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Abstract—Multiresolution deep learning approaches, such as
the U-Net architecture, have achieved high performance in
classifying and segmenting images. However, these approaches
do not provide a latent image representation and cannot be used
to decompose, denoise, and reconstruct image data. The U-Net
and other convolutional neural network (CNNs) architectures
commonly use pooling to enlarge the receptive field, which usually
results in irreversible information loss. This study proposes to
include a Riesz-Quincunx (RQ) wavelet transform, which com-
bines 1) higher-order Riesz wavelet transform and 2) orthogonal
Quincunx wavelets (which have both been used to reduce blur in
medical images) inside the U-net architecture, to reduce noise in
satellite images and their time-series. In the transformed feature
space, we propose a variational approach to understand how
random perturbations of the features affect the image to further
reduce noise. Combining both approaches, we introduce a hybrid
RQUNet-VAE scheme for image and time series decomposition
used to reduce noise in satellite imagery. We present qualitative
and quantitative experimental results that demonstrate that our
proposed RQUNet-VAE was more effective at reducing noise in
satellite imagery compared to other state-of-the-art methods. We
also apply our scheme to several applications for multi-band
satellite images, including: image denoising, image and time-
series decomposition by diffusion and image segmentation.

Keywords: Quincunx wavelet, high order Riesz transform,
image time series decomposition, variational auto-encoder,
deep neural networks, Sentinel-2, Unet

I. INTRODUCTION

The temporal frequency of medium resolution, optical satel-
lite imagery, such as Landsat 8 and 9 and Sentinel2A&
B, has increase significant in the past four years from one
observation every 16 days with Landsat 8 to an observation
every 2.9 days on average [16], [25]. Such time series of
multi-spectral satellite data enables many novel applications
such as global agriculture monitoring and land cover change
at the appropriate resolution of land management impacts
that has not been possible with low resolution (250-500m
GSD) time-series such as MODIS [14], [28], [37]. Moreover,
the harmonized Landsat Sentinel2 products open up new
avenues for real-time monitoring of a wider variety of change
phenomenon [5]. There is a wide variety of time series analysis
methods for change detection, which focus primarily on the
temporal domain while the spatial domain has been largely
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neglected (for review see [46]). The availability of hyper-
temporal medium resolution imagery allows new application in
the spatial domain, such as semantic segmentation with UNET
[24] to track objects of change through time.

Change detection methods are hampered by significant noise
in the time series that remains despite various processing
efforts to reduce the noise [46]. This noise is firstly caused
by clouds, and cloud shadows that result in data gaps even
when they are correctly detected and serious change artifacts
are caused when some clouds or their edges remain undetected
[26]. Second, atmospheric variability, notably water vapor and
aerosols that cause variability in top of atmosphere reflectance,
despite best efforts at atmospheric correction [39], [45]. Third,
BRDF variation due to variation in sun-sensor geometry and
non-Lambertian reflectance properties of the target. Fourth,
variations in spectral reflectance due to seasonal vegetation
phenology, which become hard to model when clouds result
in missing data that makes the time-series irregular and
unpredictable. These issues are often addressed by multi-date
composites or temporal interpolation to fill in clouds, shadows
and other missing data. Despite efforts to reduce the impact of
spatio-temporal noise in the satellite time series, it often limits
the accuracy of timely land cover change detection over very
large areas using either conventional time-series analysis [42],
as well as the new generation of machine learning methods
[46].

Various cutting-edge techniques have been developed for
image decomposition that can be used to remove noise from
conventional images or videos, for example, wavelet smooth-
ing techniques [36], [8], [2] and regularization methods [27],
but these methods require parameter selection that vary greatly
between datasets and cannot optimally represent varying sig-
nals over space and time commonly found in earth observation
images. On the other hand, a neural network (UNet) can
automatically learn optimal local representation of signal and
noise [24], [32], but incurs high computational cost and
requires prohibitively large sets of domain-specific training
data. The approach proposed in this paper combines the
strengths of convolutional neural networks and conventional
smoothing techniques. For this purpose we introduce a novel
non-subsampled high order Riesz-Quincunx wavelet with vari-
ational auto-encoder UNet (RQUNet-VAE) as a hybrid com-
bination of deterministic wavelet expansion (two-dimensional
Riesz transformation [36], Quincunx wavelet) and a variational
version of a convolutional neural network [22]. The proposed
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RQUNet-VAE approach uses framelet decomposition [43] to
map an image into a sparse feature space and leverages
UNet [24] to enable learning of the frames of the feature space.
The rationale is that such a hybrid method should provide
better feature representation and artifact reduction compared
to conventional approaches. Therefore, while previous studies
used UNet-VAE for image segmentation [15], we use it to
mimic the properties of latent factor model in our RQUNet-
VAE decomposition.

To implement this concept, we first introduce a non-
subsampled version of high-order Riesz wavelet expan-
sion [36], [34], [35] with Quincunx sampling [8]. Quincunx
sampling is used to reduce redundancy of an expansion while
high order Riesz transform is used to increase the directional
property of wavelet expansion. The hybrid model reduces
computational cost with deterministic bases as predefined
parameters instead of letting all bases be learnable parameters.

Next, this Riesz-Quincunx wavelet is integrated into the
skip-connections of the deep neural network UNet-VAE [13],
[15], [7] for learning new bases from the training dataset. Our
rationale of using wavelet expansion is that signals extracted
from the UNet-VAE encoder, at the skip-connection level,
contains both the main signal and details (as well as noise) of
an input image which are separated into scaling and wavelet
coefficients. Truncation of these coefficients eliminates small
wavelet coefficients which contain noise and detailed texture.
By decoding the remaining coefficients back into image space,
we obtain a denoised version of the original image.

The theoretical framework of RQUNet-VAE is based on
Hankel matrix algebra [20], framelet decomposition [43], [44]
and proximal operators [21]. Framelet decomposition uses
isotropic family-matrix convolution to combine all channels of
a multi-band image in a convolutional operation with learnable
frames. Furthermore, there is a connection between framelet
decomposition and sampling with a finite rate of innovation
[40] via Hankel matrix theory and annihilating filter. We prove
that RQUNet-VAE also relates to latent factor model whose
loss function is defined by Kullback-Leibler divergence [38].

Finally we demonstrate how to apply our proposed
RQUNet-VAE to satellite image time series, that is, sequences
of images of the same area. Reducing noise satellite image
time series is challenging due to the severe background
noise resulting from spectral variability caused by changing
environmental conditions due to atmospheric and seasonal
variability, remaining small clouds, as well as variable sun-
sensor geometry [25], [45]. The level of noise is very different
from that of conventional videos which contains slow motion
changes between subsequent images that can be removed
with time delay embedding, for example. In contrast, the
satellite time series are constituted by discrete frames that
are independently capture several days apart, causing large
variability in reflectance properties of the background and
objects.

To test the effectiveness of our proposed concept, the
RQUNet-VAE was applied to image decomposition, image

denoising and segmentation of satellite images and their time-
series. Our experimental results show that our hybrid method
provides better feature representation and artifact reduction
than traditional approaches. The objectives of this paper are:

1) introduce RQUNet-VAE as a generalized wavelet expan-
sion approach;

2) extend RQUnet-VAE to a diffusion process [23] and
enable spectral decomposition [9];

3) apply it to image denoising and segmentation in noisy
environment for multi-band satellite images and their
time-series.

Organization of the paper is: Section II provides the
RQUNet-VAE expansion, including mathematical properties
and image or time-series decomposition; Section III gives
numerical examples and comparisons of image denoising and
segmentation in noisy environments for multi-band satellites
images. Section IV gives the conclusions, Mathematical back-
ground, proofs, and additional experiments are are provided
in our supplemental material (SM).

II. RIESZ-QUINCUNX-UNET VARIATIONAL
AUTO-ENCODER (RQUNET-VAE )

A. Notations and Definitions:
The following list provides an overview of notations used

throughout this work.

• continuous coordinate in the spatial domain: x =
(x1 , x2) ∈ R2,

• discrete coordinate in the spatial domain: k =
(k1 , k2) ,m = (m1 ,m2) ∈ Z2,

• Fourier coordinate: ω = (ω1 , ω2) ∈ [−π , π]2,
• Complex number: j =

√
−1,

• Image domain: Ω = {1 , . . . , n1} × {1 , . . . , n2}, |Ω| =
n1 × n2,

• Images and stacks of images:
– a gray-scale image f =

(
f1 . . . fn2

)
∈

R|Ω| , fi ∈ Rn1 ,
– a multi-channel image f =

{
f1 , . . . , fP

}
∈

R|Ω|×P , fi ∈ R|Ω|,

– a set of observed images F := f =
{
fi

}T
i=1
∈

R|Ω|×P×T ,
• Distribution and Lebesgue density: f i.i.d.∼ P

(
f
)

:=

P
(

df
)

= p
(
f
)

df ,
• Continuous Fourier transform of a continuous function
a ∈ L2(R2) is:

a(x)
F←→ â(ω) =

∫

R2

a(x)e−j〈x ,ω〉`2 dx ,

and its discrete version is computed via Poisson summa-
tion formulae:

a[k] := a(x) |x=k∈Z2

F←→ Â
(
ejω
)

=
∑

k∈Z2

a[k]e−j〈k ,ω〉`2 =
∑

k∈Z2

â(2πk + ω) .

Additional definitions can be found in the supplemental ma-
terial.
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Fig. 1. RQUNet-VAE architecture.

B. RQUNet-VAE Architecture Overview

The network architecture of our proposed RQUNet-VAE is
illustrated in Figure 1. The network utilizes a UNet [24] as
our primary backbone architecture with the modified skip-
connection signals, between the encoder and decoder paths,
and bottom layer. The network introduces the Variational
Autoencoder (VAE) in the bottom layer to learn the signal dis-
tribution in the latent space during training on large datasets.
The VAE layer combined with the UNet backbone allows
the model to learn and retain much of the input information,
similar to generative models, to perform image reconstruction.
The reconstructed image then can go through a convolution
layer, or a classifier, to produce the final classification or
segmentation output. The primary objective of our proposed
network is to remove certain levels of noise in the input
images in order to produce improved, quality reconstructed
images using the Riesz-Quincunx (RQ) scheme in the skip-
connections, before performing image classification. Since the
RQ scheme is computational heavy, we only applied the RQ
computation on a pre-trained network to produce predictions
on input images.

C. N -th order Riesz Quincunx non-subsampled wavelet

Before proposing our RQUNet-VAE expansion, we firstly
introduce framelet decomposition [43] in the following propo-
sition.

Proposition II.1. Given an image f ∈ Rn1×n2 , all wavelet
filter banks Φ , Φ̃ ∈ Rn2d1×d2 (see definitions of wavelet filter
banks in Section 4 of the supplemental material) and local
basis Ξ , Ξ̃ ∈ Rn1×d (see Equation 5 in the supplemental
material for details) satisfy the unity conditions

Ξ̃ ΞT =

d∑

i=1

ξ̃iξ
T
i = Idn1×n1 , Φ Φ̃

T
=

d2∑

i=1

φ̃iφ
T
i = Idn2d1×n2d1

(1)

then, a framelet decomposition is:

f = H †
d1|n2

(
Ξ̃cf Φ̃T

)

=
1

d1

d2∑

s=1

d∑

l=1

n2∑

i=1




〈
fk ,Cφis (ξl)

〉
`2
Cφ̃1

s

(
ξ̃l

)

· . . . ·〈
fk ,Cφis (ξl)

〉
`2
Cφ̃n2

s

(
ξ̃l

)




=
1

d1

d2∑

s=1

(
Cφ̃1

s

(
Ξ̃cf,s

)
. . . Cφ̃n2

s

(
Ξ̃cf,s

))
(2)

where H †
d1|n2

is the extended Hankel matrix of image f as
described in the SM. Framelet coefficients are:

cf :=
(
cf,1 . . . cf,d2

)
= ΞTHd1|n2

(
f
)

Φ . (3)
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Proof. For self-containment, we provide a proof of Proposi-
tion II.1 in Section 5.1. in the SM.

Inspired by Proposition II.1, we introduce the proposed
RQUNet-VAE expansion in the following.

a) Riesz-Quincunx wavelet expansion:: To have wavelet
expansion, firstly we provide a definition of frame by
isotropic polyharmonic Bspline and N -th order Riesz trans-
form, see [36]. In particular, an isotropic polyharmonic B-
splines basis is defined in the Fourier domain as: x ∈ R2,

βγ(x)
F←→ β̂γ(ω) =

V̂ iso(ejω)
γ
2

‖ω‖γ`2
(4)

with a 2D localization operator:

V̂ iso(ejω) =
10

3

− 1

3

[
4 cosω1 + 4 cosω2 + cos(ω1 + ω2) + cos(ω1 − ω2)

]
.

Its dual function is defined via an auto-correlation function:
k ∈ Z2,

β̃γ(x)
F←→ ̂̃

βγ(ω) =
β̂γ(ω)

Â(ejω)
,

a(k)
F←→ Â(ejω) =

∑

m∈Z2

β̂2γ(2πm+ ω) . (5)

An impulse response of the L-th order Riesz transform is:

Rl{δ}(x)
F←→ R̂l(ω) = (−j)L

√
L!

n!(L− l)!
ωl1ω

L−l
2(

ω2
1 + ω2

2

)L
2

,

for l = 0 , . . . , L and where δ(·) is the Dirac delta function.
Secondly, wavelet expansion is defined as follows: Given a

2D dyadic sampling matrix D =

(
1 1
1 −1

)
, we have ρ̂0 =

[0 , 0]T , ρ̂1 = [1 , 0]T and

Di =

{
2
i
2 Id2 , i is even

2
i−1
2 D , i is odd

,
∣∣∣det Di

∣∣∣ = 2i .

Non-subsampled scaling and wavelet spaces Vns
i =

spanm∈Z2

{
ϕi (· −m)

}
and Wns

il = spanm∈Z2

{
ψil (· −m)

}

(for i = 0 , . . . , I ; l = 0 , . . . , L) satisfy a multiscale de-
composition Vns

i−1 = Vns
i ⊕

∑L
l=0Wns

il , i = 1 , . . . , I where
primal/dual scaling and wavelet functions are:

ϕi(x) = 2−
i
2 βγ

(
D−ix

)
, ϕ̃i(x) = 2−

i
2 β̃γ

(
D−ix

)
,

ψil(x) = 2−
i
2 Rl{ψ}

(
D−ix

)
, ψ̃il(x) = 2−

i
2 Rl{ψ̃}

(
D−ix

)
.

Their Fourier transforms are

ϕ̂i(ω) = 2
i
2 β̂γ

(
DiTω

)
, ̂̃ϕi(ω) = 2

i
2
̂̃
βγ

(
DiTω

)
,

ψ̂il(ω) = 2
i
2 R̂l

(
DiTω

)
ψ̂
(

DiTω
)
,

̂̃
ψil(ω) = 2

i
2 R̂l

(
DiTω

) ̂̃
ψ
(

DiTω
)
.

Due to a discrete Fourier transform of continuous functions,
by Poisson summation we have the following proposition:

Proposition II.2. The scaling and wavelet functions satisfy
the unity condition in the Fourier domain:

̂̃ϕ∗I(ω)ϕ̂I(ω) +

I∑

i=0

L∑

l=0

̂̃
ψ
∗
il(ω)ψ̂il(ω) + ê(ω) = 1 (6)

up to a discretization error:

ê(ω) = ̂̃ϕ∗I(ω)
∑

k∈Z2\{0}
ϕ̂I (2πk + ω)

+
∑

m∈Z2\{0}

̂̃ϕ∗I (2πm+ ω)


ϕ̂I(ω) +

∑

k∈Z2\{0}
ϕ̂I (2πk + ω)




+

I∑

i=0

L∑

l=0

[
̂̃
ψ
∗
il(ω)

∑

k∈Z2\{0}
ψ̂il (2πk + ω)

+
∑

m∈Z2\{0}

̂̃
ψ
∗
il (2πm+ ω)


ψ̂il(ω) +

∑

k∈Z2\{0}
ψ̂il (2πk + ω)



]
.

(7)

Proof. We provide a proof of Proposition II.2 in Section 5.2
in SM.

To compensate the error in Equation 7 in the unity condition
(Equation 6), wavelet function at scale i = 0 is defined as:

ψ̂0(ω) =
1

̂̃
ψ
∗
0(ω)


1− ̂̃ϕ∗I(ω)ϕ̂I(ω)−

I∑

i=1

̂̃
ψ
∗
i (ω)ψ̂i(ω)


 ;

then, we have a wavelet expansion for an image f ∈ `2(Z2):

f [k] =
∑

m∈Z2

〈
f , ϕ̃I(· −m)

〉
`2
ϕI(k −m)

+

I∑

i=0

L∑

l=0

∑

m∈Z2

〈
f , ψ̃il(· −m)

〉
`2
ψil(k −m) . (8)

Following [34], primal and dual wavelet functions are defined
as:

ψ̂(ω) = 2−
1
2 Ĝ(ejD−Tω)β̂γ(D−Tω) ,

̂̃
ψ(ω) = 2−

1
2
̂̃G
(
ejD−Tω

) ̂̃
βγ(D−Tω) , (9)
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where the refinement and highpass filters are

h[k]
F←→ Ĥ(ejω) = 2

1
2
β̂γ(DTω)

β̂γ(ω)
,

h̃[k]
F←→ ̂̃H(ejω) =

Â(ejω)

Â(ejDTω)
L̂(ejω) ,

g[k]
F←→ Ĝ(ejω) = −e−jω1Ĥ(e−j(ω+π))Â(ej(ω+π)) ,

g̃[k]
F←→ ̂̃G(ejω) = −e−jω1

Ĥ(e−j(ω+π))

Â(ejDTω)
,

and a scaled auto-correlation function is:

Â(ejDTω) =
1

2

∣∣∣Ĥ(ejω)
∣∣∣
2

Â(ejω) +
1

2

∣∣∣Ĥ(ej(ω+π))
∣∣∣
2

Â(ej(ω+π)) .

(10)

b) Non-subsampled Riesz-Quincunx wavelet smoothing
and Hankel matrix: Denote Cφ := C∗ϕICϕ̃I where a matrix
kernel φ ∈ Rn1×n2 and its matrix form Φ := Φ̃I Φ̌T

I are
defined in Equation 3 in the SM where Φ̃I and ΦI are
matrix forms of ϕ̃I and ϕI , respectively. Similarly, we denote
wavelet kernel tensors ψ =

{
ψp
}P
p=1

:= {ψil}l=0,...,L
i=0,...,I and

ψ̃ =
{
ψ̃p

}P
p=1

:=
{
ψ̃il

}l=0,...,L

i=0,...,I
with ψp , ψ̃p ∈ R|Ω| (p =

1 , . . . , P ) and their matrix form are Ψ̌ =
(

Ψ̌1 . . . Ψ̌P

)

and Ψ̃ =
(

Ψ̃1 . . . Ψ̃P

)
where block element matrices

Ψp , Ψ̃p ∈ Rn2n1×n2 are also are defined in Equation 3 in
the supplemental material. For an image f ∈ Rn1×n2 , from
proposition II.1 we have the following proposition:

Proposition II.3. A non-subsampled Riesz Quincunx wavelet
has a form of framelet decomposition (2):

f = Cφ

(
f
)

+ C∗
ψ
◦ proxµP ◦ Cψ̃

(
f
)

= n1H
†
n1|n2

(
Hn1|n2

(
f
)(

Φ + Ψ̃ Ψ̌T
))

. (11)

Scaling and wavelet filter bank matrices satisfy the unity
condition:

Φ + Ψ̃ Ψ̌T =
1

n1
Idn1n2×n1n2

. (12)

Proof. We provide a proof of Proposition II.3 in Section 5.3
in SM.

A smoothing version of a framelet decomposition (Equa-
tion 11) is defined with proximity operators proxµP (for µ >
0) (as defined in Equation 13 in the supplemental material):

f̃ = n1H
†
n1|n2

(
Hn1|n2

(
f
)

Φ + proxµP

{
Hn1|n2

(
f
)

Ψ̃

}
Ψ̌T

)
.

Its iterative scheme, called generalized intersection algorithm
with fixpoints is described in [23].

D. RQUNet-VAE expansion

Given a multi-channel image f =
{
f1 , . . . , fP

}
∈ R|Ω|×P ,

we introduce our RQUNet-VAE expansion via mappings for
skip-connecting signal, latent variables, and a reconstructed
signal. Then, we propose RQUNet-VAE expansion and its
functional space for regularization.

a) Mappings:: We introduce filter banks in an en-
coder θ1(i) ∈ Rd1×d2×P×2iL and θ2(i) ∈ Rd1×n2×P×2iL

whose matrix forms are Θ1(i) ∈ Rd1d2P×d2×2iL ,Θ1(i) ∈
Rd1n2P×n2×2iL (as defined in Equation 6 in the supplemental

material). Similar for filter banks
{(

θ̃1(i) , θ̃2(i)
)}I−1

i−0

in a

decoder. For batch-normalization and dropout layers, we refer
the readers to [11], [29].

a.1. Skip-connecting signal (encoder): Given a local basis
Ξ(i) and an analysis operator at scale i = 1 , . . . , I:

T (i) := Rp ◦B ◦ proxReLU ◦ Ciso

θ2(i)
◦ proxReLU ◦ Ciso

θ1(i)

: Rn1×n2×P → R2−in1×2−in2×2iL , (13)

we define an iterated mapping:

C (i) = T (i) ◦ Ξ(i−1),TT (i−1) ◦ . . . ◦ Ξ(1),TT (1)

: Rn1×n2×P → R2−(i−1)n1×2−(i−1)n2×2(i−1)L .

Then, we have the following proposition describing a mapping
for the skip-connecting signal:

Proposition II.4. A mapping for skip-connecting signal in
RQUnet-VAE is:

Cγc : Rn1×n2×P →
{
R2−(i−1)n1×2−(i−1)n2×2(i−1)L

}I
i=1

;

c = Cγc

(
f
)

=

{
c(i) = C (i)

(
f
)}I−1

i=0

= Cφ

(
c
)

+ C∗
ψ
C
ψ̃

(
c
)

(14)

which is equivalent to:

c(i) =
{
c
(i)
l

}2i−1L−1

l=0
, c

(i)
l = Cφ

(
c
(i)
l

)
+ C∗

ψ
C
ψ̃

(
c
(i)
l

)

for i = 0 , . . . , I − 1 where unknown filter banks are γc :={(
θ1(i) , θ2(i)

)}I

i=1

.

Proof. We provide a proof of Proposition II.4 in Section 5.4
in SM.

a.2. Variational term (encoder): We firstly define linear
mappings as a perceptron network for latent variable:

Fµ(·) = Wµvec(·) + bµ ,

Fσ(·) = Wσvec(·) + bσ : R2−i−1n1×2−i−1n2×2iL → Rd ;
(15)
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where Wµ ,Wσ ∈ Rd×2−(I+1)n1n2L and bµ , bσ ∈ Rd and d is
latent dimension and vec(·) is a vectorize operation. Denote
Hadamard product � and model’s parameters as:

γc ∪ γs ∪ γm :=

{
Wµ , bµ ,Wσ , bσ ,

{(
θ1(i) , θ2(i)

)}I

i=1

}
;

then, we have the following proposition for a variational term:

Proposition II.5. A latent variable in RQUnet-VAE is sampled
from a distribution:

z = Mγm

(
f
)

+ S
1
2
γs

(
f
)
� ε , ε i.i.d.∼ Nd (0d , Idd) (16)

where maps for the mean and variance for the latent variable
are:

Mγm := Fµ ◦Rp ◦ Ξ(I),TT (I) ◦ . . . ◦ Ξ(1),TT (1) , (17)

S
1
2
γs := Fσ ◦Rp ◦ Ξ(I),TT (I) ◦ . . . ◦ Ξ(1),TT (1) . (18)

Proof. We provide a proof of Proposition II.5 in Section 5.5
in SM.

a.3. Decoder: Firstly, we define a mapping in the decoder:

T̃ (i) =

(
Z−1

1 , proxReLU ◦ Ciso

θ̃1(i+1)
◦ proxReLU ◦ Ciso

θ̃2(i+1)
◦P

Ξ̃
(i)
aug

)
,

T̃ (0) = proxReLU ◦ Ciso

θ̃1(1)
◦ proxReLU ◦ Ciso

θ̃2(1)
◦P

Ξ̃
(0)
aug
,

where Z−1
1 is scale-delayed 1 step back of the 1st ar-

gument and a concatenate layer is defined as an operation

P
Ξ̃

(i)
aug

(
ĉ
(i)
aug

)
=
(
c(i) B ◦ Ξ̃(i) ŝ(i+1)

)
, i.e. input signal at

concatenation layer includes bypass signal c(i) and unpooled-
batchnormed lowpass signal B ◦ Ξ̃(i) ŝ(i+1).

Next, we define an iterated mapping for a skip-connecting
signal c and a lowpass signal s(I) at scale I as:

T̃I

(
c , s(I)

)
= T̃ (0) ◦ T̃ (1) ◦ . . . ◦ T̃ (I−1)

(
c(I−1) s(I)

)
.

Note that s(I) is reconstructed from a latent variable z. Denote
unknown parameters in a decoder as:

α :=

{
W s , bs , θ0 ,

{(
θ̃1(i) , θ̃2(i)

)}I

i=1

}
.

Then, we have the following proposition:

Proposition II.6. Given a skip-connecting signal c and a
latent variable y from an encoder, a decoder mapping in
RQUNet-VAE is defined as

Dα

(
c , z
)

:= proxReLU ◦ Ciso

θ0
◦ T̃I

(
c , uvec (W s z + bs)

)
.

(19)

Proof. We provide a proof of Proposition II.6 in Section 5.6
in SM.

b) RQUNet-VAE expansion: An auto-encoder is recast
as a latent factor model (a decoder) whose latent variable is
computed from the observed data as an encoder:

z = Mγm

(
f
)

+ S
1
2
γs

(
f
)
� ε , ε i.i.d.∼ Nd(0d , Idd) , (20)

c = Cγc

(
f
)
, (21)

f̃ = Dα

(
c , z
)

+ σe , e
i.i.d.∼ N|Ω|×P (0 , Id) , (22)

f̃ = f ∈ F , (23)

with a known standard deviation σ > 0 and the data set F ={
fi

}T
i=1
⊂ R|Ω|×P . Combining Equation 22, Equation 20,

Equation 21, and Equation 23, we obtain a variational auto-
encoder:

f = Dα

(
Cγc

(
f
)
,Mγm

(
f
)

+ S
1
2
γs

(
f
)
� ε
)

+ σe ,

(24)

with standard normal random variables ε i.i.d.∼ Nd(0d , Idd) and
e =

[
el,c
]c=1,...,p

l∈Ω
, el,c

i.i.d.∼ N (0 , 1).

The auto-encoder system (Equations 22-23) is recast as
Bayesian inference:

f̃ | z i.i.d.∼ Nn1×n2×P

(
Dα

(
c , z
)
, σ2Id

)

= Hα
(
f̃ | z

)
= hα

(
f̃ | z

)
df̃ , (25)

z | f i.i.d.∼ Kα
(
z | f

)
= kα

(
z | f

)
dy

≈ Nd
(

Mγm

(
f
)
, diag

{
Sγs

(
f
)})

. (26)

An explanation for the above hierarchical model is: an ob-
served signal f̃ is assumed to be sampled from a normal
distribution whose latent variable z is sampled from an un-
known distribution Kα which is approximated by a normal
distribution (Equation 26) parameterized by (γm, γs). The key
idea for z | f ∼ Kα to depend on a parameter α is because

of the auto-encoder (Equations 20-23), i.e. f̃ = f . To see this,
Bayes’ rule for a conditional density of random variable z | f
is:

p
(
z | f

)
=

p
(
f | z

)
p(z)

p
(
f
) =

p
(
f̃ | z

)
p(z)

p
(
f
)

(25)
=

hα

(
f̃ | z

)
p(z)

p
(
f
) := kα

(
z | f

)
,

which depends on a decoder’s parameter α. Since the above
density is intractible because of the incomputable integral
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in a marginal distribution p
(
f
)

=
∫
Rd hα

(
f̃ | z

)
p(z)dz, a

distribution Kα is approximated by a normal distribution:

kα

(
z | f

)
=

hα

(
f | z

)
p(z)

p
(
f
)

≈ Nd
(
z ; Mγm

(
f
)
, diag

{
Sγs

(
f
)})

. (27)

Denote variance vector as

Sγs

(
f
)

= S
1
2
γs

(
f
)
�S

1
2
γs

(
f
)

=

(
Sγs

(
f
)

1
. . . Sγs

(
f
)
d

)T

∈ Rd .

Choose a standard normal prior distribution P(z) = p(z)dz =
Nd (0d , Idd), we have the following proposition for finding
model’s parameters:

Proposition II.7. Unknown parameters in RQUnet-VAE are
obtained from the following minimization problem:

(
γ†c , γ

†
m , γ

†
s , α

†
)

= argmin L (γc , γm, γs , α) (28)

where:

L (·) :=
1

2σ2

T∑

i=1

Eε∼N (0 ,Id)

[

∥∥∥∥∥fi −Dα

(
Cγc

(
fi
)
,Mγm

(
fi
)

+ S
1
2
γs

(
fi
)
� ε
)∥∥∥∥∥

2

`2

]

+

T∑

i=1

KL


Nd

(
Mγm

(
f
)
, diag

{
Sγs

(
f
)})

|| Nd (0d , Idd)




and KL-divergence is defined as:

KL
[
· || ·

]

=
1

2



∥∥∥∥Mγm

(
f
)∥∥∥∥

2

`2

− d+

d∑

i=1

(
Sγs

(
f
)
i
− log Sγs

(
f
)
i

)
 .

(29)

Proof. We provide a proof of Proposition II.7 in Section 5.7
in SM.

It is clear that the only one random variable in the above
minimization is ε, so the gradient descent method can be ap-
plied for model parameters (γc , γm, γs , α). Since high order
Riesz-Quincunx wavelet expansion is an identity operator, for
training these model parameters, we remove this layer in the
training procedure. But, later we use it in its smoothing version
with the trained parameters

(
γ†c , γ

†
m , γ

†
s , α

†) to truncate small
wavelet coefficients of signals in skip-connection. A summary
of RQUNet-VAE with a training procedure (without Riesz-
Quincunx wavelet) is shown in the SM for encoder and
decoder, respectively.

c) Generalized Besov space by RQUNet-VAE and prox-
imal operators: We note that Equation 28 is a non-convex
minimization problem with potentially many local minimas.
Assume an existence of minima

(
α† , γ†c , γ

†
m , γ

†
s

)
such that a

condition of perfect reconstruction occurs, i.e. f̃ = f ; then, the
auto-encoder (Equations 22-23) plays as a generalized wavelet
expansion with learnable parameters:

lim
σ→0

∥∥∥∥∥f −Dα†

(
Cγ†c

(
f
)
,Mγ†m

(
f
)

+ S
1
2

γ†s

(
f
)
� ε
)

+ σe

∥∥∥∥∥

2

`2

= 0 ,

having its deterministic version:

f = Dα†

(
Cγ†c

(
f
)
,Mγ†m

(
f
)

+ S
1
2

γ†s

(
f
)
� ε
)
,

where encoder and decoder are forward and backward wavelet
transform. Then, it induces a generalized Besov space:

B :=

{
f ∈ R|Ω|×P :

∥∥∥f
∥∥∥
B

:= P ◦ Cγc

(
f
)
<∞

}
, (30)

where function P(·) acts on the skip-connecting signal c =

Cγc

(
f
)

for proximal mapping as described in Equation 13 in
the supplemental material.

Then, given an image f ∈ R|Ω|×P with an expansion in a
space B (30), we have a regularization in that space B with the
optimally trained parameters as generalized wavelet smoothing
via a proximal operator:

c̃ = argmin
w

{
P
(
w
)

+
1

2µ

∥∥∥∥Cγc
(
f
)
− w

∥∥∥∥
2

F

}

= proxµP ◦ Cγc

(
f
)

= Cφ ◦ Cγc

(
f
)

+ C∗
ψ
◦ proxµP ◦ Cψ̃ ◦ Cγc

(
f
)
, (31)

where its element form is:

c̃ =
{
c̃(i)
}I−1

i=0
, c̃(i) =

{
c̃
(i)
l

}2i−1L−1

l=0
,

c̃
(i)
l = Cφ

(
c
(i)
l

)
+ C∗

ψ
◦ proxµP ◦ Cψ̃

(
c
(i)
l

)

for l = 0 , . . . , 2i−1L − 1 , i = 0 , . . . , I − 1. Note that
proxµP(·) in Equation 31 acts on wavelet coefficients only. A
reason is scaling coefficients contain main energy of a signal
whose values are large. These scaling coefficients should be
preserved during a shrinking process while wavelet coefficients
mainly contain oscillating signals in different scales, including
noise which should be removed.

Then, we have a smoothed image as:

f̃ = Dα†

(
c̃ , Mγm

(
f
)

+ S
1
2
γs

(
f
)
� ε
)
∈ R|Ω|×P .

In summary, we have the following proposition:
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Proposition II.8. Given a learned parameter(
α† , γ†c , γ

†
m , γ

†
s

)
obtain by training RQUNet-VAE with a

dataset, we have RQUNet-VAE smoothing (with a parameter
µ > 0) for an image f̃ as a solution of a regularization in a
generalized Besov space B (30):

f̃ = Dα†

(
Cφ ◦ Cγ†c

(
f
)

+ C∗
ψ
◦ proxµP ◦ Cψ̃ ◦ Cγ†c

(
f
)

,Mγ†m

(
f
)

+ S
1
2

γ†s

(
f
)
� ε
)
. (32)

Proof. A proof of Proposition II.8 is directly obtained from
the above paragraphs.

E. RQUNet-VAE iterative shrinkage Lagrangian system

a) Decomposition for multi-band image: RQUNet-
VAE iterative shrinkage algorithm for multi-band image
f ∈ R|Ω|×P is described in Algorithm 1 in the SM. This
is equivalent to a nonlinear mapping with unknown model’s
parameters Γ: u(0) = f , λ(0) = 0 for τ = 1 , . . . , N and

(
u(τ) , λ(τ+1)

)
= Kµ

(
f , u(τ−1) , λ(τ) ; Γ

)
. (33)

b) Diffusion process and spectral decomposition for
multiband image: For a multiband image f ∈ R|Ω|×P , a
diffusion process by a Lagrangian system (34) is: u(0) =
f , τ = 1 , . . . , N ,

(
u(τ) , λ(τ+1)

)
= Kµ

(
u(τ−1) , u(τ−1) , λ(τ) ; Γ

)
. (34)

Given
{
u(τ)

}N
τ=1

generated by diffusion process (34) in
Algorithm 2, we have a discrete TV-like transform as in [9]:

φ(τ) :=
τ

β

(
u(τ+1) − 2u(τ) + u(τ−1)

)
,

whose inverse transform is: f̃
(N)

:= (1 +N)u(N)−Nu(N+1),

f = f̃
(N)

+ β
N∑

τ=1

φ(τ) .

Its filtered version

fHN = H(N)f̃
(N)

+ β
N∑

τ=1

H(τ)φ(τ)

is defined, e.g. by the ideal spectral-filter H(τ):

H
(τ)
lowpass =

{
0 , τ ∈ {0 , . . . , τ1} ,
1 , τ ∈ {τ1 , . . . , N}

,

H
(τ)
highpass =

{
1 , τ ∈ {0 , . . . , t1} ,
0 , τ ∈ {τ1 , . . . , N}

,

H
(τ)
bandpass =





0 , τ ∈ {0 , . . . , τ1} ,
1 , τ ∈ {τ1 , . . . , τ2} ,
0 , τ ∈ {τ2 , . . . , N}

,

H
(τ)
bandstop =





1 , τ ∈ {0 , . . . , τ1} ,
0 , τ ∈ {τ1 , . . . , τ2} ,
1 , τ ∈ {τ2 , . . . , N} ,

where the time threshold τi are selected by the TV-spectrum
S(τ) :=

∥∥∥φ(τ)
∥∥∥
`1

.

c) Decomposition for multiband time series: Next, we
show how our RQUNet-VAE can be applied to satellite image
time series, that is, a sequence of images of the same area.

Given a multi-band video f =
{
f1 , . . . , fT

}
∈ R|Ω|×P×T ,

ft =
{
ft,1 , . . . , ft,P

}
, ft,p ∈ R|Ω| and scalling and wavelet

bases, e.g. 1D Haar bases:

φI,t,m =

{
1 , t ≥ 2Im & t < 2I(1 +m)

0 , else
,

ξi,t,m =





1 , t ≥ 2im & t < 2i
(

1
2 +m

)

−1 , t ≥ 2i
(

1
2 +m

)
& t < 2i (1 +m)

0 , else
, (35)

a time-wavelet smoothing expansion for a video f ∈
R|Ω|×P×T by proximal operator µP is defined as: t =
1 , . . . , T ,

f̃t =
1

2
I
2

2−IT−1∑

s=0

1

2
I
2

T∑

t′=1

ft′ φI,t′,sφI,t,s

+

I∑

i=1

1

2
i
2

2−iT−1∑

s=0

proxµP

{
1

2
i
2

T∑

t′=1

ft′ ξi,t′,s

︸ ︷︷ ︸
:=wi,m

}
ξi,t,s ,

which is equivalent to:

f̃ := Gφ

(
f

)
+ W ∗

ξ ◦ proxµP ◦Wξ

(
f

)
=
{
f̃1 , . . . , f̃T

}
.

(36)

Wavelet coefficient in (36) is wi =

{
wi,1 , . . . , wi,T

}
:=

Wξ

{
f

}
∈ R|Ω|×P×2−iT , wi,m =

{
wi,m,1 , . . . , wi,m,P

}
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and wi,m,p ∈ R|Ω|. Combined with Equation (34), RQUnet-
VAE’s iterative shrinkage algorithm for multi-band video
f ∈ Rn1×n2×P×T is described in Algorithm 2 in SM, called
RQUNet-VAE scheme 2.

F. RQUNet-VAE based segmentation

In this section, we propose a mathematical framework for a
segmentation problem with our RQUNet-VAE which serves
as a smoothing term. Given a dataset of original images
(without artificially added noise) with ground-truth masks,
we first train the UNet-VAE to obtain the optimal model
parameters. Next we predict a segmented image from a noisy
image using the RQUNet-VAE with a smoothing term as a
truncation scheme of the N -th order Riesz-Quincunx wavelet
expansion on the skip-connecting signals. If the training data

is
(
F , Fgt) :=

{
fi , f

gt
i

}n

i=1

⊂ R|Ω|×P × R|Ω|×K and K-

dimensional hot key tensors of the ground-truth masks, i.e.
pixel intensity and its allocation are:

fi :=
[
fi,l
]
l∈Ω

, fi,l ∈ RP , f gt
i :=

[
f gt
i,l

]
l∈Ω

,

where f gt
i,l =

[
f gt
i,l,k

]K
k=1
∈ RK is a one-hot-key vector. Given

the loss function: x , y ∈ R|Ω|×K ,

H
(
x , y

)
=
∑

l∈Ω

K∑

k=1

xl,k log
exp

(
yl,k
)

∑K
h=1 exp

(
yl,h
) ;

similar to proposition II.7, a loss function of our RQUNet-
VAE based segmentation problem is as follows:

Proposition II.9. Unknown parameters in RQUNet-VAE
based segmentation are obtained from the following minimiza-
tion problem:
(
θ† , γ†c , γ

†
m , γ

†
s , α

†
)

= argmin
n∑

i=1

L
(
θ , γc , γm , γs , α

)

(37)

where:

L (·) := KL


Nd


Mγm

(
fi

)
, diag

{
Sγs

(
fi

)}
 || Nd (0d , Idd)




− 1

2nσ2
Eε∼N(0 ,Id)

[
H
(
f

gt
i , C

iso

θ
◦Dα

(
Cγc

(
fi

)
,Mγm

(
fi

)

+ Sγs

(
fi

) 1
2 � ε

))]
,

and the K-L divergence is defined in (29).

Proof. We provide a proof of Proposition II.9 in Section 5.8
in SM.

After training the model parameters by minimizing the
loss function (37), the segmentation of a new noisy image
is predicted:

f new = f new
0 + σε ,

with standard Gaussian noise ε =
[
εl,c
]c=1,...,p

l∈Ω
∈ R|Ω|×P and

εl,c ∼ N (0 , 1). From proposition II.8 by adding N -th order
Riesz Quincunx wavelet truncation with proximal operator
proxµP(·) parameterized by a smoothing parameter µ as:

u
(
f new

)
=

{
u1

(
f new

)
, . . . , uK

(
f new

)}
∈ R|Ω|×K

= Ciso

θ
◦Dα†

(
Cφ ◦ C

γ
†
c

(
f new

)
+ C∗

ψ
◦ proxµP ◦ Cψ̃ ◦ C

γ
†
c

(
f new

)
,

M
γ
†
m

(
f new
i

)
+ S

1
2

γ
†
s

(
f new
i

)
� ε
)
,

ynew = argmaxk=1 ,... ,Kuk
(
f new

)
∈ R|Ω|×K , uk

(
f new

)
∈ R|Ω| .

III. EXPERIMENTAL RESULTS

A. Experimental Setup

This section describes the dataset used for our experiments,
introduces competitor solutions, and defines evaluation metrics
to measure the ability of an algorithm to reduce the noise of
an image.

1) Datasets: We used Sentinel-2 satellite images
(S30:MSI harmonized, V1.5) processed as part of the
Harmonized Landsat Sentinel-2 (HLS) dataset obtained from
USGS DAAC (https://lpdaac.usgs.gov/data/get-started-
data/collection-overview/missions/harmonized-landsat-
sentinel-2-hls-overview/) [5]. The S30:MSI harmonized
surface reflectance product is resampled from the original 10m
to 30m resolution and adjusted to Landsat8 spectral response
function in order to ultimately create a harmonized time series
with a 2-3 day revisit. Radiometric and geometric corrections
are applied to convert data to surface reflectance, adjust for
BRDF differences, and spectral bandpass differences. The
study was focused on the HLS tile 18STH covering a large
part of Northern Virginia in the US, for 2016-2020. From
the main HLS tile’s time series, 510 images were randomly
created with a size of 256×256 pixels and including only the
three visible bands (4R, 3G, 2B). Quality Assessment (QA)
layers were used to exclude images with more than 30 percent
cloud shadow, adjacent cloud, cloud and cirrus clouds. The
500 images were used for training of our RQUNet-VAE and
competitor approaches, while ten images were used for testing
in the denoising and decomposition experiments. The ten test
images are visualized in SM.

For the time series decomposition experiments the above
Sentinel-2 data were used to create 80, randomly located time
series of length 99 images and image size 40 × 40 pixels.
Images were normalized from 0 to 1 using image minimum
and maximum. The RQUNet-VAE was trained on each image
in the dataset to obtain all unknown model parameters. All the
Sentinel-2 datasets are available on Github 1.

1https://github.com/trile83/RQUNetVAE
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For our image segmentation experiments in Section III-D we
used National Agriculture Imagery Program (NAIP) images
coinciding with high resolution ground truth land cover data
of each pixel in an image [18]. We acquired NAIP Nature
Color imagery of northern Virginia consisting of RGB bands
which is similar to some commercial satellite imagery (e.g.
BlackSky, Planet). For training and validation (ground truth)
we used the 1m resolution land cover dataset for the Chesa-
peake Bay watershed [1]. The dataset contains six classes
- Water, Tree and shrubs, Herbaceous, Barren, Impervious
(roads) and Impervious (other). We combined Impervious
(other) and Impervious (roads) together into an integrated
Impervious class. This provided us with four classes Water,
Tree and Shrubs, Grass, and Impervious. For the segmentation
experiments these classes were grouped into three classes,
Vegetated (tree, grass, shrubs), Water and Impervious.

2) Evaluated Algorithms: Since RQUNet-VAE Scheme 1
is based on harmonic analysis, we compared it to state-of-
the-art approaches including wavelet CDF 9/7 [33], [30], [6],
curvelet [3] and Riesz Dyadic wavelet kernel [23], while the
iterative Scheme 2 method was compared to state-of-the-art
iterative methods such as directional TV-L2 [27], [10], [31]
and GIAF [23].

Note that since the competitor methods were designed for
gray-scale images, the methods were applied independently to
each band of every multi-band image. The RQUNet-VAE, on
the other hand, was designed for multi-channels images.

3) Evaluation Metrics:

a) Image reconstruction: To evaluate the ability of an
algorithm to reduce the noise of an image, this section defines
two commonly used measures. Given a clean multi-channel
image f ∈ R|Ω|×P as ground-truth and a denoised image f† ∈
R|Ω|×P , we use

• peak-signal-to-noise-ratio (PSNR):

PSNR = 10 log
max

(
f
)

MSE
,MSE =

1

n1n2P

∥∥∥f − f†
∥∥∥

2

`2

• Structural similarity index (SSIM) [41]:

SSIM =

(
2µfµf† + c1

) (
2σff†

)
(
µ2
f + µ2

f† + c1

)(
σ2
f + σ2

f† + c2

)

where (µf , σ
2
f ) and (µf† , σ

2
f†) are mean and variance of

ground-truth f and its denoised image f† and σff† are
their covariance. c1 = (0.01r)2 , c2 = (0.03r)2 where r
is the dynamic range of pixel-values.

b) Image segmentation: To evaluate our RQUNet-VAE
for segmentation of noisy test data, given that our statistical
method provides uncertainty quantification, we propose the
following evaluation framework:

Given a noisy test image f ∈ R|Ω|×P as an input of
the trained RQUNet-VAE segmentation and its ground-truth
f gt =

[
f gt
l

]
l∈Ω

∈ Rn1×n2×K , fl ∈ RK and the trained
RQUNet-VAE by minimizing the loss function (37) from the

clean dataset, we run prediction n time to obtain segmented

masks u(i)
(
f
)

=

[
u

(i)
l

(
f
)]

l∈Ω

∈ R|Ω|×K , u(i)
l

(
f
)
∈ RK

for i = 1 , . . . , n. For segmentation problem, class-balanced
accuracy is defined for every pixel l ∈ Ω:

p̂nl =
1

n

n∑

i=1

δ{u(i)
l (f) ,f gt

l }
, δ{u(i)

l (f) ,f gt
l }

=





1 , u
(i)
l (f) = f gt

l

0 , else

(38)

which is modeled by a Binomial random variable approxi-
mated by Normal distribution (for large n):

Yi := δ{u(i)
l (f) ,f gt

l }
∼ Bernoulli (p̂nl , 1) , (39)

pnl =
1

n

n∑

i=1

Yi ∼
1

n
Binomial (p̂nl , n) ≈ N

(
p̂nl ,

p̂nl (1− p̂nl )

n

)
.

(40)

4) Training Procedure: For comparision with other state-
of-the-art-methods, all parameters have been optimized for
minimal mean-square-error (MSE) via heuristic search for
each individual training image.

Since RQUNet-VAE is a hybrid model of deterministic
high-order Riesz-Quincunx wavelet, we apply a training pro-
cedure for UNet-VAE with 100 epochs and a batch size of 16
using the Adam optimization method [12]. The source code
of our training in PyTorch can be found at https://github.com/
trile83/RQUNetVAE.

Image Set Sentinel-2, std = 0.04
Number of Images 10

RQUNet-VAE scheme 1 PSNR 38.693
SSIM 0.969

Riesz Dyadic PSNR 37.433
SSIM 0.959

curvelet PSNR 36.314
SSIM 0.942

wavelet CDF 9/7 PSNR 36.061
SSIM 0.945

RQUNet-VAE scheme 2 PSNR 39.087
SSIM 0.971

GIAF-Riesz Dyadic PSNR 38.987
SSIM 0.969

TV-L2 (L = 2)
PSNR 38.522
SSIM 0.968

TV-L2 (L = 9)
PSNR 38.53
SSIM 0.968

TABLE I
PSNR AND SSIM: MEAN OVER THE THREE IMAGE SETS (1ST ND 2ND

BEST IN BOLD).

B. Denoising Experiments
To impose artificial noise on images for evaluation, Gaus-

sian noise was added to each band of the Sentinel-2 images
with a standard deviation of std = 0.04. All images were
normalized to interval [0 , 1] using the image minimum and
maximum. To give some examples, original image shown in
Figure 2(a) and the corresponding image with added noise
in Figure 2(b). (All ten test images with added noise are
visualized in SM).
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(a) Original image (b) Noisy image, σ = 0.04

(c) RQUnet-VAE, (PSNR, SSIM) =
(38.502, 0.966)

(d) Riesz Dyadic, (PSNR, SSIM) =
(37.555, 0.96)

(e) curvelet, (PSNR, SSIM) =
(36.494, 0.944)

(f) wavelet CDF 9/7,
(PSNR, SSIM) = (35.646, 0.936)

(g) RQUnet-VAE scheme 3,
(PSNR, SSIM) = (38.822, 0.97)

(h) GIAF-Riesz Dyadic,
(PSNR, SSIM) = (38.936, 0.97)

(i) TV-L2 L = 2, (PSNR, SSIM) =
(38.513, 0.967)

(j) TV-L2 L = 9, (PSNR, SSIM) =
(38.535, 0.966)

Fig. 2. Qualitative image denoising results for RQUnet-VAE and competitor approaches. Image denoising by the RQUnet-VAE with standard deviation
σ = 0.04 and optimal α∗.

1) Quantitative Results: Table I provides the results of the
comparison of the RQUNet-VAE Schemes 1 and 2 with the
state-of-the-art methods described in Section III-A2 using the
evaluation metrics described in Section III-A3. For the ten test
images described in Section III-A1 the proposed RQUNet-
VAE Scheme 2 yields the highest Peak-Signal-to-Noise-Ratio
(PSNR) and the highest Structural Similarity Index (SSIM) of
all competitors (Table 1). Among all the approaches based
on harmonic analysis, RQUNet-VAE Scheme 1 yields the
best results. Note GIAF also iteratively computes scaling and
wavelet coefficients, similar to our RQUNet-VAE Scheme 2.
The main difference, however, is that GIAF employs Riesz
Dyadic wavelet kernel for scaling and wavelet functions
whereas RQUNet-VAE Scheme 2 uses our adapted RQUNet-
VAE. Using this scheme, allows more redundant parameters
to better learn specific features from the data and thus, better
adapt to specific images. (Denoising results for all other test

images are visualized in SM).

2) Qualitative Results: Figures 1, 2 and 3 in SM are
original, noisy and denoised images with the 2nd scheme of
our RQUNet-VAE. Figures 2(c)-2(j) provide qualitative results
to assess how well the RQUNet-VAE schemes are able to
reduce artificially added noise individual Sentinel2 images.
Figure 2(c) shows the result of denoising the noisy image
of Figure 2(b) using our RQUNet-VAE Scheme 1. Since
Scheme 1 is based on harmonic analysis, we compare it to
noise reduction using a Riesz Dyadic wavelet kernel [23]
in Figure 2(d), using curvelets [3] in Figure 2(e), and us-
ing wavelet CDF 9/7 [33], [30], [6] in Figure 2(f). The
RQUNet-VAE Scheme 1 best preserves the edges of objects
of the original image. The Riez Dyadic wavelet kernel in
Figure 2(d) yields a blurred denoised image. In contrast,
wavelets (Figure 2(f)) better retain edges, but much of the
noise remains. Across all these figures, it is clearly discernible



12

(a) Original image (b) Lowpass image (c) Bandpass image (d) Highpass image

(e) Original image (f) Lowpass image (g) Bandpass image (h) Highpass image
Fig. 3. Image decomposition by RQUNet-VAE by spectral analysis with a threshold T = 3 for spectral histogram. Parameters: number of iteration Iter = 30,
a smoothing parameter α = 0.4.

that the proposed RQUNet-VAE Scheme 1 provides the best
combination of noise reduction and delineation of edges and
objects.

Figure 2(g) shows the denoised image using the RQUNet-
VAE Scheme 2, compared to other iterative methods including
GIAF [23] in Figure 2(h) and directional TV-L2 [27], [10],
[31] using a number of directions L = 2 in Figure 2(i) and
L = 9 in Figure 2(j). Figure 2 (g) illustrates that RQUNet-VAE
significantly reduces artefacts while preserving texture pattern,
contrast and sharp edges of objects in the reconstructed image,
such that it is most similar to the original image. Note that the
GIAF-Riesz dyadic method in Figure 2 (h) also performs very
well, but a reconstructed images also contained some artefacts.
The RQUNet-VAE Scheme 2 again provides the best trade-off
between reduction of noise and delineation of edges and ob-
jects, where GIAF (Figure 2(h)) oversmoothes edges between
objects while TV-L2 (Figure 2(i) and Figure 2(j)) still retain
clearly visible noise. This demonstrates that the RQUNet-VAE
with learned and deterministic frames increases sparsity in
a generalized Besov space. Section III-D will demonstrate
how this balance of noise reduction and discrimination of
edges improves machine learning results when applying the
RQUNet-VAE to segmentation of high resolution images for
land cover mapping.

C. Image Decomposition Experiments
This section evaluates how RQUNet-VAE Scheme 2

decomposes and subsequently denoises images. RQUNet-
VAE Scheme 2 uses an iterative scheme to decompose an
image into (i) a lowpass image, (ii) a bandpass image,
and (iii) a highpass image. Denoising can be achieved by
truncating highpass features. The RQUNet-VAE was applied

to the Sentinel-2 image dataset described in Section III-A1.
Figure 3 shows examples of the decomposition for four
images. Figures 3(a,e) shows the original Sentinel2 images
of a typical rural landscape with forest cover, cultivated fields
and small, distributed structures. The corresponding lowpass
images in Figures 3(b,f) captures the larger land cover parcels,
without the fine-scale texture which has been removed. The
corresponding bandpass in Figures 3(c,g) captures most of
the signal of texture, whereas the highpass image in Figure
Figures 3(d,h) captures very fine-scale texture, oscillating
patterns, along with noise.

a) Time series decomposition: The RQUNet-VAE was
applied to a Sentinel2 time series decomposition by using
Haar wavelet smoothing in time as a diffusion process, (Sec-
tion II-E). The proposed smoothing technique is therefore
simultaneously applied in spatial domain (by RQUNet-VAE)
and temporal domain (by Haar wavelet in time), following
Algorithm 2 in SM. The smoothing parameter was set at
α = 0.03 for all decompositions.

The Sentinel2 time series was comprised as follows:{
fi

}80

i=1

, fi ∈ R40×40×3×99, where each of the 99 images

have three channels of image size 40 × 40. The time series
is then padded to fi ∈ R64×64×3×120. The RQUNet-VAE
is trained on each image in the padded dataset to obtain all
unknown model parameters. An Adam optimizer was used to
train RQUNet-VAE with 200 epochs and batch-size of 16.

The trained parameters are then applied to Algorithm 2 with
10 iterations for spectral decomposition. Note that Algorithm
2 is an extension of generalized intersection algorithms with
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(a) Original frame 1 (b) Lowpass (c) Bandpass (d) Highpass

(e) Original frame 30 (f) Lowpass (g) Bandpass (h) Highpass

(i) Original frame 60 (j) Lowpass (k) Bandpass (l) Highpass

Fig. 4. Time series decomposition by RQUNet-VAE with GIAF based spectral decomposition for site 296.

fixpoints [23] for video processing via spectral decomposition
into lowpass, bandpass and highpass videos.

Figure 4 illustrates the time series decomposition with the
RQUNet-VAE and diffusion process. The smoothing param-
eter was set at α = 0.03 for all decompositions. Similar
to image decomposition in the previous sections, this time
series decomposition extracts a homogeneous time series and
a residual time series which contains small objects (e.g. roads),
noise, and texture.
D. Image Segmentation by RQUNet-VAE

The RQUNet-VAE was applied to the task of high resolution
aerial image segmentation. The goal is to demonstrate that the
RQUNet-VAE makes the image segmentation more robust to
noise compared to the existing U-Net architecture. We first
provide a brief background to the problem of image segmen-
tation in Section III-D1. Then, in Section III-D2 we apply 1)
the traditional U-Net architecture and 2) the RQUNet-VAE to
the problem of image segmentation and show that RQUNet-
VAE yields better segmentation results where artificial noise
is added to images. This shows that our proposed RQUNet-

VAE makes the existing U-Net architecture more robust to
noise.

1) Background on Image Segmentation: The conventional
image segmentation procedure has the following steps, (i)
pre-processing to remove noise and unwanted small objects,
(ii) segmentation, (iii) post-processing with morphological
operators. This 3-step process requires a large number of
parameters that need to be selected by an expert. Therefore,
attempts have been made to incorporate a smoothing term into
various models. The Mumford-Shah model [17] was proposed
to introduce a smoothing term in a minimization approach
for segmentation. However, computation of this smoothing
term is an NP-hard problem and therefore not feasible [17].
Later, the Chan-Vese segmentation model [4] was proposed
that was solvable by relying on the level set method [19].
By adding a smoothing term in a variational formulae, this
model successfully segments objects in a noisy background.
Inspired by Chan-Vese model [4], we use RQUNet-VAE for
segmentation by introducing a smoothing term, i.e. Riesz-
Quincunx wavelet truncation, directly into the UNet-VAE. The
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(a) Noisy image 1 (b) Ground truth (c) RQUNet-VAE (d) Typical UNet

(e) Noisy image 2 (f) Ground truth (g) RQUNet-VAE (h) Typical UNet

Fig. 5. Segmentation result with RQUNet-VAE as a smoothing term for noisy images. a,e) NAIP images with artificial noise added (std = 0.08) as input
to segmentation; b,f) ground-truth segmentation masks; (c,g) segmentation masks returned by our RQUNet-VAE with a smoothing parameter α = 0.5; (d,h)
segmentation mask returned by the typical UNet architecture [24].

advantage is that the RQUNet-VAE includes the smoothing
term inside the Unet and thus combines (1) the ability of
a Unet to learn features from an image, with (2) denoising
capabilities enabled by the Riesz-Quincunx wavelet truncation.
This smoothing term should eliminate small scale objects in
a segmented image, e.g. texture and noise. Then, there is no
need for separate pre- or post-processing steps, as these are
all performed by the RQUNet-VAE segmentation.

2) Experimental Evaluation of RQUNet-VAE for Image
Segmentation: We apply both 1) the traditional U-Net [24]
and 2) RQUNet-VAE to the problem of segmentation using
the 20 NAIP images described in Section III-A1 using two
classes of land cover, impervious and vegetated. Figure 5
shows the segmentation results for two sample images after
noise has been added (Section III-B, standard deviation of
0.08). The corresponding ground truth land cover masks are
shown in Figures 5(b) and 5(f). Table II provides quantitative
segmentation results, including overall accuracy, precision,
recall, and F1-score for both of the two classes. Due to the
added noise, the segmentation accuracy of the U-Net is very
low at 0.6640 and 0.6170 for the two images, respectively
Table II. The precision and recall for the two classes (non-
impervious and impervious), indicate that this low accuracy is
attributed to a bias towards the impervious class, as suggested
by the low recall for the non-impervious class (0.3780 for the
traditional UNet). This implies that more than two out of five
impervious pixels are incorrectly classified as vegetated.

The performance of the traditional UNet is much lower
with the added noise than on the original, which indicates
that the addition of the noise substantially confuses the U-

Net. In contrast, the RQUNet-VAE coped much better with the
noise, yielding higher accuracy values of 0.7057±0.0013 and
0.6634±0.0012 for the two images, respectively. The negative
impact of noise on the segmentation accuracy is substantially
reduced when using the RQUNet-VAE which makes the U-
Net more robust to noise. Furthermore, the RQUNet-VAE is
better able to discriminate the vegetated class, shown by the
higher F1-scores Table II.

A more comprehensive evaluation of RQUNet-VAE vs U-
Net on 20 images with various levels of noise is given in
Figure 6. This figure shows the mean accuracy (solid line) of
the U-Net and the RQUNet-VAE across all 20 images. When
using the original image with no noise (σ = 0), the RQUNet-
VAE only provides a marginal improvement over U-Net. As
the noise level σ is increased, both RQUNet-VAE and U-Net
exhibit a drop in accuracy. However, that the drop in accuracy
is substantially slower for RQUNet-VAE . In particular, for
noise values around σ = 0.1, the RQUNet-VAE has up to
10% higher accuracy than U-Net. This improvement stems
from the variational auto-encoder approach, which, through
variational changes to the latent representation of an image,
allows the identification of pixels with a high probability of
belonging to one class while being assigned to another class by
the deterministic U-Net. Figure 6 gives the results using two
parameters setting of RQUNet-VAE , α = 0.5 and α = 1.0.
In both cases the resulting accuracy is nearly identical (the
two lines are almost perfectly on top of each other), showing
that the the performance is not very sensitive to the choice
of α and thus that RQUNet-VAE is robust to non-optimal
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TABLE II
QUANTITATIVE COMPARISON BETWEEN RQUNET-VAE AND THE TRADITIONAL UNET ARCHITECTURE. SINCE RQUNET-VAE USES A VARIATIONAL

(NON-DETERMINISTIC) APPROACH, WE PROVIDE MEAN AND STANDARD DEVIATION AGGREGATED OVER 20 RUNS. PRECISION, RECALL, AND F1-SCORE
ARE PROVIDED FOR BOTH CLASSES [VEGETATED, IMPERVIOUS].

Algorithm Accuracy Precision Recall F1-Score
(overall) (per class) (per class) (per class)

RQUNet-VAE Mean (Image 1) 0.7057 [0.9047 0.4498] [0.5457 0.8660] [0.6807 0.5921]
RQUNet-VAE Stdev (Image 1) ±0.0013 ±[0.0008 0.0014] ±[0.0030 0.0016] ±[0.0024 0.0012]
Traditional UNet (Image 1) 0.6640 [0.9460 0.3960] [0.3780 0.9500] [0.5400 0.5590]
RQUNet-VAE Mean (Image 2) 0.6734 [0.9837 0.3258] [0.3662 0.9806] [0.5337 0.4890]
RQUNet-VAE Stdev (Image 2) ±0.0012 ±[0.0006 0.0009] ±[0.0027 0.0007] ±[0.0028 0.0010]
Traditional UNet (Image 2) 0.6170 [0.9860 0.2900] [0.2440 0.9890] [0.3920 0.4490]

Fig. 6. Outcome of segmentation experiments using the RQUNet-VAE and traditional UNet applied to 20 NAIP images with increasing added noise (0-0.20).
The confidence intervals (blue and orange bands) are calculated from the mean and standard deviation of accuracy of 50 prediction iterations for each noise
level and alpha value (0.5, 0.1) in the RQ scheme. This illustrates the results of variational terms of RQUNet-VAE.

choices of α. In summary, Figure 6 shows that our proposed
RQUNet-VAE is much more robust to Gaussian noise added
to an image, as the reduction of segmentation accuracy with
higher noise levels, is less pronounced.

IV. CONCLUSION

In this work, we introduced the RQUNet-VAE which
augments the existing UNet architecture with a generalized
wavelet expansion approach that we extended to a diffusion
process to enable spectral decomposition. To the best of
our knowledge this is the first approach that enables image
decomposition and image denoising using a variational variant
of the UNet architecture. An important application of this
decomposition is denoising, achieved by truncating highpass
features, that is, discarding information of decomposed images
having the highest variance. We apply our proposed RQUNet-
VAE to image denoising and segmentation of multi-band
satellite images and their time-series which often contain noise
due to multiple causes. During quantitative comparisons of
noise reduction the RQUNet-VAE yields the highest PSNR and
SSIM of all competitor methods. Among all the approaches
based on harmonic analysis, RQUNet-VAE Scheme 2 yields
the best results. For the application of satellite image denois-
ing our proposed RQUNet-VAE provides superior qualitative
performance compared to other competitors. The denoising

by RQUNet-VAE Scheme 1 was visually compared to the
noise reduction using a Riesz Dyadic wavelet and curvelets
and using wavelet CDF and it provided the best combination
of noise reduction and delineation of edges and objects. Fur-
thermore the propose RQUNet-VAE Scheme 2, was compared
to other iterative methods including GIAF and directional TV-
L2 and it resulted in the best trade-off between reduction of
noise and delineation of edges and objects, whereas the GIAF
oversmoothed edges between objects while TV-L2 clearly
retained visible noise.

To quantitatively measure the improvement of the RQUNet-
VAE against the traditional UNet, we applied it to high resolu-
tion aerial image segmentation. Our experiments show only a
slight improvement over the traditional UNet for segmantation
of the original images with little noise. However, as artificial
noise is added to images, we observe that the segmentation
quality of the UNet decreases more rapidly than when using
the RQUNet-VAE . The superior performance of RQUNet-
VAE is due to a neural network in UNet-VAE with a learned
dictionary obtained from the training procedure to increase
the level of sparsity for an input image in a generalized Besov
space. This property is due to a fundamental concept in signal
processing, that the signal is sparse in some transformed do-
main. This demonstrates that the RQUNet-VAE architecture is
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able to substantially increase the robustness to noise compared
to the traditional UNet for the application of satellite image
segmentation.
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Riesz-Quincunx-Unet Variational Auto-Encoder for Satellite

Image Denoising:
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1 Additional Images

This section provides details on the ten satellite images used for testing of our proposed RQUNet-
VAE approach. Figure 1 shows the original images, Figure 2 shows the same images with artificial
noise added, and Figure 3 shows the denoised images using our proposed RQUNet-VAE.

Figure 1: Original images.
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Figure 2: Noisy images with variance σ = 0.04.

Figure 3: Denoised images for σ = 0.04 by RQUnet-VAE smoothing.
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2 Riesz Quincunx Filter Banks

(a) Scaling base

(b) Bases at Scale 0 (c) (d) (e)

(f) Bases at Scale 1 (g) (h) (i)

(j) Bases at Scale 2 (k) (l) (m)

(n) Bases at Scale 3 (o) (p) (q)

Figure 4: This figure illustrates N -th order Riesz Quincunx Filter banks in the Fourier domain with
3 scales, a fractional order of Bspline γ = 1.2 and order of Riesz transform N = 3.

Figure 4 illustrates the N-th order Riesz Quincunx filter banks in the Fourier domain: rows are
for 4 wavelet scales and columns are 4 directions for each scale corresponding to N = 0, ..., 3 orders
in Riesz transform.
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3 Detailed Encoder and Decoder of RQUNet-VAE

Figure 5 shows the detailed architecture of the RQUNet-VAE encoder (left) and decoder (right).

4 Additional Background and definitions

4.1 Hankel matrices and convolutional operations

The following list provides definition of Hankel matrix and its inverse and a set of convolution
operations used in this work.

• Extended Hankel matrix of an image f ∈ R|Ω|:

Hd1|n2
(f) =

(
Hd1(f1) . . . Hd1(fn2

)
)
∈ Rn1×n2d1 ,

with a Hankel matrix:

Hd1(fi) =




fi[1] . . . fi[d1]
...

. . .
...

fi[n1] . . . fi[n1 + d1 − 1]


 ∈ Rn1×d1 .

• The extended Hankel matrix of a multi-channel image f ∈ R|Ω|×P :

Hn1|d2|P
(
f
)

=
(
Hn1|d2(f1) . . . Hn1|d2(fP )

)
.

Given {ek}n1

k=1 as an orthonormal basis of Rn1 ,
{
ẽk = 1√

d1
Hd1(ek)

}n1

k=1
⊂ Rn1×d1 is the or-

thonormal basis of H(n1 , d1) =
{
h : h ∈ Rn1×d1}, i.e. 〈ẽk , ẽl〉F = δkl and an orthonormal

expansion:

Hd1(fi) =

n1∑

k=1

〈
ẽk ,Hd1(fi)

〉
F︸ ︷︷ ︸

=
√
d1fi[k]

ẽk .

• The inverse of an extended Hankel matrices for a matrix g =
(
g1 . . . gn2

)
∈ Rn1×d1n2 , gi ∈

Rn1×d1 as:

H †
d1|n2

(
g
)

=

(
H †
d1

(
g1

)
. . . H †

d1

(
gn2

))
∈ R|Ω| , (1)

having an inverse Hankel matrix:

H †
d1

(
gi

)
=

1√
d1




〈
ẽ1 , gi

〉
F

...〈
ẽn1 , gi

〉
F



∈ Rn1 . (2)

• Filter banks and their family of matrices for the Riesz-Quincunx wavelet:

– scaling filter bank φ ∈ Rd1×d2 ,

– primal wavelet filter bank ψ =
{
ψ1 , . . . , ψP

}
∈ Rd1×d2×P , ψi ∈ Rd1×d2 ,

4



Figure 5: RQUnet-VAE Encoder (left) and Decoder (right)

5



– dual wavelet filter bank ψ̃ =
{
ψ̃1 , . . . , ψ̃P

}
∈ Rd1×d2×P , ψ̃i ∈ Rd1×d2 ,

– having matrix forms

Ψ =
{

Ψ1 , . . . ,ΨP

}
, Ψ̃ =

{
Ψ̃1 , . . . , Ψ̃P

}
such that for p ∈ 1, ..., P :

Ψp =




Ψ1
p

...
Ψd2
p


 =




ψ1
p,1 . . . ψ1

p,d2
...

. . .
...

ψd2p,1 . . . ψd2p,d2


 , Ψ̃p =




Ψ̃1
p

...

Ψ̃d2
p


 =




ψ̃1
p,1 . . . ψ̃1

p,d2
...

. . .
...

ψ̃d2p,1 . . . ψ̃d2p,d2


 ∈ Rd2d1×d2

(3)

and

Φ =




Φ1

...
Φd2


 =




φ1
1 . . . φ1

d2
...

. . .
...

φd21 . . . φd2d2


 , Φ̃ =




Φ̃1

...

Φ̃d2


 =




φ̃1
1 . . . φ̃1

d2
...

. . .
...

φ̃d21 . . . φ̃d2d2


 ∈ Rd2d1×d2 (4)

with φi1i2 [i3] := φ[i3, i2 − i1] , ψi1p,i2 [l] := ψp[i3, i2 − i1] , ψ̃i1p,i2 [i3] := ψ̃p[i3, i2 − i1] and

φi1i2 , ψ
i1
p,i2

, ψ̃i1p,i2 ∈ Rd1 , i1 = 1 , . . . , d2.

– Local bases are defined as: ξi , ξ̃i ∈ Rn1 ,

Ξ =
(
ξ1 . . . ξd

)
, Ξ̃ =

(
ξ̃1 . . . ξ̃d

)
∈ Rn1×d , (5)

• Filter banks and their family of matrices for Unet-VAE:

θ =

{
θ1 , . . . , θQ

}
∈ Rd1×d2×P×Q , θq =

{
θq,1 , . . . , θq,P

}
∈ Rd1×d2×P , θq,p ∈ Rd1×d2 ,

whose matrix form is:

Θ =
{

Θ1 , . . . ,ΘQ

}
∈ Rd1d2P×d2×Q ,Θq =




Θq,1

...
Θq,P


 ∈ Rd1d2P×d2 , (6)

Θq,p =




Θ1
q,p

...
Θd2
q,p


 =




θ1
q,p,1 . . . θ1

q,p,d2
...

. . .
...

θn2
q,p,1 . . . θd2q,p,d2


 =

(
θq,p,1 . . . θq,p,d2

)
∈ Rd1d2×d2 ,

θi1q,p,i2 [i3] := θq,p[i3, i2 − i1] , i1 = 1 , . . . , d2 , θ
i1
q,p,i2

∈ Rd1 .

• Convolution Operations: Given filter bank matrices
(
φ , ψ , θ

)
with their matrix forms

(
Φ ,Ψ ,Θ

)

in (Equations 3-6) respectively, we have convolution operations for a matrix f ∈ Rn1×n2 and

a multi-band image f = {f1 , . . . , fP } ∈ R|Ω|×P :

– 1D convolution:

C
φ
i2
i1

: Rn1 → Rn1 ; C
φ
i2
i1

(fi2) =




d1∑

k1=1

fi2 [k1]φ̌i2i1 [k2 − k1]



n1

k2=1

= Hd1 (fi2)φi2i1 , (7)
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– 2D convolution:

Cφ : Rn1×n2 → Rn1×d2 ; Cφ(f) =




d1∑

k1=1

d2∑

k2=1

f [k1, k2]φ̌[r1 − k1, r2 − k2]



r2=1,...,d2

r1=1,...,n1

,

(8)

– Matrix-family convolution:

C
ψ

: Rn1×n2 → Rn1×d2×P ; C
ψ

(f) =
{
Cψ1

(f) , . . . ,CψP (f)
}

= Hn1|d2(f)Ψ , (9)

– Anisotropic matrix-family convolution:

Cani

ψ
: Rn1×n2×P → Rn1×d2×P ;

Cani

ψ

(
f
)

=
{
Cψ1

(f1) , . . . ,CψP (fP )
}

=
{

Hn1|d2(f1)Ψ1 , . . . ,Hn1|d2(fP )ΨP

}
.

– Isotropic matrix-family convolution:

Ciso

θ
: Rn1×n2×P → Rn1×d2×Q , f̃ =

{
f̃1 , . . . , f̃Q

}
= Ciso

θ

(
f
)

= Hn1|d2|P
(
f
)

Θ

with:

f̃q =
P∑

p=1

Cθq,p(fp) =
P∑

p=1

Hn1|d2(fp)Θq,p = Hn1|d2|P
(
f
)

Θq .

Then, we have the following relation for 2D convolution operation:

Proposition 4.1. A 2D convolution is defined by Hankel matrix by describing it via a 1D convolu-
tion:

Cφ(f)[k1, k2] =

d2∑

i=1

Cφik2
(fi)[k1] =

d2∑

i=1

(
Hd1(fi)φ

i
k2

)
[k1] , k1 = 1, . . . , n1 , k2 = 1, . . . , d2

which is written in a matrix form as:

Cφ

(
f
)

= Hn1|d2

(
f
)

Φ . (10)

Proof. We provide a proof of Proposition 4.1 in Section 5.9.

Moreover, note that we have an adjoint operator C∗
ψ

=
∑P
p=1 C

∗
ψp

: Rn1×d2×P → Rn1×n2 .

And, for d1 = n1 , d2 = n2, we have Cφ(f) = F−1
(
P̂ � F̂

)
, P̂ =

[
P̂
(
ejω
)]
ω∈[−π,π]d

and F̂ =
[
F̂
(
ejω
)]
ω∈[−π,π]d

. Its adjoint operator C∗φ = Cφ̌ : Rn×m → Rn×m is defined with a discrete

time-reversed kernel

φ̌(x1, x2) = φ(−x1,−x2)
F←→ ̂̌φ(ω1, ω2) = φ̂∗(ω1, ω2)

whose discretized version is:

φ̌[k1, k2] = φ[−k1,−k2]
F←→ P̂ ∗

(
ejω1 , ejω2

)
= P̂

(
e−jω1 , e−jω2

)
.
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4.2 Proximal Operators and Moreau-Yosida envelope

Given a non-smooth function P(·) which can be convex or non-convex, its Moreau-Yosida envelope
( 1
µ > 0-Lipschitz differentiable) is

Pµ(·) := inf
u∈Rn1×n2

{
P(u) +

1

2µ
‖u− ·‖2F

}
, (11)

with limµ→0 Pµ(θ) = P(θ) and ‖·‖F is Frobenius norm. Its gradient

∇Pµ(·) =
1

µ

(
· − proxµP(·)

)
: Rn1×n2 → Rn1×n2 (12)

is defined by a proximity operator

proxµP(·) := argmin
u∈Rn1×n2

{
P(u) +

1

2µ
‖u− ·‖2F

}
. (13)

We also note that some activation functions in neural network can be well written as a proximal
operator associated with its abstract function, e.g. Rectified Linear Unit (ReLU) activation function:

proxReLU

(
f
)

= argmin
u∈Rn1×n2

{
PReLU(u) +

1

2

∥∥∥u− f
∥∥∥

2

F

}

=
[
max

(
0 , fi1,i2

)]n1−1,n2−1

i1,i2=0
, f =

[
fi1,i2

]n1−1,n2−1

i1,i2=0
,

where PReLU(·) is a non-defined function.

4.3 Kullback Leibler divergence:

Given distributions F(dz) = f(z)dz and G(dz) = g(z)dz on a domain Rd, their KL-divergence is:

KL
(
F || G

)
= EZ∼F

[
log

f(Z)

g(Z)

]
=

∫

Rd
f(z) log

f(z)

g(z)
dz

≥ 0 . (14)
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5 Proofs

5.1 Proof of Proposition II.1

Due to the unity condition (Equation 1) and H †
d1|n2

◦Hd1|n2
= Id, convolutional framelet decom-

position is:

f = H †
d1|n2

(
Ξ̃ΞTHd1|n2

(
f
)

ΦΦ̃
T
)

where:

cf = ΞTHd1|n2

(
f
)

Φ =




ξT
1
...
ξT
d


Hd1|n2

(
f
) (
φ1 . . . φd2

)
=




ξT
1 Hd1|n2

(
f
)
φ1 . . . ξT

1 Hd1|n2

(
f
)
φd2

...
. . .

...

ξT
d Hd1|n2

(
f
)
φ1 . . . ξT

d Hd1|n2

(
f
)
φd2




=
(
cf,1 . . . cf,d2

)
=
[
cl,sf

]s=1,...,d2

l=1,...,d

where:

cl,sf = ξT
l Hd1|n2

(
f
)
φs = ξT

l

(
Hd1 (f1) . . . Hd1(fn2

)
)



φ1
s
...
φn2
s


 =

n2∑

i=1

ξT
l Hd1(fi)φ

i
s

=

n2∑

i=1

〈
fi ,Cφis (ξl)

〉
`2
.

The last equality is due to uTHd1(a)v = uTCv(a) = 〈a ,Cv(u)〉`2 for u , v , a ∈ Rd.

Now, we expand f :

f = H †
d1|n2

(
Ξ̃cf Φ̃T

)
=

(
H †
d1

(
Ξ̃cf Φ̃1,T

)
. . . H †

d1

(
Ξ̃cf Φ̃n2,T

))

=

(
H †
d1

(∑d2
s=1

∑d
l=1 c

l,s
f ξ̃lφ̃

1,T
s

)
. . . H †

d1

(∑d2
s=1

∑d
l=1 c

l,s
f ξ̃lφ̃

n2,T
s

))

=

(
1
d1

∑d2
s=1

∑d
l=1 c

l,s
f Cφ̃1

s

(
ξ̃l

)
. . . 1

d1

∑d2
s=1

∑d
l=1 c

l,s
f Cφ̃n2

s

(
ξ̃l

))

=
1

d1

d2∑

s=1

(
Cφ̃1

s

(
Ξ̃cf,s

)
. . . Cφ̃n2

s

(
Ξ̃cf,s

))
.

This concludes the proof. Note that the 3rd equality is due to:

Ξ̃cf Φ̃i,T =
(
ξ̃1 . . . ξ̃m

)



c1,1f . . . c1,d2f
...

. . .
...

cd,1f . . . cd,d2f







φ̃i1,T
...

φ̃i,Td2


 =

d2∑

s=1

d∑

l=1

ξ̃lc
l,s
f φ̃

i,T
s ;
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and, the 4th equality is due to:

H †
d1




d2∑

s=1

d∑

l=1

cl,sf ξ̃lφ̃
n2,T
s


 =

1√
d1

d2∑

s=1

d∑

l=1

cl,sf




〈
1√
d1

Hd1

(
e1

)
, ξ̃lφ̃

n2,T
s

〉
F

...〈
1√
d1

Hd1

(
en1

)
, ξ̃lφ̃

n2,T
s

〉

F




=
1

d1

d2∑

s=1

d∑

l=1

cl,sf




〈
e1 ,Cφ̃n2

s

(
ξ̃l

)〉

F
...〈

en1
,Cφ̃n2

s

(
ξ̃l

)〉

F




=
1

d1

d2∑

s=1

d∑

l=1

cl,sf Cφ̃n2
s

(
ξ̃l

)
.

5.2 Proof of Proposition II.2

Given a wavelet expansion acting on a discrete function f ∈ `2
(
Z2
)
:

f [k] =
∑

m∈Z2

〈
f , ϕ̃I(· −m)

〉
`2
ϕI(k −m) +

I∑

i=0

L∑

l=0

∑

m∈Z2

〈
f , ψ̃il(· −m)

〉
`2
ψil(k −m) ,

we compute its scaling and wavelet coefficients in the Fourier domain:

cI [m] =
〈
f , ϕ̃I (· −m)

〉
`2

F←→ ĈI

(
ejω
)

=
∑

m∈Z2

cI [m]e−j〈m,ω〉`2 =
∑

k∈Z2

f [k]
∑

m∈Z2

ˇ̃ϕI (m− k) e−j〈m,ω〉`2 .

(15)

To compute a Fourier transform of ˇ̃ϕI (m− k), we find a Fourier transform of its continuous version
for x ∈ Rd:

ˇ̃ϕI (x− k)
F←→ e−j〈k ,ω〉`2

∫

R2

ˇ̃ϕI(x)e−j〈x ,ω〉`2 dx = ̂̃ϕ∗I(ω)e−j〈k ,ω〉`2 .

By Poisson summation formulae, we have the following identity:

∑

m∈Zd
ˇ̃ϕI (m− k) e−j〈m,ω〉`2 =

∑

m∈Zd
̂̃ϕ∗I (2πm+ ω) e−j〈k ,2πm+ω〉`2

Note ej2πm = 1 ,∀m ∈ Zd; then, scaling coefficient cI [m]
F←→ ĈI

(
ejω
)

in (15) is

ĈI

(
ejω
)

=
∑

k∈Z2

f [k]
∑

m∈Z2

̂̃ϕ∗I (2πm+ ω) e−j〈k ,2πm+ω〉`2 =
∑

m∈Z2

̂̃ϕ∗I (2πm+ ω) F̂
(
ej(2πm+ω)

)

= F̂
(
ejω
)

̂̃ϕ∗I(ω) +

∑

m∈Z2\{0}

̂̃ϕ∗I (2πm+ ω)


 , (16)

where f [k]
F←→ F̂

(
ejω
)
. Similarly, wavelet coefficient dil[m]

F←→ D̂il

(
ejω
)

is:

D̂il

(
ejω
)

= F̂
(
ejω
)

̂̃ψ
∗
il(ω) +

∑

m∈Z2\{0}

̂̃
ψ
∗
il (2πm+ ω)


 . (17)
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Now, we compute wavelet expansion in the Fourier domain as:

F̂
(
ejω
)

=
∑

k∈Z2

f [k]e−j〈k ,ω〉`2

=
∑

m∈Z2

cI [m]
∑

k∈Z2

ϕI (k −m) e−j〈k ,ω〉`2 +
I∑

i=0

L∑

l=0

∑

m∈Z2

dil[m]
∑

k∈Z2

ψil (k −m) e−j〈k ,ω〉`2

=
∑

k∈Z2

ϕ̂I (2πk + ω)
∑

m∈Z2

cI [m]e−j〈m,2πk+ω〉`2 +
I∑

i=0

L∑

l=0

∑

k∈Z2

ψ̂il (2πk + ω)
∑

m∈Z2

dil[m]e−j〈m,2πk+ω〉`2

= ĈI

(
ejω
)

ϕ̂I(ω) +

∑

k∈Z2\{0}
ϕ̂I (2πk + ω)


+

I∑

i=0

L∑

l=0

D̂il

(
ejω
)

ψ̂il(ω) +

∑

k∈Z2\{0}
ψ̂il (2πk + ω)


 .

The 3rd equality is from Poisson summation formulae. We obtain the unity condition (Equation 6)
from Equation 16 and Equation 17. To compensate the error in Equation 6, we modify a primal
wavelet frame at scale 0 as:

1 = ̂̃ϕ∗I(ω)ϕ̂I(ω) +
I∑

i=1

L∑

l=0

̂̃
ψ
∗
il(ω)ψ̂il(ω) +

L∑

l=0

̂̃
ψ
∗
0l(ω)ψ̂0l(ω) + ê(ω)

⇔ ̂̄ψ0(ω) := ψ̂0(ω) +
ê(ω)

̂̃
ψ
∗
0(ω)

.

This is due to a unity property of L-th Riesz transform
∑L
l=0

∣∣∣R̂l(ω)
∣∣∣
2

= 1. Finally, the unity

condition (Equation 6) becomes:

̂̃ϕ∗I(ω)ϕ̂I(ω) +
̂̃
ψ
∗
0(ω)̂̄ψ0(ω) +

I∑

i=1

L∑

l=0

̂̃
ψ
∗
il(ω)ψ̂il(ω) = 1 .

Then, multiply 2 sides with F
(
ejω
)

and take an inverse Fourier transform, we obtain a wavelet
expansion:

F̂
(
ejω
)

= F̂
(
ejω
)
̂̃ϕ∗I(ω)ϕ̂I(ω) +

I∑

i=0

L∑

l=0

F̂
(
ejω
) ̂̃
ψ
∗
il(ω)ψ̂il(ω)

F←→ f [k] =
∑

m∈Z2

〈
f , ϕ̃I(· −m)

〉
`2
ϕI(k −m) +

I∑

i=0

L∑

l=0

∑

m∈Z2

〈
f , ψ̃il(· −m)

〉
`2
ψil(k −m)

with ψ̂0n(ω) = ̂̄ψ0n(ω).

5.3 Proof of Proposition II.3

Denote ψ0 := ϕI and ψ̃0 := ϕ̃I whose matrix forms are Ψ0 = ΦI , Ψ̃0 = Φ̃I ∈ Rn1n2×n2 as in (3),
respectively. Note that Cφ := C∗ϕICϕ̃I . A convolutional form of an expansion (??) is recast with

11



Hankel matrix as:

f = C∗ϕICϕ̃I

(
f
)

+

P∑

p=1

C∗ψpCψ̃p

(
f
)

=

P∑

p=0

C∗ψpCψ̃p

(
f
)

=

P∑

p=0

Hn1|n2

(
wf,p

)
Ψ̌p

=

P∑

p=0

(
Hn1

(
wf,p,1

)
. . . Hn1

(
wf,p,n2

))



Ψ̌1
p

...
Ψ̌n2
p


 =

P∑

p=0

n2∑

i=1

Hn1

(
wf,p,i

) (
ψ̌ip,1 . . . ψ̌ip,d2

)

︸ ︷︷ ︸
=Ψ̌ip

= n1

P∑

p=0

1

n1

n2∑

i=1

(
Cψ̌ip,1

(
Ξ̃wf,p,i

)
. . . Cψ̌ip,n2

(
Ξ̃wf,p,i

))

= n1

P∑

p=0

H †
n1|n2

(
wf,p Ψ̌T

p

)

= n1H
†
n1|n2




P∑

p=0

wf,p Ψ̌T
p


 = n1H

†
n1|n2

(
wf Ψ̌T

)
,

where wavelet coefficient is

wf,p := Cψ̃p

(
f
)

= Hn1|n2

(
f
)

Ψ̃p

=
(
wf,p,1 . . . wf,p,n2

)
∈ Rn1×n2 , p = 0 , . . . , P

⇔ wf :=
(
wf,0 . . . wf,P

)
= Hn1|n2

(
f
)

Ψ̃ .

Note that the last 3rd equality is due to proposition ?? with an identity local basis Ξ̃ = Id. The

2nd last equality is because H †
n1|n2

is a linear operator: Given a matrix gp =
(
gp,1 . . . gp,n2

)
and

constant {ap}Pp=0 ⊂ R, we have:

P∑

p=0

apH
†
n1|n2

(
gp

)
=

(∑P
p=0 apH

†
n1

(
gp,1

)
. . .

∑P
p=0 apH

†
n1

(
gp,n2

))
.

And, by a definition of an inverse Hankel matrix (2), we have:

P∑

p=0

apH
†
n1

(
gp,i

)
=

1√
n1




〈
ẽ1 ,
∑P
p=0 apgp,i

〉
F

...〈
ẽn1

,
∑P
p=0 apgp,i

〉
F




= H †
n1




P∑

p=0

apgp,i


 .

12



Thus, we have a linear property of an extended Hankel matrix:

P∑

p=0

apH
†
n1|n2

(
gp

)
=

(
H †
n1

(∑P
p=0 apgp,1

)
. . . H †

n1

(∑P
p=0 apgp,n2

))

(1)
= H †

n1|n2

((∑P
p=0 apgp,1 . . .

∑P
p=0 apgp,n2

))

= H †
n1|n2




P∑

p=0

apgp


 .

In the end, we have the proposed non-subsampled Riesz-Quincunx wavelet is a framelet decomposi-
tion with an identity local basis:

f = n1H
†
n1|n2

(
Hn1|n2

(
f
)

Ψ̃ Ψ̌T

)
.

Since H †
n1|n2

◦Hn1|n2
= Id, this implies the unity condition:

1

n1
Idn1n2×n1n2

= Ψ̃ Ψ̌T = Φ̃I Φ̌T
I +

P∑

p=1

Ψ̃p Ψ̌T
p .

5.4 Proof of Proposition II.4

The mapping T (i) in Equation 13 is defined with Ciso

θ1(i)
: Rn1×n2×P → Rn1×d2×2iL and Ciso

θ2(i)
:

Rn1×d2×2iL → Rn1×n2×2iL. Given a local basis Ξ
(i)
aug =

(
Id Ξ(i)

)
, an encoder is defined with a

lowpass signal and skip-connecting signal as outputs:

c(i)aug = Ξ(i)T
aug T (i)

(
s(i−1)

)
=




T (i)
(
s(i−1)

)

Ξ(i),TT (i)
(
s(i−1)

)


 =

(
c(i)

s(i)

)
, i = 1 , . . . , I , s(0) = f , s(I) = Rp

(
s(I)
)

(18)

⇔




s(I) = Rp ◦ Ξ(I),TT (I) ◦ . . . ◦ Ξ(1),TT (1)

(
f
)
,

c(i) = T (i) ◦ Ξ(i−1),TT (i−1) ◦ . . . ◦ Ξ(1),TT (1)
(
f
)
, i = 1 , . . . , I ,

(19)

where

c(i) ∈ R2−(i−1)n1×2−(i−1)n2×2(i−1)L , s(i) ∈ R2−(i−1)−1n1×2−(i−1)−1n2×2(i−1)L .

Each subband of the skip connection c(i) =
{
c
(i)
0 , . . . , c

(i)
2iL−1

}
, c

(i)
l ∈ R2−(i−1)n1×2−(i−1)n2 , is passed

to the N -th order Riesz Quincunx wavelet expansion (Equation 11) at scale I ′: i = 0 , . . . , I−1 , l =
0 , . . . , 2iL− 1, k ∈ Z2:

c
(i)
l = Cφ

(
c
(i)
l

)
+

P∑

p=1

C∗ψpCψ̃p

(
c
(i)
l

)
= Cφ(c

(i)
l ) + C∗

ψ
C
ψ̃

(c
(i)
l )

=
(
H2−(i−1)n1|2−(i−1)n2

(c
(i)
l )Φ

)
+

P∑

p=1

(
H2−(i−1)n1|2−(i−1)n2

(
H2−(i−1)n1|2−(i−1)n2

(
c
(i)
l

)
Ψ̃p

)
Ψ̌p

)

⇔ c
(i)
l = WW−1

{
c
(i)
l

}
,

13



which satisfies the condition of perfect reconstruction. Scaling and wavelet functions are defined in
the previous section.

5.5 Proof of Proposition II.5

The proof is straight-forward by noting that a lowpass signal as an encoder’s output in (19)

s(I) = Rp ◦ Ξ(I),TT (I) ◦ . . . ◦ Ξ(1),TT(1)
(
f
)
.

And, unknown parameters are: γm := {γc ,Wµ , bµ} and γs := {γc ,Wσ , bσ}.

5.6 Proof of Proposition II.6

Now, we define an “inverse” mapping of (Equation 15) as a linear perceptron network and a reshape
operation mapping:

F s(·) = uvec (W s ·+bs) : Rd → R2−i−1n1×2−i−1n2×2iL (20)

with W s ∈ R2−(I+1)n1n2L×d and bs ∈ R2−(I+1)n1n2L.

Then, combining Equations 16 and 20, a reconstructed lowpass image generated from the latent
variable y in Equation 16:

ŝ(I) = F s(y) = uvec

(
W sMγm

(
f
)

+ bs
)

+ uvec

((
W sS

1
2
γs

(
f
))
� ε
)

∈ R2−i−1n1×2−i−1n2×2iL , ε
i.i.d.∼ Nd (0d , Idd) .

The last equality is because uvec(·) is a linear operator.

Given an augmented local basis Ξ̃
(i)
aug =

(
IdN B ◦ Ξ̃(i)

)
, a decoder at scale i ∈ {I − 1 , . . . , 0} is

defined by an output encoder and a skip connection ĉ
(i)
aug =

(
c(i) ŝ(i+1)

)
as: ŝ(I) = Fs(y),





ĉ
(i−1)
aug = T̃ (i)

(
ĉ
(i)
aug

)
=
(
c(i−1) ŝ(i)

)
, i = I , . . . , 1 ,

ŝ(0) = T̃ (0)

(
ĉ
(0)
aug

)
, i = 0 ,

(21)

⇔ ŝ(0) = T̃ (0) ◦ T̃ (1) ◦ . . . ◦ T̃ (I−1)
(
c(I−1) ŝ(I)

)
:= T̃I

(
c ,Fs(y)

)
. (22)

Then, we have Proposition II.6.

5.7 Proof of Proposition II.7

Since p
(
y | f

)
= kα

(
y | f

)
, a likelihood of the latent variable in an encoder (Equation 26) is

computed by a marginal likelihood:

p(z) =

∫

F
p
(
z | f

)
p
(
f
)

df = Ef∼F

[
kα

(
z | f

)]
.
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Assume we have a bunch of realization of latent variable z as Z = {zi}nzi=1 ⊂ Rd; then, we have a
maximum of an expected log-marginal-likelihood p(z) as:

α† = argmax
α

Ef∼F

[
log kα

(
Z | f

)]
= argmax

α
Ef∼F


 1

ny

ny∑

i=1

log kα

(
zi | f

)

 , zi i.i.d.∼ Kα

(
z | f

)

which is

(
γ†m , γ

†
s , α

†
)

= argmax
γm,γs,α

Ef∼F


 1

nz

nz∑

i=1

log kα(zi | f)


 , zi i.i.d.∼ Gγm,γs(z | f) = gγm,γs

(
z | f

)
dz

≈ argmax
γm,γs,α

Ef∼F

[
Ez∼Gγm,γs (·|f)

[
log kα

(
z | f

)]]

= argmax
γm,γs,α



Ef∼F


E

z∼Gγm,γs
(
·|f

)
[
log kα(z | f)

]
− Ez∼Gγm,γs (·|f)

[
log gγm,γs(z | f)

]






= argmax
γm,γs,α




−Ef∼F


Ez∼Gγm,γs

(
·|f

)


log

gγm,γs

(
z | f

)

kα

(
z | f

)











= argmin
γm,γs,α

Ef∼F

[
KL

(
Gγm,γs

(
z | f

)
|| Kα

(
z | f

))]
. (23)

In the end, we need to find (γm , γs , θ) that minimize the KL-distance between the true distribution
and its approximated version in Equation 27 over all data F as:

min
γm,γs,α

Ef∼F

[
KL
(
Gγm,γs(z | f) || Kα(z | f)

)]
. (24)

From Bayes’ rule (Equation 27), we derive an evidence lower bound of the KL-divergence in (24):

KL
(
Gγm,γs(z | f) || Kα(z | f)

)

=Ez∼Gγm,γs (·|f)


log

gγm,γs(z | f)

kα(z | f)


 (27)

= Ez∼Gγm,γs (·|f)


log

p(f)gγm,γs(z | f)

hα

(
f | z

)
p(z)




=− E
z∼Gγm,γs

(
·|f

)
[
log hα

(
f | z

)]
+ E

z∼Gγm,γs
(
·|f

)


log

gγm,γs

(
z | f

)

p(z)


+ log p

(
f
)

which is equivalent to:

L
(
Gγm,γs , α ; f

)
:= E

z∼Gγm,γs
(
·|f

)
[
log hα

(
f | z

)]
−KL

[
Gγm,γs

(
z | f

)
|| P(z)

]

= log p
(
f
)
−KL

(
Gγm,γs

(
z | f

)
|| Kα

(
z | f

))

≤ log p
(
f
)
.
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The last inequality is due to KL(· || ·) ≥ 0. Note that, via a reparamization trick from Equation 20

z
i.i.d.∼ Nd

(
Mγm

(
f
)
,diag

{
Sγs

(
f
)})

= Gγm,γs
(
z | f

)
,

⇔ z = Mγm

(
f
)

+ S
1
2
γs

(
f
)
� ε , ε i.i.d.∼ N (0 , Id)

an evidence bound is recast as:

L
(
Gγm,γs , α ; f

)
= Eε∼N (0 ,Id)

[
log hα

(
f | z = Mγm

(
f
)

+ S
1
2
γs

(
f
)
� ε
)]
−KL

[
Gγm,γs

(
z | f

)
|| P(z)

]
.

Then, a minimization (24) is equivalent to maximize an expected evidence bound over all observation
F:

(
γ†m , γ

†
s , α

†
)

= argmax
γm,γs,α

Ef∼F

[
log p

(
f
)
−KL

(
Gγm,γs

(
z | f

)
|| Kα

(
z | f

))]

= argmax
γm,γs,α

Ef∼F

[
L
(
Gγm,γs , α ; f

)]

= argmax
γm,γs,α

1

T

T∑

i=1

L
(
Gγm,γs , α ; fi

)
. (25)

This is because p
(
f
)

is independent to (γm , γs , α).

For choosing P(z) = Nd (0d , Idd) and Gγm,γs
(
z | f

)
= Nd

(
Mγm

(
f
)
,diag

{
Sγs

(
f
)})

, the

KL-divergence term is defined above. From Equation 25, we have a likelihood:

hα

(
f | z

)
= ND

(
f ; Dα

(
c , z
)
, σ2Id

)
∝ exp

(
− 1

2σ2

∥∥∥∥f −Dα

(
c , z
)∥∥∥∥

2

`2

)
. (26)

Then, a minimization (25) becomes the following minimization problem:

(
γ†m , γ

†
s , α

†
)

= argmax
γm ,γs,α



L (γm, γs , α) =

T∑

i=1

L
(
Gγm,γs , α ; fi

)


 . (27)

5.8 Proof of Proposition II.9

We firstly define a vector-valued function for K-clusters:

u : RP → RK ; u
(
fi,l
)

=




u1

(
fi,l
)

...
uK
(
fi,l
)


 , uk

(
fi,l
)
∈ R ,
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whose definition is defined in a matrix form by our proposed RQUnet-VAE as:

u
(
fi

)
:=
[
u
(
fi,l
)]
l∈Ω

=

{
u1

(
fi

)
, . . . , uK

(
fi

)}
∈ Rn1×n2×K , uk

(
fi

)
∈ Rn1×n2

= Ciso

θ
◦Dα

(
Cγc

(
fi

)
,Mγm

(
fi

)
+ S

1
2
γs

(
fi

)
� ε
)
, (28)

where an isotropic matrix-family convolution is for the K-clusters:

Ciso

θ
: R|Ω|×P → R|Ω|×K .

We define distributions for the set
(
F , Fgt

)
as Q

(
fi,l
)

= q
(
fi,l
)

dfi,l ,P
(
fi,l
)

= p
(
fi,l
)

dfi,l and their

densities are:

q
(
fi,l
)

=
[
qk
(
fi,l
)]K
k=1
∈ RK , qk

(
fi,l
)

= softmax
(
u
(
fi,l
))
k

=
exp

(
uk
(
fi,l
))

∑K
h=1 exp

(
uh
(
fi,l
)) ,

p
(
fi,l
)

=
[
pk
(
fi,l
)]K
k=1
∈ RK , pk

(
fi,l
)

= fgt
i,l,k ∈ {0 , 1} ,

K∑

k=1

pk
(
fi,l
)

= 1 ;

then, cross-entropy loss between distributions P and Q is:

H(P ,Q) = −EP [logQ] := −
K∑

k=1

Ef∼F
[
pk(f) log qk(f)

]

= lim
n→∞

− 1

n

n∑

i=1

H

(
fgt
i , u

(
fi

))
,

H

(
fgt
i , u

(
fi

))
=
∑

l∈Ω

K∑

k=1

fgt
i,l,k log softmax

(
u
(
fi,l
))
k
.

The last equality is due to Monte Carlo approximation method.

5.9 Proof of proposition 4.1

We start with a 2D convolution (8)

f̃ = Cφ(f) =
(
f̃1 . . . f̃d2

)
∈ Rn1×d2 , f̃i ∈ Rn1 .
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Then, we rewrite an element of the above 2D convolution as a 1D convolution for a 2D image
f =

(
f1 . . . fn2

)
∈ R|Ω| , fi ∈ Rn1 : r1 = 1, . . . , n1 , r2 = 1, . . . , d2,

f̃ [r1, r2] = Cφ(f)[r1, r2] =

d1∑

k1=1

d2∑

k2=1

f [k1, k2]φ̌[r1 − k1, r2 − k2]

=

d2∑

k2=1




d1∑

k1=1

fk2 [k1]φ̌k2r2 [r1 − k1]




=

d2∑

k2=1

C
φ
k2
r2

(fk2)[r1] := f̃r2 [r1] ,

where column vector notations are

fk2 [k1] := f [k1, k2] , φk2r2 [r1 − k1] := φk2 [r1 − k1, r2] := φ[r1 − k1, r2 − k2] .

In conclusion, we have a useful relation between 2D and 1D convolution operations: k1 = 1, . . . , n1 , k2 =
1, . . . , d2,

f̃k2 [k1] = Cφ(f)[k1, k2] =

d2∑

i=1

Cφik2
(fi)[k1] =

d2∑

i=1

(
Hd1(fi)φ

i
k2

)
[k1] , (29)

where fk2 [k1] := f [k1, k2].

Then, a multi-input-numlti-output convolution is:

f̃ =
(
f̃1 , . . . , f̃d2

)
∈ Rn1×d2 , f̃i ∈ Rn1 ,

=

d2∑

i=1

(
Cφi1(fi) , . . . , Cφid2

(fi)
)

(7)
=

d2∑

i=1

Hn1(fi)
(
φi1 , . . . , φid2

)

︸ ︷︷ ︸
=Φi

= Hn1|d2(f)Φ .

This concludes a relation (8).
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Figure 6: The probability that individual pixels are assigned to the impervious class along sin-
gle horizontal line of pixels in an image during 50 RQUNet-VAE predictions compared to ground
truth. Blue dots correspond to predicted accuracy (right y-axis) whereas the red line corresponds
to the ground truth land cover class (left y-axis). This illustrates the results of variational terms of
RQUNet-VAE.

6 Additional Experiments

While the main paper describes precision, recall, and F1-scores for entire images, this experiment
looks at the accuracy of individual pixels an image to understand where our RQUNet-VAE incurs
errors and where the variational approach is able to identify pixels having low confidence. For this
purpose, we look at one horizontal line of pixels taken from the vertical center of the first noisy image
shown in Figure 2. For each pixel, from the left to the right of the image, Figure 5.9 shows the
ground truth label and the prediction accuracy. We see that for this line of pixels, the ground truth
changes frequently between the impervious and the vegetation (non-impervious) class. We observe
that there are many pixels where RQUNet-VAE provides a prediction accuracy of 1, implying that
the class was predicted correctly in each of 50 runs of RQUNet-VAE (which is not deterministic
due to the variational auto-encoder module). For example, on the very left of Figure 5.9 we observe
that numerous vegetation pixels were classified correctly in all cases. Then however, the ground
truth has a few pixels classified as impervious, which our RQUNet-VAE is not able to capture. For
these pixels, we have an accuracy of 0, meaning that even the repeated iterations of our variational
approach are not able to correctly classify these pixels. Across this horizontal line of pixels we also
have numerous pixel where the variational approach provides a non-binary classification. For these
cases, we provide the accuracy (as the fraction of correct classifications among the 50 runs) as well
as the standard deviation of this accuracy denoted by the whiskers around the point estimate in the
figure. We observe that in these cases, the variational approach allows our RQUNet-VAE to possibly
make better decisions by allowing to base a decision on multiple runs and take the consensus of all
runs.

While these results appear weak due to many miss-classifications, we again reiterate that the
underlying image has been heavily obfuscated with noise (compare the original images in Figure 1
with the noised images in Figure 2) and that the experiments in the main paper show that the classic
U-Net yields worse results, thus showing that our proposed RQUNet-VAE augments the traditional
U-Net architecture by making it more robust to noise.
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