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ABSTRACT
Recent studies have shown remarkable success in universal style
transfer which transfers arbitrary visual styles to content images.
However, existing approaches suffer from the aesthetic-unrealistic
problem that introduces disharmonious patterns and evident ar-
tifacts, making the results easy to spot from real paintings. To
address this limitation, we propose AesUST, a novel Aesthetic-
enhanced Universal Style Transfer approach that can generate
aesthetically more realistic and pleasing results for arbitrary styles.
Specifically, our approach introduces an aesthetic discriminator
to learn the universal human-delightful aesthetic features from a
large corpus of artist-created paintings. Then, the aesthetic fea-
tures are incorporated to enhance the style transfer process via
a novel Aesthetic-aware Style-Attention (AesSA) module. Such
an AesSA module enables our AesUST to efficiently and flexibly
integrate the style patterns according to the global aesthetic chan-
nel distribution of the style image and the local semantic spatial
distribution of the content image. Moreover, we also develop a
new two-stage transfer training strategy with two aesthetic regu-
larizations to train our model more effectively, further improving
stylization performance. Extensive experiments and user studies
demonstrate that our approach synthesizes aesthetically more har-
monious and realistic results than state of the art, greatly narrowing
the disparity with real artist-created paintings. Our code is available
at https://github.com/EndyWon/AesUST.

CCS CONCEPTS
• Applied computing → Fine arts; • Computing methodolo-
gies → Rendering; Image manipulation.
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1 INTRODUCTION
The task of style transfer is to transfer the artistic style from a refer-
ence image to a content image, e.g., transferring the style of Vincent
Van Gogh’s Sunflower to an everyday photograph. This task has ex-
perienced significant improvements following the seminal work of
Gatys et al. [14–16], with aspects ranging from efficiency [26, 33, 50],
quality [32, 38, 43, 47, 55], generalization [4, 12, 22, 24, 36], diver-
sity [35, 51, 54], and user control [3, 17, 28].

As a central problem of style transfer, universal style transfer
(UST) seeks to achieve generalization, quality, and efficiency simul-
taneously [36]. Depending on the ways of manipulating content
and style features, the existing UST approaches can be roughly
divided into two categories, i.e., global statistics-based and local
patch-based [25]. As representatives of the former, AdaIN [22],
WCT [36], LST [34], AAST [21], and ArtFlow [1] transform the
content features to match the second-order global statistics of style
features. As representatives of the latter, SANet [43], MAST [11],
TPFR [49], AdaAttN [40], and IECAST [5] utilize patch-based deco-
rators or attention mechanisms to locally fuse style features into
content features. While achieving favorable results, fast speeds,
and good generalizations, these approaches often produce dishar-
monious patterns and evident artifacts, making their results easily
distinguishable from real paintings (see Fig. 1). On the contrary, an
excellent stylized artwork that can be faked as real should be as
realistic as possible in human aesthetics, i.e., its artistic characteris-
tics, such as colors, strokes, tones, textures, etc, all exist in harmony
and are visually pleasing. Therefore, we define this problem as the
aesthetic-unrealistic problem and provide the following analyses:

For global statistics-based approaches [1, 21, 22, 34, 36], the
aesthetic-unrealistic problem appears since the global statistics
match the disordered style patterns without considering their local
distributions [16]. Thus, they may often integrate messy textures
into the content target. While for local patch-based approaches [5,
11, 40, 43, 49], the style patterns are integrated to greedily match
the local structure distribution of the content image, which is prone
to introduce artifacts and disharmonious patterns [58]. Therefore,
the leading cause of the aesthetic-unrealistic problem lies in the
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Figure 1: Exemplar stylization results. Existing UST approaches (column 4-8) suffer from the aesthetic-unrealistic problem
that introduces disharmonious patterns and evident artifacts, making their results easily distinguishable from real paintings.
Our method (column 3) synthesizes aesthetically more realistic and pleasing results, greatly narrowing the disparity with real
artist-created paintings.

inappropriate or insufficient considerations on the integration of
style patterns.

Based on the above analyses, the current question has been trans-
formed to how to integrate style patterns in an aesthetically realistic
and pleasing way? However, the subjective characteristics of the
problem bring great challenges. There are no absolute standards for
measuring the aesthetic quality of a painting [31]. Different artists
can have very different ideas towards aesthetics. Therefore, to side-
step such a dilemma, we explore another perspective to address the
question. Our insight is based on Immanuel Kant’s famous saying,
art is both subjective and universal. Each individual person may
have his/her own taste, but a given piece of art can also appeal
to a large number of people across cultures and history [23]. We
argue that the artist-created paintings may share some notable
universal characteristics of human-delightful aesthetics (e.g., har-
monious patterns and few artifacts), and we can learn and leverage
these aesthetics to produce aesthetically more realistic and pleasing
results. That is to say, we can utilize these learned universal aes-
thetics to guide the integration of style patterns, without defining
an elaborate aesthetic criterion.

Motivated by the arguments above, we propose a novelAesthetic-
enhanced Universal Style Transfer (AesUST) approach that aims to
generate aesthetically more realistic and pleasing results for arbi-
trary styles. Our AesUST is inspired by the recent great success
of Generative Adversarial Networks (GANs) [18] in generating
domain-realistic results. Specifically, we introduce an aesthetic
discriminator to learn the universal human-delightful aesthetic
characteristics from the domain of a large corpus of artist-created
paintings. These paintings are created by numerous artists, thus
containing some universal artist-independent and human-delightful
aesthetics. The aesthetic discriminator plays two roles here: (i) an
opponent that teaches the generator to produce realistic painting-
like results via playing a min-max game, (ii) a feature extractor that
extracts the aesthetic features to enhance the style transfer process.
Notably, we also propose a novel Aesthetic-aware Style-Attention

(AesSA) module to incorporate the aesthetic features with the con-
tent and style features. Such an AesSAmodule enables our approach
to efficiently and flexibly integrate the style patterns according to
the global aesthetic channel distribution of the style image and
the local semantic spatial distribution of the content image, thus
helping produce aesthetically more realistic and pleasing results.
A remaining issue of our approach is how to perform adversarial
training with traditional style transfer training. To this end, we de-
velop a new two-stage transfer training strategy with two aesthetic
regularizations to train our model more effectively, further improv-
ing stylization performance. We conduct extensive experiments
as well as user studies to demonstrate the effectiveness and supe-
riority of our approach. Compared to the state-of-the-art (SOTA)
UST algorithms, our AesUST can synthesize aesthetically more
harmonious and realistic results, greatly narrowing the disparity
with real artist-created paintings.

In summary, our contributions are threefold:

• We reveal the aesthetic-unrealistic problem in existing UST
algorithms, and propose a novel aesthetic-enhanced universal
style transfer approach, i.e., AesUST, to generate aesthetically
more realistic and pleasing results for arbitrary styles.

• We introduce a novel aesthetic-aware style-attention (AesSA)
module to achieve global aesthetic-guided and local structure-
guided style integration.

• A new two-stage transfer training strategy with two aes-
thetic regularizations is also developed to train the networks
more effectively, further improving stylization performance.

2 RELATEDWORK
Global Statistics-based Methods. The seminal work of Gatys et
al. [14, 16] opened up the era of neural style transfer [25]. They
used the global statistics, i.e., the correlations between features
extracted from a pre-trained Deep Convolutional Neural Network
(DCNN), to represent the style of an image. Albeit the stunning
results, their method incurs a rather slow speed in practical usage.
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Figure 2: Overview of our proposed AesUST. Note that we apply a two-stage transfer training strategy with a transfer learning
fashion: (1) At stage I, the aesthetic discriminator only acts as the discriminator, andwe pre-train the generator (AesSAmodule
and decoder) using VGG features only. (2) At stage II, the aesthetic discriminator acts as both the discriminator and feature
extractor, and we fine-tune the generator using the aesthetic features extracted from the aesthetic discriminator. The aesthetic
discriminator is trained when maximizing the adversarial loss L𝑎𝑑𝑣 and fixed when minimizing other losses like content loss
L𝑐 and style loss L𝑠 . For clarity, we omit some stage-specific losses here, i.e., identity loss [43] for stage I, and our proposed
aesthetic regularization losses (see Fig. 4) for stage II.

To address this issue, Johnson et al. [26] and Ulyanov et al. [50]
achieved fast style transfer, but the model is limited to a pre-defined
style. Thereafter, many successors were advanced to improve the
performance in different aspects, including multi-style transfer [4,
12], universal style transfer [10, 22, 24, 34, 36, 41, 42], diversified
style transfer [35, 51, 54], unbiased style transfer [1], and domain-
aware style transfer [20], etc. Unlike these methods, the proposed
approach aims to achieve aesthetic-enhanced style transfer, which
considers the universal human-delightful aesthetics to improve the
quality of universal style transfer.

Local Patch-based Methods. Li and Wand [32, 33] first com-
bined Markov Random Fields (MRFs) and DCNNs to achieve local
patch-based neural style transfer. They represented the style pat-
terns by a set of neural patches and greedily integrated them to
match the local structure prior of the content image. Later, Chen
and Schmidt [9] proposed style-swap for fast patch-based style
transfer. Based on it, Sheng et al. [47] designed Avatar-Net for
zero-shot multi-scale style decoration. Park and Lee [43], Deng et
al. [11], and Liu et al. [40] utilized attention mechanism to integrate
style patterns into content features. Other extensions include image
analogy [19, 37], semantic style transfer [3, 53, 57], diversified style
transfer [56], and multi-modal style transfer [58], etc. While these
methods can integrate semantically more coherent style patterns
into the content features, the greedy structure-guided distributions
are prone to introduce artifacts and disharmonious patterns. By
contrast, our proposed approach considers both structure-guided
and aesthetic-guided distributions to integrate the style patterns,
leading to aesthetically more harmonious and realistic results.

Aesthetic-related Methods. While there have been some ef-
forts [2, 31, 55] to explore the automatic evaluation of aesthetic
quality, they are confined to the limited aspects, and so far, no uni-
fied criterion has been reached. Similar to our method, Sanakoyeu et

al. [46], Kotovenko et al. [29, 30], Chen et al. [6, 7], and Zuo et
al. [59] also used GAN-based frameworks for style transfer. How-
ever, their discriminators are trained to distinguish the aesthetics of
a specific artist, e.g., Claude Monet, while ours captures the artist-
independent aesthetics. Moreover, their models can only transfer
the style of a pre-defined artist, while ours can achieve universal
style transfer. Recently, Svoboda et al. [49] provided a two-stage
peer-regularization model based on graph attention and GAN for
arbitrary style transfer, but it suffers from the style-uncontrollable
problem [6]. Chen et al. [5] used internal-external learning and
contrastive learning with GAN to improve the performance of
SANet [43], but it may produce implausible stylizations for com-
plex textures and sometimes still introduces noticeable artifacts.
Furthermore, Hu et al. [21] proposed aesthetic-aware style transfer,
but their aesthetics are defined as a combination of only color and
texture. By contrast, we provide a more general definition of aes-
thetics, i.e., the universal human-delightful characteristics learned
from a large corpus of artist-created paintings.

3 APPROACH
This part first introduces the overall pipeline of our proposed ap-
proach in Sec. 3.1, and then follows it up by providing the details of
each component in Sec. 3.2. The two-stage transfer training strategy
is specified in Sec. 3.3.

3.1 Overview
Let Φ𝑐 and Φ𝑠 be the datasets of content photographs and real
artist-created paintings, respectively. Our goal is to learn a style
transformation that can transfer the style of an arbitrary painting
𝐼𝑠 ∈ Φ𝑠 to a content target 𝐼𝑐 ∈ Φ𝑐 . The key insight is utilizing the
aesthetic characteristics learned from Φ𝑠 to enhance the style trans-
formation to synthesize aesthetically more realistic and pleasing
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results. To achieve this goal, we propose a novel aesthetic-enhanced
universal style transfer framework, termed AesUST.

As shown in Fig. 2, our AesUST consists of four main compo-
nents: (1) A pre-trained VGG [48] encoder 𝐸𝑣𝑔𝑔 that projects images
into multi-level feature embeddings. (2) An aesthetic-aware style-
attention module 𝐴𝑒𝑠𝑆𝐴 that appropriately integrates the style pat-
terns into the content features under the guidance of aesthetic and
structure distributions. (3) A decoder network 𝐷 that recovers the
feature embeddings to the stylized images. (4) An aesthetic discrimi-
natorD𝑎 that teaches the decoder to generate realistic painting-like
results and also extracts the aesthetic features to enhance the style
transfer process. The overall pipeline1 is as follows:

(1) From a content image 𝐼𝑐 and style image 𝐼𝑠 pair, we first
extract the VGG content feature 𝐹𝑐 := 𝐸𝑣𝑔𝑔 (𝐼𝑐 ) and style
feature 𝐹𝑠 := 𝐸𝑣𝑔𝑔 (𝐼𝑠 ) at a certain layer (e.g., 𝑅𝑒𝑙𝑢_4_1) of
the encoder 𝐸𝑣𝑔𝑔 .

(2) We then extract the aesthetic feature of the style image 𝐼𝑠 us-
ing the aesthetic discriminator D𝑎 , denoted as 𝐹𝑎 := D𝑎 (𝐼𝑠 ).

(3) After obtaining the feature maps 𝐹𝑐 , 𝐹𝑠 , and 𝐹𝑎 , we feed them
into an 𝐴𝑒𝑠𝑆𝐴 module, producing the output feature map
𝐹𝑐𝑠 := 𝐴𝑒𝑠𝑆𝐴(𝐹𝑐 , 𝐹𝑠 , 𝐹𝑎).

(4) Finally, the stylized output image 𝐼𝑐𝑠 is synthesized by feed-
ing 𝐹𝑐𝑠 into the decoder 𝐷 , i.e., 𝐼𝑐𝑠 := 𝐷 (𝐹𝑐𝑠 ).

3.2 Component Details
Encoder-Decoder Module. Following [22]. We employ the pre-
trained VGG-19 network [48] as our encoder 𝐸𝑣𝑔𝑔 and fix it all the
time. The decoder 𝐷 is trainable, which mostly mirrors the encoder,
but with all pooling layers replaced by the nearest up-sampling.

Aesthetic Discriminator. Inspired by the recent remarkable
success of GANs [18] in generating domain-realistic results, we in-
troduce an aesthetic discriminator 𝐷𝑎 to learn the universal human-
delightful aesthetic features from a large corpus of artist-created
paintings. Basically, the aesthetic discriminator 𝐷𝑎 is to distinguish
between the fake paintings and the real paintings. To achieve so,
𝐷𝑎 should perform a sort of encodings of the input paintings be-
fore it can judge what paintings are real and what are fake [8, 45].
These encodings, therefore, can be deemed as the notable universal
aesthetic features that determine the realism and delicacy of the
paintings. Motivated by this, we contend two roles of the aesthetic
discriminator: (i) an opponent that teaches the generator to pro-
duce realistic painting-like results via playing a min-max game,
and (ii) a feature extractor that extracts the aesthetic features to
enhance the style transfer process. Such designations bring two
main advantages: (1) The framework can be more informative since
the adversarial training helps it fuse the domain knowledge of
the artist-created paintings. (2) The style transfer networks can be
trained more effectively, as the aesthetic discriminator provides
additional guidance for better style transfer.

In detail, our aesthetic discriminator follows the multi-scale ar-
chitecture of [52], which consists of three identical encoders (𝐸1,
𝐸2, and 𝐸3) and classifiers (C1, C2, and C3). Specifically, we first
downsample the real and fake paintings by a factor of 2 and 4 to
create an image pyramid of 3 scales. Then, each pair of encoders
and classifiers (e.g., 𝐸1 and C1) is used to differentiate real and fake

1The pipeline will vary slightly at different training stages in later Sec. 3.3.
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Figure 3: Aesthetic-aware style-attention (AesSA) module.
𝐹𝑐 , 𝐹𝑠 , and 𝐹𝑎 are content, style, and aesthetic features, re-
spectively. “𝑁𝑜𝑟𝑚” denotes themean-variance channel-wise
normalization.

paintings at one scale. This multi-scale mechanism helps our aes-
thetic discriminator capture the aesthetic features from different
scales, and also guide the style transfer networks to produce more
delicate results with coarse-to-fine style patterns. The multi-scale
aesthetic discriminator is illustrated in Fig. 2, and the detailed ar-
chitecture can be found in appendix. We sum the encodings of 𝐸1,
𝐸2, and 𝐸3 to obtain the aesthetic features as follows:

𝐹𝑎 := D𝑎 (𝐼𝑠 ) := 𝐸1 (𝐼𝑠 ) ⊕ 𝐸2 (𝐼 ↓
2

𝑠 )↑
2
⊕ 𝐸3 (𝐼 ↓

4

𝑠 )↑
4
, (1)

where ⊕ denotes element-wise summation, ↓𝑖 (↑𝑖 ) denotes down-
sampling (up-sampling) operation with factor 𝑖 .

Aesthetic-aware Style-Attention (AesSA)Module. To incor-
porate the aesthetic features with the VGG content and style fea-
tures, we propose the AesSA module, which can adaptively inte-
grate the style patterns into the content features via considering
both global aesthetic and local structure features with the atten-
tion mechanism. As shown in Fig. 3, AesSA works in two steps:
(1) globally enhancing the style features according to the aesthetic
channel distributions of the aesthetic features, and (2) locally in-
tegrating the enhanced style features according to the semantic
spatial distributions of the content features.

Step I: Global aesthetic-guided style enhancement. We first en-
hance the style features with the aesthetic features extracted from
the style images. Inspired by [11, 13, 16] that the channel-wise
inner product between the vectorized features can represent the
global style well, and the channel attention can effectively improve
the feature representation; we introduce the aesthetic attention
to globally enhance the VGG style features according to the chan-
nel distributions of the aesthetic features. Specifically, given the
style feature 𝐹𝑠 ∈ R𝐶×𝐻𝑠×𝑊𝑠 from VGG and the aesthetic feature
𝐹𝑎 ∈ R𝐶×𝐻𝑠×𝑊𝑠 from discriminator (where 𝐻𝑠 and 𝑊𝑠 are the
height and width,𝐶 is the number of channels), we first obtain their
transformed and vectorized features:

𝐹𝑎 := Γ(𝑓𝑎 (𝐹𝑎)) ∈ R𝐶×𝐻𝑠𝑊𝑠 ,

𝐹 1𝑠 := Γ(𝑓 1𝑠 (𝐹𝑠 )) ∈ R𝐶×𝐻𝑠𝑊𝑠 ,

𝐹 2𝑠 := Γ(𝑓 2𝑠 (𝐹𝑠 )) ∈ R𝐶×𝐻𝑠𝑊𝑠 ,

(2)

where Γ denotes the feature vectorization operation, 𝑓𝑎 , 𝑓 1𝑠 , and 𝑓 2𝑠
are 1 × 1 learnable convolutions.
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Then, we calculate the aesthetic attention between 𝐹𝑎 and 𝐹 1𝑠 as
follows:

𝐴𝑎 := 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐹𝑎 ⊗ (𝐹 1𝑠 )𝑇 ) ∈ R𝐶×𝐶 , (3)
where ⊗ is matrix multiplication, 𝑇 is transpose operation.

Finally, we enhance the style feature 𝐹𝑠 through a matrix multi-
plication and an element-wise summation:

𝐹𝑠𝑎 := 𝑓 1𝑜𝑢𝑡 (Γ̂(𝐴𝑎 ⊗ 𝐹 2𝑠 )) ⊕ 𝐹𝑠 ∈ R𝐶×𝐻𝑠×𝑊𝑠 , (4)

where Γ̂ denotes the reverse operation of Γ that reshapes the vector-
ized features to the original size, 𝑓 1𝑜𝑢𝑡 is 1× 1 learnable convolution.

Step II: Local structure-guided style integration. After enhanc-
ing the style features under the aesthetic guidance, we want to
integrate them into the content features, so as to achieve aesthetic-
aware style transfer. Following SANet [43], we utilize the style
attention to locally integrate the enhanced style patterns accord-
ing to the structure distributions of the content features. Given
the aesthetic-enhanced style feature 𝐹𝑠𝑎 ∈ R𝐶×𝐻𝑠×𝑊𝑠 and con-
tent feature 𝐹𝑐 ∈ R𝐶×𝐻𝑐×𝑊𝑐 , we first obtain their transformed and
vectorized features as follows:

𝐹𝑐 := Γ(𝑓𝑐 (𝑁𝑜𝑟𝑚(𝐹𝑐 ))) ∈ R𝐶×𝐻𝑐𝑊𝑐 ,

𝐹 1𝑠𝑎 := Γ(𝑓 1𝑠𝑎 (𝑁𝑜𝑟𝑚(𝐹𝑠𝑎))) ∈ R𝐶×𝐻𝑠𝑊𝑠 ,

𝐹 2𝑠𝑎 := Γ(𝑓 2𝑠𝑎 (𝐹𝑠𝑎)) ∈ R𝐶×𝐻𝑠𝑊𝑠 ,

(5)

where 𝑁𝑜𝑟𝑚 denotes the mean–variance channel-wise normaliza-
tion, 𝑓𝑐 , 𝑓 1𝑠𝑎 , and 𝑓 2𝑠𝑎 are 1 × 1 learnable convolutions.

Then, we calculate the style attention between 𝐹𝑐 and 𝐹 1𝑠𝑎 as
follows:

𝐴𝑠 := 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 ((𝐹𝑐 )𝑇 ⊗ 𝐹 1𝑠𝑎) ∈ R𝐻𝑐𝑊𝑐×𝐻𝑠𝑊𝑠 . (6)

Finally, the output feature 𝐹𝑐𝑠 is achieved by:

𝐹𝑐𝑠 := 𝑓 2𝑜𝑢𝑡 (Γ̂(𝐹 2𝑠𝑎 ⊗ (𝐴𝑠 )𝑇 )) ⊕ 𝐹𝑐 ∈ R𝐶×𝐻𝑐×𝑊𝑐 , (7)

where 𝑓 2𝑜𝑢𝑡 is 1 × 1 learnable convolution.
Discussions. In summary, our AesSA performs style integration

considering both global aesthetic guidance and local structure guid-
ance. It is closely related to the style attention mechanisms of
SANet [43] and MAST [11]. There are, however, two main differ-
ences: (1) The inputs of AesSA include not only the VGG content
feature 𝐹𝑐 and style feature 𝐹𝑠 but also the aesthetic feature 𝐹𝑎 from
the discriminator, integrating different sorts of encoding informa-
tion. (2) The AesSA is optimized using not only the traditional style
transfer training but also the adversarial training with two new
aesthetic regularizations. Therefore, our AesSA can appropriately
enhance the style patterns and embed them into the content fea-
tures by mapping the global channel-wise relationship between the
style and aesthetic features and the local point-wise relationship
between the content and enhanced style features through learning,
helping produce aesthetically more realistic and pleasing results.

3.3 Two-Stage Transfer Training
Our framework involves two training processes: adversarial train-
ing and traditional style transfer training. The adversarial training
is to pursue domain transfer, which encourages that the generated
results look like real artist-created paintings. The traditional style
transfer training is to achieve universal style transfer, which aims
to transfer arbitrary given styles to the content target.

As we introduced in the previous sections, the encodings of
the aesthetic discriminator D𝑎 are utilized to enhance the style
transfer process. However, since the ability of the discriminator is
gradually improved in the confrontation with the generator, the
features it extracts are not always meaningful, especially at the
beginning of the adversarial training. The meaningless features will
deteriorate the style integration and affect the style transfer training.
To overcome this defect, we develop a two-stage transfer training
strategy to train the proposed framework in a transfer learning
fashion which contains a pre-training stage and a fine-tuning stage.
The details of each stage and loss functions are provided below.

Stage I: Pre-training. Since the features extracted from the
aesthetic discriminator D𝑎 are meaningless at the beginning of the
adversarial training, we do not inject them into the AesSA module
at this stage to guide the style transfer. Instead, we directly exploit
the VGG style feature 𝐹𝑠 as the aesthetic feature 𝐹𝑎 to feed into the
AesSA module. In this way, we can pre-train the AesSA module
and the decoder to provide a good initialization for the fine-tuning
of the next stage. The aesthetic discriminator D𝑎 here only acts as
the discriminator, which plays the min-max game as follows:

max
D𝑎

min
𝐺

L1
𝑎𝑑𝑣

:= E
𝐼𝑠∼Φ𝑠

[𝑙𝑜𝑔(D𝑎 (𝐼𝑠 ))]

+ E
𝐼𝑐∼Φ𝑐 ,𝐼𝑠∼Φ𝑠

[𝑙𝑜𝑔(1 − D𝑎 (𝐺 (𝐼𝑐 , 𝐼𝑠 )))],

𝐺 (𝐼𝑐 , 𝐼𝑠 ) = 𝐷 (𝐴𝑒𝑠𝑆𝐴(𝐸𝑣𝑔𝑔 (𝐼𝑐 ), 𝐸𝑣𝑔𝑔 (𝐼𝑠 ), 𝐸𝑣𝑔𝑔 (𝐼𝑠 ))),

(8)

where our generator 𝐺 consists of a fixed VGG encoder 𝐸𝑣𝑔𝑔 , a
decoder 𝐷 , and a feature transform module 𝐴𝑒𝑠𝑆𝐴.

For universal style transfer, similar to [22, 43], we use the pre-
trained VGG encoder 𝐸𝑣𝑔𝑔 to compute the content loss L𝑐 and style
loss L𝑠 as follows:

L𝑐 :=
𝐿𝑐∑︁
𝑖=1

∥ 𝑁𝑜𝑟𝑚(𝜙𝑖 (𝐼𝑐𝑠 )) − 𝑁𝑜𝑟𝑚(𝜙𝑖 (𝐼𝑐 )) ∥2,

L𝑠 :=
𝐿𝑠∑︁
𝑖=1

(∥ 𝜇 (𝜙𝑖 (𝐼𝑐𝑠 )) − 𝜇 (𝜙𝑖 (𝐼𝑠 )) ∥2

+ ∥ 𝜎 (𝜙𝑖 (𝐼𝑐𝑠 )) − 𝜎 (𝜙𝑖 (𝐼𝑠 )) ∥2),

(9)

where 𝜇 and 𝜎 are the channel-wise mean and standard deviation,
respectively. 𝜙𝑖 denotes the 𝑖𝑡ℎ layer of VGG encoder 𝐸𝑣𝑔𝑔 . We use
layers {𝑅𝑒𝑙𝑢4_1, 𝑅𝑒𝑙𝑢5_1} to compute the content loss, and layers
{𝑅𝑒𝑙𝑢1_1, 𝑅𝑒𝑙𝑢2_1, 𝑅𝑒𝑙𝑢3_1, 𝑅𝑒𝑙𝑢4_1, 𝑅𝑒𝑙𝑢5_1} to compute the style
loss.

Moreover, inspired by [11, 43], we also use an identity loss L𝑖𝑑

at this stage to constrain the identity mapping relations between
content features and style features, which helps better pre-train the
generator to maintain the content structure and style characteristics
simultaneously [43].

L𝑖𝑑 :=∥ 𝐼𝑐𝑐 − 𝐼𝑐 ∥2 + ∥ 𝐼𝑠𝑠 − 𝐼𝑠 ∥2, (10)

where 𝐼𝑐𝑐 denotes the generated results using a photograph 𝐼𝑐 ∈ Φ𝑐
as both content and style images, and 𝐼𝑠𝑠 denotes the generated
results using a painting 𝐼𝑠 ∈ Φ𝑠 as both content and style images.

Full Objective of Stage I. At this stage, the aesthetic discrimi-
nator’s final objective is

max
D𝑎

L1
𝑎𝑑𝑣

; (11)
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Figure 4: Our proposed two new aesthetic regularizations.

while the generator’s final objective is

min
𝐺

𝜆1L1
𝑎𝑑𝑣

+ 𝜆2L𝑐 + 𝜆3L𝑠 + 𝜆4L𝑖𝑑 , (12)

where 𝜆1, 𝜆2, 𝜆3, and 𝜆4 are the trade-off weights which are set to
𝜆1 = 5, 𝜆2 = 1, 𝜆3 = 1, and 𝜆4 = 50.

Stage II: Fine-tuning. After rounds of adversarial training at
stage I, the aesthetic discriminator 𝐷𝑎 is capable of extracting the
meaningful aesthetic encodings of input images. Thus, at this stage,
we inject the aesthetic feature of style image into the AesSAmodule
to provide the global aesthetic guidance for style transfer. The
aesthetic discriminator D𝑎 here acts as both the discriminator and
the feature extractor, which plays a new min-max game as follows:

max
D𝑎

min
𝐺

L2
𝑎𝑑𝑣

:= E
𝐼𝑠∼Φ𝑠

[𝑙𝑜𝑔(D𝑎 (𝐼𝑠 ))]

+ E
𝐼𝑐∼Φ𝑐 ,𝐼𝑠∼Φ𝑠

[𝑙𝑜𝑔(1 − D𝑎 (𝐺 (𝐼𝑐 , 𝐼𝑠 )))],

𝐺 (𝐼𝑐 , 𝐼𝑠 ) = 𝐷 (𝐴𝑒𝑠𝑆𝐴(𝐸𝑣𝑔𝑔 (𝐼𝑐 ), 𝐸𝑣𝑔𝑔 (𝐼𝑠 ),D𝑎 (𝐼𝑠 ))),

(13)

here the generator 𝐺 consists of 𝐸𝑣𝑔𝑔 , 𝐷 , 𝐴𝑒𝑠𝑆𝐴, and the aesthetic
discriminator 𝐷𝑎 . 𝐷𝑎 is trained when maximizing L𝑎𝑑𝑣 , and fixed
when minimizing L𝑎𝑑𝑣 .

We also optimize the content loss L𝑐 and style loss L𝑠 defined in
Eq. (9) to maintain the generator’s generalization ability for univer-
sal style transfer. Moreover, to train the networks more effectively
and further elevate the stylization performance, we introduce two
new aesthetic regularizations at this stage, as shown in Fig. 4.

The form of the first aesthetic regularization L𝐴𝑅1 is similar
to the identity loss defined in Eq. (10), but we utilize the gener-
ated result as content image, style image, and aesthetic guidance
simultaneously.

L𝐴𝑅1 :=∥ 𝐼𝑐𝑠 |𝑠 − 𝐼𝑐𝑠𝑐𝑠 |𝑐𝑠 ∥2, (14)

where 𝐼𝑐𝑠 |𝑠 denotes the generated result using a photograph 𝐼𝑐 ∈ Φ𝑐
as content image and a painting 𝐼𝑠 ∈ Φ𝑠 as both style image and aes-
thetic guidance. 𝐼𝑐𝑠𝑐𝑠 |𝑐𝑠 denotes the generated result using 𝐼𝑐𝑠 |𝑠 as
content image, style image, and aesthetic guidance simultaneously.
Through this way, we can not only constrain the identity mapping
relations like identity loss, but also pull the content feature, style
feature, and aesthetic feature extracted from the generated result
𝐼𝑐𝑠 |𝑠 close to those extracted from the content image 𝐼𝑐 and style
image 𝐼𝑠 , thus improving the performance.

To further encourage the guidance of aesthetic features and pre-
vent the networks from ignoring the aesthetic signals, we propose
the second aesthetic regularization L𝐴𝑅2 to explicitly enforce the
one-to-one mapping between the channel-wise aesthetic features
extracted from the style image 𝐼𝑠 and the generated result 𝐼𝑐𝑠 |𝑠 .

L𝐴𝑅2 := ∥ 𝜇 (D𝑎 (𝐼𝑠 )) − 𝜇 (D𝑎 (𝐼𝑐𝑠 |𝑠 )) ∥2
+ ∥ 𝜎 (D𝑎 (𝐼𝑠 )) − 𝜎 (D𝑎 (𝐼𝑐𝑠 |𝑠 )) ∥2 .

(15)

This kind of aesthetic regularization can help the model preserve
aesthetically more pleasing style patterns, which will be clarified
by our experiments in later Sec. 4.3.

Full Objective of Stage II. At this stage, the aesthetic discrimi-
nator’s final objective is

max
D𝑎

L2
𝑎𝑑𝑣

; (16)

while the generator’s final objective is

min
𝐺

𝜆5L2
𝑎𝑑𝑣

+ 𝜆6L𝑐 + 𝜆7L𝑠 + 𝜆8L𝐴𝑅1 + 𝜆9L𝐴𝑅2, (17)

where 𝜆5, 𝜆6, 𝜆7, 𝜆8, and 𝜆9 are the trade-off weights which are set
to 𝜆5 = 5, 𝜆6 = 1, 𝜆7 = 1, 𝜆8 = 0.5, and 𝜆9 = 500.

4 EXPERIMENTAL RESULTS
4.1 Implementation Details
We follow the multi-level strategy of [43] by integrating two AesSA
modules on 𝑅𝑒𝑙𝑢4_1 and 𝑅𝑒𝑙𝑢5_1 layers of VGG-19 [48], respec-
tively. The network is trained by using MS-COCO [39] as the con-
tent photograph dataset Φ𝑐 , and WikiArt [44] as the artist-created
painting dataset Φ𝑠 . Both datasets contain roughly 80000 train-
ing images. We use the Adam optimizer [27] with a learning rate
of 0.0001 and a mini-batch size of 4 content-style image pairs at
both two training stages. Each stage is trained for 80000 iterations.
During training, all images are loaded with the smaller dimension
rescaled to 512 while preserving the aspect ratio, and then randomly
cropped to 256×256 pixels. Since our network is fully convolutional,
it can handle arbitrary input size during testing. All experiments
are conducted on an NVIDIA RTX 2080 8GB GPU.

4.2 Comparisons
We compare our proposed AesUST against ten SOTA UST ap-
proaches including five global statistics-based methods (AdaIN [22],
WCT [36], LST [34], AAST [21], and ArtFlow [1]) and five local
patch-based methods (SANet [43], MAST [11], TPFR [49], AdaAttN
[40], and IECAST [5]).

Qualitative Comparisons. We first present qualitative com-
parison results in Fig. 5. On the one hand, for global statistics-based
methods (top three rows), AdaIN and WCT are prone to produce
messy stylized results with conspicuous artifacts and distorted
structures. LST, AAST, and ArtFlow can produce cleaner results
with better-preserved content structures. However, there are still
evident artifacts and disharmonious patterns (e.g., the mixed colors
in row 2 and the spurious shadows in row 3). On the other hand, for
local patch-based methods (bottom three rows), SANet and MAST
often generate distorted contents (e.g., row 4) or structural artifacts
(e.g., rows 5-6), making their results unrealistic. TPFR suffers from
the style-uncontrollable problem, where the stylized results deviate
from the style references. AdaAttN and IECAST perform well in
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Style Content Ours AdaIN WCT LST AAST ArtFlow

Style Content Ours SANet MAST TPFR AdaAttN IECAST
Figure 5: Qualitative comparisons with SOTA UST approaches. See more in Fig. 1. Zoom-in for better comparison.

Table 1: Quantitative comparisons with SOTA UST approaches.

WikiArt Ours AdaIN WCT LST AAST ArtFlow SANet MAST TPFR AdaAttN IECAST
CF - 0.420 0.383 0.346 0.408 0.368 0.391 0.366 0.360 0.401 0.380 0.412

GE + LP - 1.524 1.480 1.540 1.459 1.461 1.492 1.552 1.511 1.220 1.430 1.405
Deception 0.784 0.568 0.241 0.172 0.408 0.307 0.356 0.346 0.324 0.414 0.372 0.476
Preference - - 0.225 0.183 0.302 0.263 0.350 0.287 0.254 0.247 0.383 0.391
Time (sec.) - 0.066 0.045 1.163 0.036 1.153 0.382 0.064 0.124 0.582 0.142 0.064

content preservation but cannot transfer complex textures (e.g.,
rows 4-5) and may produce blended colors (e.g., row 6).

Through considering the universal human-delightful aesthetics,
our AesUST synthesizes aesthetically more harmonious and satis-
factory results. The transferred textures are more plausible (e.g., the
yellow brushes in row 1, the punctate strokes in row 4, and the line
abstraction in row 5), the semantic alignment is more accurate (e.g.,
the sky in row 3), and the style patterns are more harmonious with
fewer artifacts (e.g., rows 2 and 6). It shows that AesUST achieves
the best performance in stylization effects, significantly narrowing
the disparity with real artist-created paintings.

Quantitative Comparisons.We also resort to some quantita-
tive metrics to better evaluate the proposed method.

CF, GE, and LP Scores. Recently, Wang et al. [55] proposed three
quantifiable factors to evaluate the quality of style transfer, i.e.,
content fidelity (CF), global effects (GE), and local patterns (LP).
In detail, CF measures the faithfulness to content characteristics;
GE assesses the stylization quality in terms of the global effects
like global colors and holistic textures; LP assesses the stylization
quality in terms of the similarity and diversity of the local style
patterns. All factors are the higher the better. We collect 5 content
images and 10 style images to synthesize 50 stylized images for
each method and show their average CF, GE, and LP scores in Tab. 1.
As marked in bold, our AesUST achieves the highest CF score and
the third-highest GE+LP score (slightly lower than SANet [43]
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(a) Style (b) Content (c) Full Model (d) w/o L𝑎𝑑𝑣 (e) w/o L𝐴𝑅1 (f) w/o L𝐴𝑅2 (g) Only Stage I (h) Only Stage II
CF / (GE + LP) : 0.420 / 1.524 0.352 / 1.501 0.389 / 1.482 0.436 / 1.438 0.415 / 1.455 0.374 / 1.516
Figure 6: Ablation study on loss functions (d-f) and training strategy (g-h). Zoom-in for better comparison.

and WCT [36]). It signifies that AesUST achieves the best balance
between style transformation and content preservation.

Deception Score. Like [30], to measure the aestheticism and real-
ism of the fake paintings against the real paintings, we conduct a
user study to calculate the deception scores as the fraction of times
the synthesized images are guessed as “real”. We randomly select
20 synthesized images for each method and ask 50 subjects to guess
if it is a real painting or not. The results are shown in Tab. 1 (“De-
ception” row). For comparison, we also report the deception score
of the real artist-created paintings from WikiArt [44]. As is evident,
the deception score of our AesUST is closest to that of the real
artist-created paintings, which further validates the effectiveness
of our method.

Preference Score.We conduct A/B Test user studies to compare
the stylization effects of our method with the SOTA methods. We
randomly select 100 content-style pairs for each subject. In each
pair, except for the content and style images, two stylized results
generated by our method and a randomly selected SOTA method
are displayed in random order. The subjects are asked to choose
their preferred outcomes in terms of content preservation and style
transformation. We obtain 5000 votes from 50 subjects and show
the percentage of votes in Tab. 1 (“Preference” row). The results
indicate that our AesUST achieves the best stylization effects.

Efficiency. The bottom row of Tab. 1 shows the run time com-
parisons on images with a scale of 512×512 pixels. The speed of
our AesUST is comparable with SOTA methods such as AdaIN [22],
LST [34], SANet [43], and IECAST [5]. Thus, it can practicably
synthesize stylized images in real time.

4.3 Ablation Study
Loss Analyses. We present ablation study results in Fig. 6 (d-f)
to verify the effectiveness of each loss term used for training Ae-
sUST. (1) Without adversarial loss L𝑎𝑑𝑣 (column d), the results
exhibit disharmonious patterns and obvious artifacts like the repet-
itive textures, leading to significant quality degradation. It verifies
that adversarial training can help networks synthesize aesthetically
more harmonious and realistic results. (2) Without the first aes-
thetic regularization L𝐴𝑅1 (column e), the content preservation
and style transformation decline simultaneously. There are some
noticeable structural and noisy artifacts, and the style patterns, like
the punctate strokes in the bottom row, are not well transferred. (3)
The second aesthetic regularization L𝐴𝑅2 (column f) can help pre-
serve more pleasing style patterns. Removing it leads to less stylized

results. All above analyses are also supported by the quantitative
scores below each column of Fig. 6.

Two-Stage Transfer Training. Fig. 6 (g-h) show the results
obtained by each training stage, respectively. (1) Training with
only stage I (column g) produces less satisfactory results where
the colors are not vivid enough (e.g., the top row) and the style
patterns are implausible (e.g., the punctate strokes in the bottom
row). It suggests that the aesthetic guidance and regularizations
of stage II are necessary and effective for producing aesthetically
more realistic and pleasing results. (2) Directly training with only
stage II (column h), yet, also cannot produce satisfactory results. It
is because the aesthetic features extracted from the discriminator
are meaningless at the beginning of the adversarial training, thus
deteriorating the style integration and affecting the style transfer
training. Therefore, the pre-training of stage I is also necessary and
can force networks to transfer style patterns better while maintain-
ing the content structures.

5 CONCLUSION
In this paper, we reveal the aesthetic-unrealistic problem in the
SOTA UST algorithms. Upon analyzing the leading cause of this
problem, we propose a novel aesthetic-enhanced UST framework,
termed AesUST. Our AesUST introduces an aesthetic discriminator
and contends two roles for it, i.e., the discriminator and feature
extractor, which learns the universal human-delightful aesthetic
features from a large corpus of artist-created paintings. Then, a
novel AesSA module is introduced to incorporate the aesthetic
features with the content and style features, thus achieving more
reasonable and flexible style integration. Furthermore, we also de-
velop a new two-stage transfer training strategy with two aesthetic
regularizations to train our model more effectively, further improv-
ing stylization performance. Experiments validate that our AesUST
can synthesize aesthetically more harmonious and realistic results,
greatly narrowing the disparity with real artist-created paintings.
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A DETAILED ARCHITECTURE OF
AESTHETIC DISCRIMINATOR

The detailed architecture of our aesthetic discriminator is summa-
rized in Tab. 2, which is adapted from [52].

B RUNTIME CONTROLS
Similar to [22, 43], our AesUST also allows users to control the
degree of stylization, interpolate between different styles, transfer
styles while preserving colors, and use different styles in different
spatial regions. Note that all these controls are only applied at
runtime using the same model without re-training.

B.1 Content-style trade-off
We can control the degree of stylization by adjusting the style
weights 𝜆3 in Eq. (12) and 𝜆7 in Eq. (17) in our main paper during
train time, or interpolating between feature maps that are fed into
the decoder during test time.We empirically determine the 𝜆-values
in Eq. (12) and Eq. (17) following the previous experience of [22, 43].
Users can adjust them to control the degree of stylization but need
to re-train the model, which is inconvenient. In order to achieve
runtime control, like [22, 43], we introduce 𝛼 ∈ [0, 1] to control the
degree of stylization during test time. In detail, given the content
image 𝐼𝑐 and style image 𝐼𝑠 , we first obtain the stylized feature 𝐹𝑐𝑠
by taking the content image as content input and style image as
style input for our model. Then we obtain the feature 𝐹𝑐𝑐 by taking
the content image as both content and style inputs for our model.
The 𝛼 value is used to control the blending of 𝐹𝑐𝑠 and 𝐹𝑐𝑐 , obtaining
the new stylized feature 𝐹 ′𝑐𝑠 = 𝛼𝐹𝑐𝑠 + (1 − 𝛼)𝐹𝑐𝑐 . The new stylized
feature 𝐹 ′𝑐𝑠 is fed to the decoder to obtain the final result. In this
way, users can control the degree of stylization without re-training
the network. The network tries to reconstruct the content image
when 𝛼 = 0, and to generate the most stylized image when 𝛼 = 1,
as shown in Fig. 7.

𝛼 = 0 𝛼 = 0.25 𝛼 = 0.5 𝛼 = 0.75 𝛼 = 1 Style

Figure 7: Content–style trade-off during runtime.

B.2 Style interpolation
We can interpolate between several style images by blending feature
maps 𝐹𝑐𝑠 transferred from different styles and then feeding the
blended feature into the decoder. An example of style interpolation
between four different styles is shown in Fig. 8.

B.3 Color and spatial control
Our method can easily achieve color-preserved style transfer sim-
ilar to [17, 22]. The color distribution of the style image is first
manipulated to match that of the content image, and then we per-
form the style transfer using the color-aligned style image as the
style input. Examples are shown in Fig. 9.

Fig. 10 demonstrates that our method can transfer different re-
gions of the content image to different styles. We additionally input

Figure 8: Style interpolation between four different styles.

Style Content 1 Result 1 Content 2 Result 2

Figure 9: Color control.We show color-preserved style trans-
fer results.

Content Style Mask Result 1 Style Mask Result 2

Figure 10: Spatial control examples.

a set of masks to map the spatial correspondence between content
regions and styles. A simple mask-out operation is applied to assign
the different styles in each spatial region.

C LIMITATIONS AND DISCUSSIONS
In this section, we provide some typical limitations of our method,
then analyze the reasons behind them, and finally discuss the possi-
ble solutions to address them. Given the simplicity of our proposed
framework, we believe there is substantial room for improvement.
The further improvement of our approach we leave as future work.

C.1 Mixed textures
As pointed out in our main paper, our method may produce mixed
and messy textures for content areas with low feature activations,
like the textureless background shown in Fig. 11. It can be attrib-
uted to the fact that the textureless areas are hard to recognize
(with low feature activations) for a pre-trained VGG network [37];
therefore, the style attention [43] operation in our AesSA module
fails to find the correspondence between these areas and those of
the style images. This issue may be addressed by incorporating user
guidance like [3, 53] or using some texture enhancement operations
to highlight the subtle textures in these areas. Moreover, one may
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Table 2: Architecture of aesthetic discriminator.

Part Layer Kernel Size Stride Padding In Channel Out Channel Negative Slope

𝐸1 / 𝐸2 / 𝐸3

Conv 4 2 1 3 64 -
LeakyReLU - - - - - 0.2

Conv 4 2 1 64 128 -
InstanceNorm - - - 128 128 -
LeakyReLU - - - - - 0.2

Conv 4 2 1 128 256 -
InstanceNorm - - - 256 256 -
LeakyReLU - - - - - 0.2

Conv 4 2 1 256 512 -
InstanceNorm - - - 512 512 -
LeakyReLU - - - - - 0.2

C1 / C2 / C3 Conv 3 1 1 512 1 -

Downsample Avg Pool 3 2 1 - - -

Upsample2 Nearest - 1/2 - - - -
Upsample4 Nearest - 1/4 - - - -

Content Style 1 Failure 1 Style 2 Failure 2

Figure 11: Failure cases of type 1. Our method may produce
mixed andmessy textures for content areaswith low feature
activations, like the textureless background.

also consider improving the style attention [43] operation in our
AesSA module to solve this problem.

C.2 Generalization to out-of-distribution styles
Due to the use of GAN loss, our method may not generalize very
well to the style images that excessively deviate from the training
distribution, e.g., the simple line pattern shown in Fig. 12. It may
be addressed by collecting a more exhaustive training dataset or
using some incremental training strategies.

Style Content 1 Failure 1 Content 2 Failure 2

Figure 12: Failure cases of type 2. Our method may not gen-
eralize very well to the style images that excessively deviate
from the training distribution, like the simple line pattern.

C.3 Color blending
Our method may produce slight color blending for a few cases. As
shown in Fig. 13, the colors of the clothes (marked by red boxes
in column 3) seem to be blends of those in the content image and
style image. We analyze the reasons may be that the colors in the
content image are too vivid compared to those in the style image,
thus hard to change via style transfer. The issues can be addressed
by removing the colors of the content image as shown in the last
column, or training our network with higher style weights 𝜆3 in
Eq. (12) and 𝜆7 in Eq. (17) in the main paper.

Content Style Failure Remove Color

Figure 13: Failure cases of type 3. Our method may produce
slight color blending for a few cases, like the colors of the
clothes (marked by red boxes) in the stylized result.
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