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A B S T R A C T

This study proposes an end-to-end unsupervised diffeomorphic deformable registration framework based on moving mesh
parameterization. Using this parameterization, a deformation field can be modeled with its transformation Jacobian determinant
and curl of end velocity field. The new model of the deformation field has three important advantages; firstly, it relaxes the need
for an explicit regularization term and the corresponding weight in the cost function. The smoothness is implicitly embedded
in the solution which results in a physically plausible deformation field. Secondly, it guarantees diffeomorphism through
explicit constraints applied to the transformation Jacobian determinant to keep it positive. Finally, it is suitable for cardiac
data processing, since the nature of this parameterization is to define the deformation field in terms of the radial and rotational
components. The effectiveness of the algorithm is investigated by evaluating the proposed method on three different data sets
including 2D and 3D cardiac MRI scans. The results demonstrate that the proposed framework outperforms existing learning-
based and non-learning-based methods while generating diffeomorphic transformations.
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1. Introduction

Deformable image registration plays a fundamental role in
a variety of medical image analyses such as image guided-
surgery Han et al. (2021), visual stabilization Sheikhjafari et al.
(2015b), reconstruction Liu et al. (2021), and the construction
of many other image analysis problems Krebs et al. (2019);
Haskins et al. (2019); Sheikhjafari et al. (2015a). Many ex-
isting state-of-the-art deformable registration methods use tra-
ditional iterative algorithms, such as standard symmetric nor-
malization (SyN) Wu et al. (2018) and log-domain based trans-
formation Mansi et al. (2011). Due to the important proper-
ties such as folding-free and invertiblity Dalca et al. (2018)
of diffeomorphic transformation, a wide range of researchers
utilized diffeomorphisms by adding constraints to their formu-
lation Zhang and Fletcher (2015); Avants et al. (2008); Ver-
cauteren et al. (2008); Punithakumar et al. (2013). These tra-
ditional algorithms are computationally expensive and do not
learn the features from data to be registered. Recently, Sheikh-
jafari et al. (2022) proposed a convolutional neural network
(CNN) to model the optimization problem for deformable regis-
tration and shared the parameters through a temporal sequence.
However, they still establish the displacement field via itera-
tive optimization between images. Even though traditional de-
formable image registration techniques can generate promising
mappings between images, most of these methods require users
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to identify parameters that match the characteristics of the prob-
lem and manually adjust regularization terms for each applica-
tion to obtain accurate results.

In recent years, the popularity of learning-based registration
algorithms has been increasing due to the lower computational
costs and execution times Krebs et al. (2018). In supervised-
learning methods, a CNN is trained using examples of medical
images along with their ground truth transformations to predict
the transformations directly on test images Rohé et al. (2017);
Cao et al. (2017). Even though the accuracy of these approaches
is considerable, their performance is highly dependent on the
quality of the ground truth Sang et al. (2020). One of the most
significant challenges in applying the supervised methods to
medical imaging applications is that the actual ground truth of
a desired neural network output is not often available.

With that limitation in mind, several unsupervised learning-
based image registrations have been proposed. Most of the un-
supervised approaches use spatial transformer layers (STN) to
warp the moving image in a differentiable way. In this way,
an optimization can be performed by using a similarity metric
based on the warped image Jaderberg et al. (2015); de Vos et al.
(2017, 2019); Balakrishnan et al. (2018); Sheikhjafari et al.
(2018).

When image registration is stated as an optimization of a sim-
ilarity metric alone, it is commonly understood as an ill-posed
problem. To tackle this problem, a regularization approach is
commonly used. Without regularization, this may result in mul-
tiple and physically non-plausible solutions. For instance, it
might lead to tissue folding and tearing of anatomical structures
in images. Aside from that, while unsupervised approaches can
perform well in minimizing a similarity metric between warped
moving images and fixed images, important properties such as
symmetry, diffeomorphism, and regularity of the retrieved de-
formation fields are still unclear and missing. Rohlfing (2011);
Haber and Modersitzki (2004).

Inspired by Punithakumar et al. (2015, 2017); Chen et al.
(2010), we tackle aforementioned issues with the help of mov-
ing mesh parameterization which was originally designed to
generate a suitable grid for solving partial differential equations
Haber and Modersitzki (2004). We propose a ConvNet method
based on unsupervised learning for deformable cardiac regis-
tration, which formulates the deformation field by the moving
mesh approach. This parameterization naturally leads to a for-
mulation of diffeomorphic image registration as a constrained
optimization problem. It also bypasses the need for an ex-
plicit regularization term and the corresponding weight in the
cost function. Such a strategy has been adopted in the demons
algorithm, where unconstrained optimization is followed by
Gaussian filtering to impose a smoothness constraint. Using
the moving mesh grid generation, we can define a deformation
field with its transformation Jacobian determinant and curl of
end velocity field which make it appealing to image registra-
tion Punithakumar et al. (2015, 2017). The new formulation of
the deformation field ensures diffeomorphic properties on the
deformation field by explicitly applying constraints on transfor-
mation Jacobian determinant to keep it positive. Since the heart
motion could be decomposed of radial expansion and twisting

Garreau et al. (2006), defining the deformation field in terms of
radial and rotational components makes this formulation suit-
able for cardiac analysis Bijnens et al. (2012).

2. Methodology

Most of the learning-based algorithms formulate the de-
formable registration problem as the minimization of the fol-
lowing equation:

φ∗ = argmin
φ

L(IF , IM ◦ φ(ξ)) (1)

where ξ denotes the pixel location in the image domain Ω,
φ : Ω → Ω denotes the transformation function, and the dis-
similarity metric is denoted by L(.). With the above formu-
lation, introducing a regularization is necessarily to obtain a
unique solution. Without regularization, this may result in mul-
tiple physically non-plausible solutions.

In our setting, we tackle these issues with the help of the
moving mesh parameterization.

2.1. Moving Mesh Grid Generation

To avoid adding extra terms to the above formulation and
having a unique solution, more constraints are required to be
added using a monitor function µ and curl of end velocity field
γ.

First a continuous monitor function is defined and con-
strained by: ∫

Ω

µ = |Ω|. (2)

The goal here is to find a transformation φ1: Ω → Ω, ∂Ω →

∂Ω such that the transformation Jacobian determinant Jφ1 (ξ) is
equal to the monitor function µ :

Jφ(ξ) = det∇φ1(ξ) = µ(ξ). (3)

To find the transformation φ1 which satisfies 3, the following
steps need to be taken,

Step 1: A vector field V(ξ) is defined such that:

div V(ξ) = µ(ξ) − 1. (4)

Step 2: A velocity vector field based on artificial-time is then
constructed from V(ξ):

Vt(ξ) =
V(ξ)

t + (1 − t)µ(ξ)
, t ∈ [0, 1] (5)

The desire transformation φ1 can be found by solving the fol-
lowing ordinary differential equation (ODE) at t = 1, φ1(ξ) =

ψ(ξ, t = 1) where ψ(ξ,t=0) = φ0(ξ)

ψ(ξ, t)
dt

= Vt(ψ(ξ, t)), t ∈ [0, 1], (6)

Where φ0(ξ) is the identity mapping and det∇φ0(ξ) = 1 and
φ0(ξ) = ξ. Since the φ1(ξ) is the desire transformation that we
are looking for, we drop the subscript and use φ(ξ) for the rest
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Algorithm 1: Moving Mesh based deformable registration
Input: Given two 2D/3D pair of images, fixed image IF and moving image IM . The upper bound τub and lower bound τlb of

the transformation Jacobian determinant
Output: Deformation field φ
Step 1: Pass the input to the CNN to compute µ(ξ) and V(ξ);
Step 2: Impose constraints from (8) for each pixel location ξ ∈ Ω :

µ(ξ)←
|Ω|∑

ξ⊂Ω µ(ξ)
Step 3: Compute a curl of velocity field V(ξ) that satisfies (4) and compute the deformation field φ
Step 4: Compute the loss function
Step 5: Update the µ and V(ξ) using back-propagation

of the paper. The main problem is how to find V(ξ) such that
divV(ξ) = µ(ξ) − 1. There are different methods to solve this
problem such as the div-curl system. To solve the problem with
the div-curl system, we need to find the divergence and curl at
each point and set up the div-curl system of equations for each
point. By solving this system we can reconstruct a differentiable
and invertible transformation. divV(ξ) = µ(ξ) − 1

curlV(ξ) = γ(ξ).
(7)

To have a unique φ a constraint need to be applied to the div
of the vector field V(ξ), 7.

The generated transformation φ now can be parameterized
with transformation Jacobian determinant and the curl of the
end velocity field.

2.2. Diffeomorphic Image Registration
Using the above parameterization, the diffeomorphic image

registration can be formulated as a constrained optimization
problem.

Let IF and IM be 2D/3D fixed and moving images/volumes,
defined over Ω → R2/Ω → R3. We need to find µ(ξ) and
γ(ξ) ∀ξ ∈ Ω, that optimize a similarity metric LS im between the
warped moving image and fixed image, subject to the following
constraints: 

∫
µ(ξ)dξ = |Ω|

τub > µ(ξ) > τlb

(8)

where the τub is the upper bound and τlb is the lower bound
of the transformation Jacobian determinant which were set by
the user. The τlb > 0 guarantees the diffeomorphism.

2.3. Numerical Methods
2.3.1. 2D Div-curl solver

We represent the deformation field by divergence and curl
(div-curl) system representation Cheng (1989) (7). To find V(ξ)
under the null condition we converted the (7) into a set of Pois-
son equations as follows and used a Fast Fourier Transform
(FFT) based Poisson solver. As shown in (9) the radial com-
ponent is given by F1 and the rotational components is given
by F2: ∆Vx = µx − γy = F1,

∆Vy = µy + γx = F2,
(9)

2.3.2. 3D Div-curl solver
The div-curl system for the 3D case is given in Equation (7).

Where the divergence of the deformation field represents the
radial motion while the curl operator represents the rotation of
the media around every point. The 3D operator directly extends
from the 2D curl, where each rotational component represents
the rotational motion of the deformation field about each of the
three axes. As it shown in (10) the radial component is given by
f 1 and the three rotational components are given by f 2, f 3 and
f 4. For the 3D version, there ate three unknowns (Vx,Vy,Vz)
with four scalar equations which makes this system overdeter-
mined. Furthermore, a dummy variable θ is introduced to solve
the system. (please check Liu (2006) for more details.)

divV =
∂Vx

∂x
+
∂Vy

∂y
+
∂Vz

∂z
= f 1

curlxV =
∂θ

∂x
+
∂Vz

∂y
−
∂Vy

∂z
= f 2

curlyV =
∂θ

∂y
+
∂Vx

∂z
−
∂Vz

∂x
= f 3

curlzV =
∂θ

∂z
+
∂Vy

∂x
−
∂Vx

∂y
= f 4.

(10)

Similar to the 2D version, we converted the (10) into a set of
Poisson equations as follows:

∆Vx = f 1
x + f 3

z − f 4
y = F1,

∆Vy = f 1
y + f 4

x − f 2
z = F2,

∆Vz = f 1
z + f 2

y − f 3
x = F3.

(11)

Then the Euler method with arbitrary time steps is used to
compute the transformation φ from V(ξ) via (5) and (6). For
derivation and numerical implementation details, we refer the
reader to Liu (2006)

2.4. Data driven parameter computation
Despite the traditional methods that iteratively and manually

compute the parameters and update the gradient Chen et al.
(2010); Punithakumar et al. (2017) which are time-consuming,
we use an unsupervised CNN and back-propagation Algorithm
1. In the proposed framework, the network parameters are
learnt in an unsupervised fashion and a diffeomorphic deforma-
tion field is generated by moving mesh parameterization Figure
1.



4

Fig. 1. Overview of end-to-end unsupervised architecture. The ConvNet gθ(IF , IM) takes the input fixed image(IF ) and moving image(IM) and outputs the
transformation Jacobian determinant Jφ(ξ) = µ(ξ), and the vector field V(ξ). Then the diffeomorphic forward and backward transformations φ f and φb
are computed using the moving mesh approach. Finally, the moving and fixed images are warped using φ f and φb.

As shown in Figure 1, the network takes IF and IM as input
and outputs the monitor function µ(ξ) and the velocity vector
filed V(ξ). Then using the curl of end velocity and a div-cur
system a diffeomorphic transformation φ is computed. To es-
tablish the uniqueness of the solution the Dirichlet boundary
condition is used Zhou (2006). Additionally, a diffeomorphism,
which is corresponded to a positive transformation Jacobian de-
terminant, is enforced explicitly via the monitor function Liu
(2006). All of the steps are designed to be differentiable and
the network parameters are learnt using stochastic gradient de-
scent optimization.

2.5. Registration

To train the framework a set of pair images (IF , IM) were
given. Then using the monitor function and curl of end ve-
locity, the desire φ was computed. Finally, the moving image
was warped to have the minimum dissimilarity with fixed im-
age IF . For each pair of image, we simultaneously calculated
the forward transformation which registers the fixed image IF

to moving image IM and the backward transformation which
registers the moving image IM to fixed image IF . A symmetric
loss function is used as follows:

φ∗ = argmin
θ,µ,γ

{w × L(IF , IM ◦ φ f ) + w × L(IM , IF ◦ φb)} (12)

Where φ f is the forward transformation and φb is the backward
transformation.

The registration process is performed pairwise on both 2D
images and 3D volumes. In the cardiac data sets, the end-
diastolic and end-systolic images are passed to the proposed
framework as input to compute the forward transformation φ f

and the reverse transformation φb. For the 2D version the mean
squared error (MSE) and for the 3D version the normalise cross
correlation (NCC) is used as dissimilarity metric.

3. Experiments

We perform a series of experiments to evaluate the regis-
tration accuracy of the proposed diffeomorphic CNN method
against the state-of-the-art methods. The evaluations were per-
formed over three data sets consisting of clinical 2D cardiac
MR images to assess the performance of the 2D version of
our method. We also evaluated the 3D version of the proposed
framework using ACDC data set in 3D.

3.1. Data sets

The following three data sets are considered in this study:

Automated Cardiac Diagnosis Challenge (ACDC) Bernard
et al. (2018b). This data set contains multiple temporal 2D
short-axis cardiac cine MRI sequences acquired from 100 pa-
tients and is one of the publicly available data sets for cardiac
MRI assessment. The spatial resolution varies from 1.37 to 1.68
mm2/pixel with a slice thickness of 5 mm to 8 mm (in average
5mm). The testing set contained 20 cases of each of the follow-
ing cardiac diseases: dilated cardiomyopathy (DCM), hyper-
trophic cardiomyopathy (HCM), previous myocardial infarc-
tion (MINF), abnormal right ventricle (RV) and healthy (Nor-
mal). The images are cropped to a size of 128×128, and padded
the third dimension to 16 for the 3D voxels.

The Sunnybrook Cardiac Challenge data (SCD) Radau et al.
(2009). This data set contains multiple temporal 2D short-axis
cardiac cine MRI scans acquired from 45 patients. Each cine
sequence includes 20 frames to cover the cardiac cycle. The
data set is equally divided into 15 patient scans for training, 15
patient scans for validation, and 15 patient scans for testing.
The image resolution is 256 × 256, with a pixel spacing of 1.25
mm and slice thickness of 8 mm.
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Left Atrium (LA). This data set includes 100 temporal 2D long-
axis cine MRI steady-state sequences from the 2, 3 and 4-
chamber views, acquired from the University Alberta Hospi-
tal. Each cycle includes 25 or 30 frames with image resolutions
176 × 189 – 256 × 208 and image spacing 1.445 − 1.795 mm.
The ground truth manual segmentation is initially performed by
a medical student and edited by an experienced radiologist. The
2ch, 3ch and 4ch are used in the rest of the paper to denote 2,
3 and 4-chamber sequences, respectively. The results are com-
pared on end-diastolic and end-systolic frames.

3.2. Quantitative Evaluation Metrics

The proposed method is evaluated quantitatively using four
metrics, namely, Dice metric (DM), Hausdorff distance (HD in
mm), determinant of Jacobian of the deformation field det(J),
and reliability R(d).

Dice Metric The DM Dice (1945) is a segmentation-based
metric to measure the similarity (overlap) between two regions,
warped moving and fixed images. Where the Dice score of 1 in-
dicates complete overlap and Dice score of 0 indicates no over-
lap. The DM of two regions A and B is formulated as:

DM(A, B) =
2|A ∩ B|
A + B

(13)

Hausdorff Distance The HD Huttenlocher et al. (1993) is
another metric which measures the maximum deviation be-
tween two regions’ contours. The HD between two contours
(CA) and CB is formulated as:

HD(CA,CB) = max(max
i

(min
j

(d(pi
A, p j

B))),

max
j

(min
i

(d(pi
A, p j

B))))
(14)

where pi
A, p j

B denote the set of all the points in CA and CB re-
spectively. The term d(·) denotes the Euclidean distance.

Reliability: We also evaluated the performance of the pro-
posed algorithm using a reliability function computed based on
DMs for each data set. The complementary cumulative distri-
bution function is defined for each d ∈ [0, 1] as the probability
of obtaining DM higher than d overall volumes.

R(d) = Pr(Dice > d)

=
# Images segmented with DM higher than d

total number of images
.

(15)

R(d) measures how reliable the algorithm is in yielding accu-
racy d.

det(J): To analyze deformation regularity in different algo-
rithms, we calculate the determinant of the Jacobian det(J) Ash-
burner et al. (1999). If the value of det(J) equals 1, the area
remains constant after the transformation, whereas the value
smaller or larger than 1 indicates the local area shrinkage or
expansion, respectively. The negative value of det(J) implies
that local folding and twisting have occurred, which are phys-
ically not realizable and mathematically not invertible Dalca
et al. (2018).

3.3. Baseline Methods

We compared the performance of the proposed frame-
work with state-of-the-art algorithms, SimpleElastix (Elastix)
Marstal et al. (2016),(MM) Punithakumar et al. (2017); Krish-
naswamy (2021), Fast Symmetric Forces Demons (Demons)
McCormick et al. (2014), Symmetric Normalization Avants
et al. (2008) which are optimization based methods and diffeo-
morphic learning-based methods LPM Krebs et al. (2019) and
LapIRN Mok and Chung (2020).

3.3.1. 2D Image Registration Results
Tables 1, 2 and 3 provide a summary of the results of the pro-

posed method, the mean and standard deviations of DM, HD,
the percentage of the number of pixels with negative Jacobian
determinant %|Jθ| < 0, and reliability R(0.75) on the held out
test set on ACDC, LA, and SCD data sets, respectively. Figures
2, 3, 4 show samples of registered images on the LA, SCD, and
ACDC data sets with the corresponding deformation field grid.
End-systolic frame is the moving image and end-diastolic frame
is the fixed image. The registered image of each row is shown
in the third column. Also, the true and predicted segmentation
maps are shown by the green and blue line respectively. For
each new 2D pair of images, the registration process takes an
average of 0.05 ± 0.03 seconds on a GPU.

The ACDC data set is originally a 3D data set where a set of
2D axial slices are stacked to form a 3D volume. To evaluate the
2D version of the proposed framework on ACDC, we computed
2D metrics on each slice separately and aggregated the results
over all slices to obtain the final values reported in Table 1.

The presented method shows a better performance among the
all compared methods in all aspects e.g., there is a noticeable
difference between the obtain Dice score and Hausdorff dis-
tance. As can be seen, the improvement is not just limited to
these two parameters, the Jacobian determinant is zero which
means there is no folding or twisting in the transformation. This
is in contrast to other methods where the determinant Jacobian
is non-zero.

Figure. 5 shows the end-diastolic and end-systolic images
and the determinant of the Jacobian (|Jθ|) with grid overlay for
five example patients. As shown in all tables and Figure. 5,
no negative values were observed on the test data for the pro-
posed method which means our approach produced smooth and
regular deformations.

3.3.2. 3D Image Registration results
The publicly available Automated Cardiac Diagnosis Chal-

lenge (ACDC) data set was employed for the evaluation of
the proposed 3D-to-3D registration algorithm. Table 4 pro-
vides a summary of the results of the proposed method on the
ACDC data set. The presented method displays a better per-
formance among all the compared methods in all aspects e.g.,
there is a noticeable difference between the obtained Dice score
and Hausdorff distance. Also, the higher probability values of
R(0.75) proves that the proposed method is more reliable than
the other compared methods since more patients have the dice
score higher or equal to %0.75. In addition, similar to 2D ver-
sion, the Jacobian determinant is also zero in 3D version which
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Table 1. Quantitative evaluation of the results for cardiac MRI registration on the 2D ACDC data set. The following metrics are reported for each method:
The Dice score Dice (mean± standard deviation), Hausdorff distance HD, the percentage of the number of pixels with negative Jacobian determinant
%|Jθ | < 0, and reliability R(0.75). Smaller values of HD and larger values of Dice indicate more accurate results. Also the smaller %|Jθ | < 0 indicates less
mesh folding. The higher probability values of R(0.75) show that more patients have the dice score higher or equal to %0.75. Values that are highlighted in
bold indicate the metric that gave the best performance compared to the other algorithms.

Method Dice HD %|Jθ| < 0 R(0.75)
Undeformed 0.71 ± 0.15 10.1 – –
DemonYoo et al. (2002) 0.76 ± 0.10 8.3 0.27 0.36
SyNAvants et al. (2008) 0.80 ± 0.09 8.1 0.28 0.66
LPMKrebs et al. (2019) 0.79 ± 0.10 7.6 0.38 0.46
MMPunithakumar et al. (2017) 0.83 ± 0.15 5.64 0 0.81
ElastixMarstal et al. (2016) 0.84 ± 0.14 4.51 0.12 0.82
Proposed Method 0.88 ± 0.11 3.85 0 0.89

Table 2. Quantitative evaluation of the results for cardiac MRI registration on the 2D LA data set. The following metrics are reported for each method:
The Dice score Dice (mean± standard deviation), Hausdorff distance HD, the percentage of the number of pixels with negative Jacobian determinant
%|Jθ | < 0, and reliability R(0.75). The 2ch, 3ch and 4ch stand for the 2, 3 and 4-chamber. Values in bold indicate the best performance.

(a) 2ch

Methods Dice HD %|Jθ | < 0 R(0.75)
Undeformed 0.79 ± 0.07 7.37 – –
DemonsMcCormick et al. (2014) 0.84 ± 0.08 7.41 0.38 0.89
SyNAvants et al. (2008) 0.87 ± 0.06 6.38 0.18 0.95
MMPunithakumar et al. (2017) 0.84 ± 0.06 6.58 0 0.92
ElastixMarstal et al. (2016) 0.82 ± 0.11 7.28 0.28 0.74
Proposed Method 0.88 ± 0.04 6.54 0 0.95

(b) 3ch

Methods Dice HD %|Jθ | < 0 R(0.75)
Undeformed 0.78 ± 0.08 7.70 – –
DemonsMcCormick et al. (2014) 0.85 ± 0.06 7.33 0.36 0.94
SyNAvants et al. (2008) 0.86 ± 0.13 7.52 0.21 0.93
MMPunithakumar et al. (2017) 0.83 ± 0.06 6.48 0 0.88
ElastixMarstal et al. (2016) 0.86 ± 0.10 6.82 0.26 0.9
Proposed Method 0.87 ± 0.05 6.3 0 0.94

(c) 4ch

Methods Dice HD %|Jθ | < 0 R(0.75)
Undeformed 0.78 ± 0.09 8.66 – –
DemonsMcCormick et al. (2014) 0.82 ± 0.10 7.84 0.43 0.77
SyNAvants et al. (2008) 0.84 ± 0.11 7.51 0.20 0.86
MMPunithakumar et al. (2017) 0.83 ± 0.08 6.77 0 0.87
ElastixMarstal et al. (2016) 0.82 ± 0.10 7.56 0.38 0.64
Proposed Method 0.87 ± 0.05 6.1 0 0.99

Table 3. Quantitative evaluation of the results for cardiac MRI registration on the 2D SCD data set. The following metrics are reported for each method:
The Dice score Dice (mean± standard deviation), Hausdorff distance HD, the percentage of the number of pixels with negative Jacobian determinant
%|Jθ | < 0, and reliability R(0.75). Smaller values of HD and larger values of Dice indicate more accurate results. Also the smaller %|Jθ | < 0 indicates less
mesh folding. The higher probability values of R(0.75) show that more patients have the dice score higher or equal to %0.75. Values that are highlighted in
bold indicate the metric that gave the best performance compared to the other algorithms.

Method Dice HD %|Jθ| < 0 R(0.75)
Undeformed 0.62 ± 0.15 16.02 – –
DemonsMcCormick et al. (2014) 0.68 ± 0.18 12.46 0.4 0.36
SyNAvants et al. (2008) 0.81 ± 0.16 8.9 0.02 0.70
LPMKrebs et al. (2019) 0.78 ± 0.08 7.6 0.38 0.63
MMPunithakumar et al. (2017) 0.72 ± 0.12 12.53 0 0.59
ElastixMarstal et al. (2016) 0.79 ± 0.08 11.12 0.37 0.62
Proposed Method 0.88 ± 0.09 5.25 0 0.90
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(a) 2ch

ED ES Warped ES DF GT

(b) 3ch

ES ED Warped ES DF GT

(b) 4ch

ES ED Warped ES DF GT

LA

Fig. 2. Samples of registered images on the left atrium data set with the corresponding deformation field grid (DF). The end-systolic (ES) frame is the
moving image and end-diastolic (ED) frame is the fixed image. The warped ES of each row is shown in the third column. The last column labeled ground
truth (GT) displays the true segmentation and the predicted segmentation, which are shown by the green line and blue line respectively. The 2ch, 3ch and
4ch stand for the 2, 3 and 4-chamber.
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ES ED Warped ES DF GT
SCD

Fig. 3. Samples of registered images on the SCD with the corresponding deformation filed grid (DF). End-systolic (ES) frame is the moving image and
end-diastolic (ED) frame is the fixed image. The warped ES of each row is shown in the third column. The last column labeled ground truth (GT) displays
the true segmentation and the predicted segmentation, which are shown by the green line and blue line respectively.

ES ED Warped ES DF GT
ACDC

Fig. 4. Samples of registered images on the ACDC with the corresponding deformation filed grid (DF). End-systolic (ES) frame is the moving image and
end-diastolic (ED) frame is the fixed image. The warped ES of each row is shown in the third column. The last column labeled ground truth (GT) displays
the true segmentation and the predicted segmentation, which are shown by the green line and blue line respectively.
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ACDC

SCD

left-2ch

left-3ch

left-4ch

ES ED Forward DF Backward DF

Fig. 5. 2D registration results for five example patients, where the first column is the end-systolic image and the second column is the end-diastolic image.
The grid deformations in the 3rd column displays the deformation from end-systole to end-diastole, while the last column displays the deformation from
end-diastole to end-systole. The color represents the value of the Jacobian determinant, where red indicates values below 0, which is where mesh folding
occurs. It can be seen that using the proposed method, no mesh folding occurs.
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Table 4. Quantitative evaluation of the results for cardiac MRI registration on the 3D ACDC data set. The following metrics are reported for each method:
The Dice score Dice (mean± standard deviation), Hausdorff distance HD, the percentage of the number of pixels with negative Jacobian determinant
%|Jθ | < 0, and reliability R(0.75). Smaller values of HD and larger values of Dice indicate more accurate results. Also the smaller %|Jθ | < 0 indicates less
mesh folding. The higher probability values of R(0.75) show that more patients have the dice score higher or equal to %0.75. Values that are highlighted in
bold indicate the metric that gave the best performance compared to the other algorithms.

Method Dice HD %|Jθ| < 0 R(0.75)
Undeformed 0.71 ± 0.145 10.1 – –
DemonYoo et al. (2002) 0.80 ± 0.17 8.3 0.34 0.28
SyNAvants et al. (2008) 0.80 ± 0.091 8.1 0.17 0.51
LPMKrebs et al. (2019) 0.81 ± 0.085 7.3 0.12 0.52
LapIRN Mok and Chung (2020) 0.72 ± 0.162 7.4 0 0.35
MMKrishnaswamy (2021) 0.75 ± 0.156 7.03 0 0.56
ElastixMarstal et al. (2016) 0.83 ± 0.161 5.75 0.09 0.60
Proposed Method 0.84 ± 0.06 5.3 0 0.78

means there is no mesh folding in the transformation. The reg-
istration process takes an average of 0.07 ± 0.005 seconds on a
GPU to register an unseen 3D pair of images.

Figure 6 displays a correlation plot, where the ground truth
volume in mL is plotted against the volume from the proposed
method. The clustering of the dots to the reference yellow line
indicates the high agreement between the proposed method to
the ground truth. The analysis produced a Pearson correlation
coefficient of 0.98.

3.3.3. Implementation and Parameters Analysis
The proposed method is implemented in Python program-

ming language using Pytorch module. The network is de-
signed based on a UNet-style architecture Ronneberger et al.
(2015) which includes a convolutional layer with 16 filters,
three downsampling layers with 32,64,64 convolutional filters
and a stride of two, and upsampling convolutional layers with
64,64,32,32,32,16 filters. The Adam optimization with learning
rate of 5 × 10−4 is used for all the three datasets. The proposed
framework is evaluated on an NVIDIA GeForce GTX 1080 Ti
GPU.

To guarantee the diffeomorphism and keep the transforma-
tion determinant Jacobian positive, different activation func-
tions are used to apply constraints on µ and V(ξ) and keep their
range in (0, 1) and (−λ,+λ) respectively. Where λ can be any
value in range of (1,∞), we set λ = 10 in our experiment. Then
using the two hyper-parameters, lower bound τlb ∈ (0, 1) and
upper bound τub ∈ (1, λ) of the transformation Jacobian deter-
minant |Jθ|, the user can control the amount of movement which
directly affects the evaluation metrics. By increasing the values
of τlb and τub, each node in a grid (each pixel) can have a larger
displacement; however, after a certain point, the results do not
change significantly. We vary the precision τlb, τub and set them
to 0.2, 8.0 respectively. The chosen values resulted in the best
Dice score and HD distance.

4. Conclusion

In this work, we build a principled connection between
classical registration methods and recent learning-based ap-
proaches. We propose an end-to-end framework for diffeo-
morphic image registration and derive a learning algorithm

Fig. 6. The ground truth volume in mL plotted against the volume from
the proposed method, where each patient is represented by a blue dot. The
yellow dotted line indicates the y=x line for reference. The Pearson cor-
relation coefficient calculated is 0.98, revealing a high correlation of the
proposed method to the ground truth.

that leverages a convolutional neural network and unsupervised
learning for fast runtime. To achieve diffeomorphic transforms,
we integrate a new parameterization of deformation fields for
2D-to-2D and 3D-to-3D diffeomorphic registration algorithm
for the application of MRI cardiac registration, which describe
a deformation field with its transformation Jacobian determi-
nant and curl of the end velocity field. It also relaxes the need
for an explicit regularization to produce a physically plausible
result, as smoothness is implicitly embedded in the solution.
Removing explicit regularization makes the need for an empir-
ical trade-off between the similarity term and the regularization
term, which may cause bias Beg et al. (2005), unnecessary.

Furthermore, by directly requiring the transformation Jaco-
bian to be positive, the deformation can be ensured to be dif-
feomorphic. The other desirable constraints also can be en-
forced within the same framework using an explicit restriction
on the transformation Jacobian such as incompressibility con-
straint. Additionally, the proposed parameterization naturally
describes a deformation field in terms of radial and rotational
components, making it especially suited for processing cardiac
data Noble et al. (2002). Our algorithm can infer the regis-



11

tration of new image pairs in under a second, which is signif-
icantly faster than traditional iterative methods. Compared to
recent learning-based methods, our method offers a guarantee
of a diffeomorphic transform.

The proposed algorithm was evaluated on end-diastolic to
end-systolic cardiac cine-MRI registration on two publicly
available ACDC Challenge Bernard et al. (2018a) and Sunny-
brook data sets (SCD)Radau et al. (2009) as well as a set of left
atrium images obtained from the Mazankowski Alberta Heart
Institute. The proposed algorithm is diffeomorphic, allowing it
to capture the true deformation of the cardiac tissue. Observing
the percentage of voxels with a Jacobian determinant less than
zero, most of the other registration methods yielded mesh fold-
ing for either the MRI data sets. The presence of mesh folding
may result in the inability of these methods to capture the true
anatomical motion.
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Rohé, M.M., Datar, M., Heimann, T., Sermesant, M., Pennec, X., 2017. Svf-
net: learning deformable image registration using shape matching, in: In-
ternational conference on medical image computing and computer-assisted
intervention, Springer. pp. 266–274.

Rohlfing, T., 2011. Image similarity and tissue overlaps as surrogates for im-
age registration accuracy: widely used but unreliable. IEEE transactions on
medical imaging 31, 153–163.

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional networks



12

for biomedical image segmentation, in: International Conference on Medi-
cal image computing and computer-assisted intervention, Springer. pp. 234–
241.

Sang, Y., Xing, X., Wu, Y., Ruan, D., 2020. Imposing implicit feasibility
constraints on deformable image registration using a statistical generative
model, in: Medical Imaging 2020: Image Processing, International Society
for Optics and Photonics. p. 113132V.

Sheikhjafari, A., Noga, M., Punithakumar, K., Ray, N., 2018. Unsupervised de-
formable image registration with fully connected generative neural network,
in: Medical Imaging with Deep Learning.

Sheikhjafari, A., Noga, M., Punithakumar, K., Ray, N., 2022. A training-free
recursive multiresolution framework for diffeomorphic deformable image
registration. Applied Intelligence , 1–10.

Sheikhjafari, A., Talebi, H., Zareinejad, M., 2015a. 3d visual stabilization for
robotic-assisted beating heart surgery using a thin-plate spline deformable
model, in: 2015 3rd RSI International Conference on Robotics and Mecha-
tronics (ICROM), IEEE. pp. 743–748.

Sheikhjafari, A., Talebi, H.A., Zareinejad, M., 2015b. Robust and efficient 3d
motion tracking in robotic assisted beating heart surgery, in: 2015 IEEE
International Conference on Robotics and Biomimetics (ROBIO), IEEE. pp.
1828–1833.

Vercauteren, T., Pennec, X., Perchant, A., Ayache, N., 2008. Symmetric log-
domain diffeomorphic registration: A demons-based approach, in: Interna-
tional conference on medical image computing and computer-assisted inter-
vention, Springer. pp. 754–761.

de Vos, B.D., Berendsen, F.F., Viergever, M.A., Sokooti, H., Staring, M., Išgum,
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