discriminator is
given by D¢ (z) = #‘% = sigmoid(f*(z)), where
f*(z) = 1og qiata(x) — log pc(z). However, the derivative of
f*(z), i.e., Vf*(z) could be unbounded. Hence, it prompts
us to impose a regularity condition on V f*(x).

Recent study [36] suggests that an effective approach to
regularize the derivative is to control the Lipschitz constant
of the discriminator by adding a regularization term over the
input examples = (or x’). We follow this line of research and
search for the discriminator D from the set of K-Lipschitz
continuous functions, that is,

arg max < K, (10)

[l zip
where ||f||rip, denotes the smallest value ) such that
W < @ for any x and z’. As a result, we place the
K —LipscLitz (we set K = 1) constant on D by modifying the
objective function where the regularizer rewards the function
for having a local 1-Lipschitz constant: ||V f*(z)|l2 = 1.
Hence, we have the following objective:

V. EXPERIMENTS

In this section, we perform extensive experiments to evalu-
ate the proposed method both quantitatively and qualitatively.
We also conduct ablation studies in the following aspects:
what is role of ID features in person image generation,
how discriminant the generated images, and how the input
normalization on discriminator can stabilize the training.

A. Dataset

We perform experiments on the CUHK Person Description
Dataset (CUHK-PEDES) [37]. The CUHK-PEDES dataset is
the only yet largest benchmark for person search with natural
language description, which consists of 40,206 images of
13,003 persons. Each image is annotated with two sentence de-
scriptions, such that a total of 80,412 sentences are collected.
Following the data split in [37], the training set has 34,054
images (68,126 textural descriptions) of 11,003 persons, the
validation has 3,078 images (6,158 textural descriptions) of
1,000 persons, and the test set has 3074 images (6,156 textural
descriptions) of 1,000 persons. We uniformly resize all images
to be 256 x 128.

B. Evaluation Metrics

We evaluate our method and competitors on three quantita-
tive metrics: Fréchet Inception Distance (FID) [39], Inception
Score (IS) [40] and Visual-Semantic Similarity (VS-Sim). (1)
Fréchet Inception Distance [39] captures the similarity of
generated images to real ones by considering the difference
of two Gaussians (synthetic and real-world images), which is
measured by the Fréchet distance. Lower FID values suggest
that the synthetic data distribution is much closer to the real
data distribution. The lower FID, the higher realism of gener-
ated images. To compute the FID score, we randomly select
12,000 generated images for evaluation, i.e., for each test text,
we randomly draw the noise vector four times and perform the
generation. All images are resized to 64 x 32. (2) Inception
Score (IS) [40] measures the objectiveness and the diversity
of generated images: IS=exp (E, Dk (p(y|x)||p(y))), where
x denotes one generated example, and y is the label predicted
by the inception model [41] '. To compute the IS, we follow
the experimental setting of StackGAN-v2 [8] to sample 3,000
256 x 128 images. (3) Visual-Semantic Similarity (VS-Sim)
[6] measures the alignment between the generated images and
the conditioning text, i.e., the semantic consistency. Following

mén mng(GD) = Eymgyo,, 108 D(z)] 4+ Eyrope [log(1 — D)) We train a visual-semantic embedding model, which is

+Es[(||VaD()l]2 — 1)7],
(11)

where 7 is generated by interpolating 2’ from pg and z from
Qdate- This direct regularization on D sets the its derivatives
bounded, and simultaneously addresses the disjoint space
between the support of pg and ggq:q. Thus, the proposed input
based regularization can stabilize the training of GANS.

used to measure the distance between synthesized images
and the input text. More specifically, let v denote an image
feature vector extracted from an Inception model g(-) [41], we
define a scoring function s(x,y) = m Two mapping
functions, i.e., f,(-) and f.(-) are trained to map the real
images and paired text embedding into a common space with

'In our experiments, we directly use the pre-trained inception model [41].



TABLE I: The comparison results on FID, IS and VS-Similarity on the dataset CUHK-PEDES. For the FID, the lower value |
indicates better performance. For both IS and VS-Similarity, a higher score 1 represents a better performance. The best results

are in bold font.

Method CUHK-PEDES
FID (Realism)] | IS (Diversity)! | VS-Similarity (Visual-semantic consistency)t

Ground Truth - 0.20 4.54 0.27
GAWWN [3] NIPS-2016 109.69+87 2.86+.12 0.104.02
GAN-INT-CLS [2] ICML-2016 107.23£85 2.94+.14 0.09+4.03
HDGAN [6] CVPR-2018 61.62+.69 3.85+.08 0.144.06
AttnGAN [7] CVPR-2018 76.48+.56 3.68+.12 0.144.07
MirrorGAN [21] CVPR-2019 60.96+.63 3.69+.16 0.19+£.05
StackGAN-v2* [8]  IEEE-TPAMI-2019 68.14+.73 3.53+.08 0.134+.07
RiFeGAN [20] CVPR-2020 56.47+.61 3.72+.22 0.194.03
DF-GAN [38] CVPR-2022 56.10+.52 3.79+.17 0.18+.04
SSA-GAN [19] CVPR-2022 58.45+.49 3.71+.17 0.184+.04
T-Person-GAN-ID Ours 48.04+.67 3.94+.09 0.18+.03
T-Person-GAN-ID-MM Ours 47.81+.09 3.96+.14 0.21+.03

512 dimensionality, and the following bi-directional ranking
is loss is minimized:

Liank = Z Zmax[(),é — s(fu(v), fr (1))
+5(foW): fe(@)] + DD max(0,6 — s(fe(c), fu(¥))

+s(fe(e); fuo(¥))];
12)

where ¢ is the margin, which is set to 0.2. {v,c} is a positive
image-text pair, while {v,¢} and {Vv,c} denote the mis-
matched image-text pairs. In testing, given a text embedding
¢ and the generated image x, the VS score can be calculated
as s(g(x),c). A higher VS score indicates better semantic
consistency.

C. Comparison with Text-to-Image Generation Models

As there is no existing methods that are exactly comparable
with this work, we implement four popular baselines for
text-to-image generation: GAWWN [3], GAN-INT-CLS [2],
AttnGAN [7], HDGAN [6], and StackGAN-v2 [&]. For all the
baselines, we use the source codes provided by the authors,
and the pre-trained models are available in Github 2. We
remark that StackGAN-v2* is re-implemented by combining
StackGAN-v2 [8] with a normalization method known as
spectral normalization [36], so as to stabilize the training of
the multi-stream generative model. The spectral normalization
[36] only normalizes the weight matrices of discriminator,
which is compatible to any generative model without impact-
ing its task performance. We also consider three recent SOTA
methods: MirrorGAN [21], RiFeGAN [20], DF-GAN [38] and
SSA-GAN [19].

The comparison results with aforementioned generative
methods are reported in Table I. First, both GAWWN [3]
and GAN-INT-CLS [2] are early text-to-image generation
methods for center-object generation, whilst they are lim-
ited to generating high-resolution images. Comparing with
StackGAN-v2* [8] and AttnGAN [7] that are based on a multi-
steam architecture, the proposed approaches (T-Person-GAN-
ID and T-Person-GAN-ID-MM) outperform these state-of-the-
arts across all evaluation metrics. For instance, StackGAN-v2*

Zhttps://github.com/linwu-github/Person-Image-Generation. git

[8] achieves FID=61.62 and IS=3.53. In contrast, the T-Person-
GAN-ID achieves a lower FID and a higher IS than the former.
This shows an obvious advantage of using one-stream gener-
ator. Moreover, in comparison with a strong baseline based
on one-stream architecture, i.e., HDGAN [6], the proposed T-
Person-GAN-ID reduces the FID value from 61.62 to 48.04.
The proposed manifold mix-up mechanism (T-Person-GAN-
ID-MM) achieves the lowest FID=47.81. Meanwhile, the IS is
increased from 3.63 (HDGAN [6]) to 3.92 (T-Person-GAN-ID-
MM). Finally, in VS-Sim evaluation, AttnGAN [7] achieves
superior performance to other methods, because AttnGAN [7]
considers the textual-visual alignment during the generation
and the objective function is derived with respect to such
alignment. In contrast, our method deploys multiple discrim-
inators, each of which can strengthen the visual details with
semantically meaningful.

Comparing with more recent SOTA methods, i.e., Mirror-
GAN [21], RiFeGAN [20], DF-GAN [38] and SSA-GAN [19],
our methods consistently achieves the superior performance
across both FID and IS metrics. It is worth mentioning that all
these methods need additional priors to improve the generation
quality on the center-object generation. For example, SSA-
GAN [19] requires a weakly-supervised mask to guide where
to generate the local regions. RiFeGAN [20] firstly exploits an
attention-based caption matching model to refine the captions
from prior knowledge. And then the image generation is based
on such enriched texts. Nonetheless, our proposed methods do
not require any priors or additional processing on texts.

The qualitative comparison results are shown in Fig. 6,
where a sequence of person images synthesized by different
generative models are compared. We consider the following
center-object baselines: StackGAN-v2 [8], AttnGAN [7], and
HDGAN [6]. We can make the following observations. First,
center-object generation methods mainly adopt the randomness
to produce diverse outcomes. For person image generation,
these methods tend to generate inconsistent regions in person
images. For example, in Fig. 6, StackGAN-v2 [&] is unable to
generate four images with each image containing all the impor-
tant patterns, i.e., white short sleeved shirt, grey shorts/shoes.
This result can also be observed in AttnGAN [7] which
focuses on the visual-text alignment via attention. To verify
this observation, we study the affinity matrix between the
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Fig. 5: The proposed methods (T-Person-GAN-ID and T-Person-GAN-ID-MM) can generate multiple samples given a single
text input. T-Person-GAN-ID generates identity-preserving samples with better fine-grained details. T-Person-GAN-ID-MM
advances the generation by synthesizing sharper details which are highly discriminant among identities. The side outputs of
the proposed methods with increasing resolutions exhibit semantically consistent.

generate images. More specifically, we consider four generated
person images, and for each image we use ResNet-50 [31] to
extract the feature from the penultimate layer. To calculate
the affinity value between two images, we use the cosine
distance. For StackGAN-v2 [8] and AttnGAN [7], the lower
affinity values indicate that these generated samples are less
correlated in feature space. The similar observation can also be
made in HDGAN [6]. Such a practice works for center-object
generation like birds and dogs, but incapable of generating
person images. In stark contrast, our methods can synthesize
person images which are highly identity-consistent and yet
discriminant against different identities under visual variations.
These experimental results clearly verify our observation, as
described in Section IV-B and IV-C.

D. Why One-Stream Architecture is Good for Person Image
Generation?

One may wonder the effectiveness of one-stream architec-
ture in producing the resolution-increasing person images. To
verify this, we show the advantage of adopting such an archi-
tecture, which is able to achieve identity consistency pertaining
to person images. As shown in Fig. 5, it demonstrates the
consistency of our method in generating visual outputs with
high identity relevance. Following on, we show a series of
images at increasing resolutions as the side output of the
one-stream generator. For instance, given the input texts “She
is wearing a white shirt, gray pants, and white shoes. She
has a stripped bag on her shoulder”, our approaches present
the figures correctly in its pattern and colour accordingly. It
shows that our approaches are able to produce fine-grained
visual details reasonably corresponding to the given texts. This
also highlights the benefit of identity-preserving component to
allow for visual-semantic generation across resolutions.
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Fig. 6: Comparison results on the CUHK-PEDES dataset. Center-object generation methods (StackGAN-v2 [8], AttnGAN [7]
and HDGAN [6]) use randomness to generate diverse images, resulting in identity inconsistent and less correlation amid the
generated person images in feature space. Our methods (T-Person-GAN-ID and T-Person-GAN-ID-MM) synthesizes person
image with identity-consistent and discriminant. These generated images are highly correlated in the feature space.

E. Ablation Studies

1) Manifold Mix-up for Linear Separation in Embedding:
In this experiment, we study the correlation between the
generated data in the feature space. With this purpose, the pro-
posed ID-preserving mechanism (T-Person-GAN-ID) and the
improved manifold mix-upping (T-Person-GAN-ID-MM) are
evaluated both quantitatively and qualitatively. More specifi-
cally, we randomly choose 10 texts corresponding to 10 differ-
ent identities from the testing set. Given each text as input, the
image generation is performed 100 times by randomly drawing
100 Gaussian noises. Then, the noise vector is concatenated
with the text embedding to feed the generator. The correlation
ratio p is calculated using the data vector matrix formed by

the generated images for each identity. As shown in Fig.
7 (b) and (c), the t-SNE embeddings of both mechanisms
are well-separated for each identity. This linear separation
in embedding is more obvious for T-Person-GAN-ID-MM,
which shows clear linear boundary between different identities.
Quantitatively, the correlation ratio for the two mechanisms
(Fig. 7 (a)) exhibits the strong correlation amid these generated
images within each identity. This experiment verifies that
T-Person-GAN-ID-MM achieves a better separation between
different identities. This is boiled down to the effectiveness of
linear interpolation, which suggests robustness against inter-
personal variations.
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Fig. 8: Multi-stream generation vs. one-stream genera-
tion with/without normalization. Left: StackGAN-v2 (multi-
stream) with/without spectral normalization on weights.
Right: The proposed T-Person-GAN-ID-MM (one-stream)
with/without input normalization.

2) One-Stream Generator vs. Multi-Stream Generators:
How To Stabilize Person Image Generation?: Generating
high-resolution person images using texts only has to deal with
complex pattern statistics. StackGAN-v2 [8] provides a viable
solution to the central-object generation (e.g., flowers and
birds) by associating each resolution with its corresponding
generator (coupled with a discriminator). Such a multi-stream
approach is less effective in stabilizing the GAN due to
the difficulty of synchronizing the gradients from different
streams. In the training of GANs, a generator needs the
gradients provided by the discriminator. If the discriminator
can perfectly discriminate two distributions at early steps
of training, the generator would stop its learning as the
saturation occurs. However, a multi-stream backbone such as
StackGAN-v2 [8] cannot synchronize multiple discriminators.
To validate the necessity of one-stream generator, we examine
the training behaviours of two baselines: StackGAN-v2 [&],
and StackGAN-v2 [8] combined with spectral normalization
on weights [36], i.e., StackGAN-v2+SN. We also examine
the training of our method T-Person-GAN-ID-MM and with

TABLE II: Validation on « Fig. 9: a w.r.t accuracy.

the input normalization on discriminator. The comparison
results are shown in Fig. 8. The following observations can
be made. Firstly, when the StackGAN-v2 [&] is regularized
by the spectral normalization on the weights of multiple
discriminators, the generator loss is constrained rather than
tending to be exploded if without spectral normalization.
Secondly, the generator’s loss of the proposed method shows a
constant convergence when the input normalization is applied
into the discriminator optimization. This helps searching a
better discriminator in the min-max game.

3) The Study on Manifold Mix-up Parameter: The mix-
up parameter A in Eq. (6) is drawn from the Beta(a, @)
distribution, which is determined by «. To study the effect of «
that manipulates the interpolation extent between two identity
generated samples, we conduct the experiment by evaluating
the prediction error on mix-upped samples. Specifically, we
randomly choose 1,000 training identities, for each of which
we generate 54 samples at different resolution. Then, these
generated data at each resolution are interpolated by a specific
a € [0.1,0.2,0.4]. We train a ResNet-50 with 1,000-way
classification to predict the label of each interpolated sample.
The validation results are provided in Table II. We can see
that when the mix-up component is trained for 200 epochs
with @ = 0.1, the accuracy of the mix-up scheme can be
improved by 1.0 % (3.5%) compared to the 200 epochs ran by



a = 0.2 (a=0.3). However, a higher accuracy indicates a less
interpolation between generated images since the classifiers
can easily predict the correct categories for non-interpolated
samples. Thus, to balance the accuracy and interpolation
effect, we set @« = 0.2 in all of our experiments, if not
specified.

VI. CONCLUSION

In this paper, we present a principled approach to generate
discriminant person images from texts only. The method
is based on an one-stream generative architecture, which
integrates hierarchically-nested discriminators on respective
resolution. To achieve high-quality person images, we pro-
pose two effective mechanisms: identity-preserving network
and manifold mix-up interpolation. The identity-preserving
mechanism promote the generated images with respect to
identity characteristics. The manifold mix-up performs linear
interpolation between generated data so as to separate the
class boundary between identities. Extensive experiments on
person image synthesis demonstrate our method is superior to
state-of-the-arts in generating more realistic yet discriminant
person images. We note that our architecture is orthogonal to
StackGAN++ [8], and focuses on person image generation,
with all of them together to enrich the system of GANs for
the image generation task.
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