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Abstract

Biases inherent in both data and algorithms make
the fairness of widespread machine learning (ML)-based
decision-making systems less than optimal. To improve the
trustfulness of such ML decision systems, it is crucial to
be aware of the inherent biases in these solutions and to
make them more transparent to the public and developers.
In this work, we aim at providing a set of explainability tool
that analyse the difference in the face recognition models’
behaviors when processing different demographic groups.
We do that by leveraging higher-order statistical informa-
tion based on activation maps to build explainability tools
that link the FR models’ behavior differences to certain fa-
cial regions. The experimental results on two datasets and
two face recognition models pointed out certain areas of the
face where the FR models react differently for certain demo-
graphic groups compared to reference groups. The outcome
of these analyses interestingly aligns well with the results of
studies that analyzed the anthropometric differences and the
human judgment differences on the faces of different demo-
graphic groups. This is thus the first study that specifically
tries to explain the biased behavior of FR models on differ-
ent demographic groups and link it directly to the spatial
facial features. The code is publicly available her

1. Introduction

The performance and accuracy of automated Face
Recognition (FR) systems have been boosted lately due to
the advances made in deep-learning [31} 33} 132, 3] and
large-scaled training face image datasets [15} (30} 42| 21]].
Both algorithmic improvement and large-scaled datasets
have contributed to the boom of FR systems being applied
in diverse application areas. However, research revealed a
bias problem in FR Systems. The face recognition vendor

Ihttps://github.com/fbiying87/
Demographic-Bias-Visualization.git

test (FRVT) in 2002 [23] and later in 2019 [13]] showed that
recognition accuracy differs between demographic groups.
Among tested FR solutions, some algorithms perform well
on Caucasians, while showing less superior performance on
other demographics. This biased behavior of the FR solu-
tions causes some problems in diverse applications. While
it is less sensitive to make more failure verification on un-
locking personal devices, it is more problematic to falsely
identify a person as a criminal. Thus bias funds mistrust
in the use of biometric recognition systems both by the sci-
entific communities and the public. Therefore, understand-
ing the biases and making them more transparent could in-
still trust, fairness, and security into the biometric systems.
More importantly, it can help develop new solutions that are
specifically designed to be fair.

To contribute toward explaining the demographic bias of
FR Models, we propose a set of explainability tools. We
show that the average activation mappings of different de-
mographic groups are extremely similar and thus do not re-
flect the bias. Based on that, we take our explainability tool
to a higher derivative of these maps by analyzing the dif-
ference (between demographic groups) in the variations in
these activation maps. After motivating our analyses with
Fairness analyses on two FR models and two datasets, we
demonstrated our explainability pipelines on these models
and datasets. Our analyses on gender differences and eth-
nic differences pointed out certain regions of the face where
the FR models behave differently in comparison to a refer-
ence demographic group. The results are largely consistent
across FR models and datasets. The results, very interest-
ingly, were consistent with findings in previous studies on
facial anthropometric differences and on the human judg-
ment on gender from faces [47, 6. This is thus the first
attempt to explain the differences in the FR models’ behav-
ior on different demographic groups. To achieve that, this
work provides explaination tools of the FR model behaviour
towards a group of samples rather than single samples in the
more conventional explainability tools.
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2. Related works

The biases inherently built into ML-based systems are
a matter of concern, whether data-dependent or human-
coded. These biases can be introduced either through data
[46l [11]], historical prejudices [22], or other proxies[29]
which supposedly to be fair representations of the latent bias
factors. For example, taking zip codes as a proxy could also
include social or ethical bias.

Focusing on fairness/bias in face recognition, there are
several works [10} [24] 134] pointing out that FR algorithms
suffer from the “own-race bias” or the “other-race effect”.
Drozdowski et al. in [10] pointed out that this effect is visi-
ble in most FR algorithms developed in different countries.
In [24] it is shown, that FR algorithms developed in Asia
perform better in recognizing Asian individuals, while so-
lutions developed in Europe perform well on Caucasians.
Algorithmic bias in FR tends to over-perform on majority
groups and thus making ethnicity a co-variate in the model.
But also with balanced ethnicity data, the FR algorithms do
not perform equally on all demographic groups, as shown
in [18]. The performance of some groups is still inferior to
other groups. This observation gives indications of the in-
herent and non-quantifiable characteristics of bias. These
biases have been shown to extend to other demographic
variations, end even non-demographic ones such as per-
sonal styling choices [37]].

Methods to mitigate these demographic biases are pro-
posed both from the algorithmic viewpoints or data per-
spective [35, 41 46| [36]]. Wang proposed in [41] a Meta-
Learning approach to combat the algorithmic bias. The net-
work tries to learn adaptive margins in the latent space for
the model to be optimized and perform fairly across peo-
ple of different skin tones. Later in [39]], Wang et al. used
reinforcement learning to optimize these adaptive margins.
From the data perspective, there are works as in [46, [1]. In
[46]] a two-stream approach is used to learn discriminative
face representation supervised by mining hard identities on
long-tailed data. This iterative way of integrating hard sam-
ples from the tail data enables the network to learn through
effective batch mining. Amini et al. [1] proposed an al-
gorithm for mitigating bias during training by re-sampling
the training data according to the automatically learned la-
tent variables within the training stage. The idea is to select
rarer data points more often. Other works target balancing
the data by adding augmentation of adversarial data per-
subject [44] or adding synthetic data to balance the ethnicity
distribution [[19].

Raising awareness of the bias issue both for the scien-
tific community and the general public is already a start
for building fairer and trustworthy solutions [26]. Cross-
discipline collaboration of researchers and developers is a
mjor requierment to enhance the ML fairness. A major ef-
fort in interpreting such phenomena in ML is the explain-

able artificial intelligence (XAI) program by the Defense
Advanced Research Projects Agency [14]], aiming at pro-
moting innovation in Al in general, not only in privacy-
related sectors but also in the fields of medical, finance and
autonomous driving.

3. Methodology

Our explainability toolset is built upon the activation
mappings (AM) of the FR solutions. These AMs are used
to create heat maps for the input image, highlighting the
important regions in terms of the network’s output. How-
ever, from one side, these heat maps deviate largely between
samples (due to variations in pose, expression, illumination,
etc.), which makes making general conclusions on the effect
of different demographic groups virtually pointless. On the
other side, they are almost identical if averaged on large
groups of samples, even if each sample represents a dif-
ferent demographic group, which limits their explainability
utilization as will be shown later in this work. To avoid this,
our explainability tools go beyond the base activation map-
pings into a higher derivative where one can notice statisti-
cal differences between groups of face samples. A similar
concept has been lately used to derive reasoning for differ-
ences between face images of different qualities [12]. These
explainability tools are presented in this section and demon-
strated in Figure[T]

3.1. Activation CAM method

As a backbone of our explainability tool, we require
a method to represent the special activation properties in-
duced by a single sample in FR models. The AM visual-
ization scheme used in this work is the Score-CAM pro-
posed by Wang et al. in [38]]. This method is designed
to efficiently display visual explanations for CNNs. It re-
weighted the final activation based on emphasizing the most
relevant regions within each feature map according to the
network’s decision. These activation CAM methods sur-
pass the inherent limitations in the gradient-based CAMs
[28] and provide a more effective and faster way to calcu-
late the salient map [235].

3.2. Our proposed explainability tools

Figure[]illustrates the different processes that comprised
our explainability tools below. For each input face image,
the Score-CAM generates an output AM with respect to the
two FR solutions. Each pixel value is denoted as a; ; with
{i = 1:112,5 = 1 : 112}. This saliency map is the
up-sampled and re-weighted activation of the output feature
layers according to the penultimate layer of the FR model.
This penultimate layer is placed before the FC layer of the
FR model. This layer is originally used to generate iden-
tity descriptors. For symmetry reasons, we also include the
AM of the horizontally flipped image in our calculations.
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Figure 1. Pipeline illustrates the different processes in our proposed explainability tool. The considered demographic groups are E: East-
Asian, C: Caucasian, I: Indian, and A: African. The same processes also apply to gender with males and females. It starts with the
activation mapping (AM) from the embedding space for building group statistics using these AM maps. Then the mean activation mapping
(MAM) and the activation mapping variation map (AM-V) are determined by building the group mean and group variation of the input
AM maps per demographic group. Deviation from the demographic groups is always referred to Caucasian, as they proved (later in the
paper) to lead to the highest FR performance. Differential activation mapping variation (D-AM-V) and the spatial variation map consider
the spatial differentiation in activation variation between non-Caucasian and Caucasians. We apply a similar pipeline between the gender

groups, female and male.

The exact FR models used in this work will be presented in
Section 421

We introduce the mean activation mappings (MAM)
for each of the demographic groups. We denote them as
MAM,, /, with dg = {E, C, I, A} for demographic groups
which include the Asian, Caucasian, Indian, and African
and g = {m, f} for gender and includes males and females.
Each element in the MAM is denoted as @; ; and it is derived
from Eq. (I) using the activation value of each single AM

Qg j:

1 N
_ k
@ = N;ai,j, (1)

where NN is the number of images within each demographic
per database. The MAM will be shown later (in Section [3])
to have no comprehensive pattern to study the FR behavior
differences between demographic groups.

To take our explainability tool to a space where we
can expect higher order differences between demographic
groups, we measure the variability in the AM, resulting in
the activation mapping variation map (AM-V) as higher or-
der analysis, where each pixel is denoted as 01-27 ; and is de-
termined in Eq. (2)):

1 N
=N > (af; — a2, 2)
k=1

, where IV is the number of samples in each demographic
per-database and a; ; is the element of the individual AM.
AM-V thus aims at spatially showing the degree of variation
in the activation of a group of samples.

MAM and AM-V look into the spatial areas where ei-
ther a high activation or a relatively large variation in the
activation of the FR occur, respectively. However, as we
will see later, the differences between the MAM of images
per demographic group do not reveal a lot of explainabil-
ity information. Therefore, to uncover the spatially related
difference between these demographic groups, we need to
analyze the differences between the variations of activation
in higher derivatives. We introduce the term Differential
activation mapping variation (D-AM-V) as in Eq. (3)

D-AM-V = |AM-V 4, | — AM-V, 5], 3)

where the term is calculated between two different demo-
graphic groups. Due to the symmetry constraint, this map-
ping is further mirrored and averaged to enhance the left-
and-right symmetry of a face image. The D-AM-V thus
graphically highlights the facial areas where two different
demographic groups have large differences in their activa-
tion variations.

To further enable easier conclusions from the AM-V
maps, we further integrate the AM-V map along both x- and
y-direction to illustrate the spatial variations along the hor-
izontal and vertical face axes by Eq. (4) and (3)), namely the



spatial-variation-x (s%9) and spatial-variation-y (s%9). Us-
ing this measure of two demographic groups further pro-
vides locations with higher activation variation differences
between them.

112

539 = / AM-V(z,y) dy 4)
1
112

S99 = /1 AM-V(z,y) dz (5)

The details of the considered pairs of demographic
groups will be discussed in more detail in the next section.

4. Experimental Setup

This section provides an overview of our experimental
setup in terms of the ethnicity and gender-balanced face
datasets, fairness evaluation metrics, considered FR mod-
els, and the investigated demographic differences.

4.1. Database

We performed our experiment on two publicly available
face datasets especially designed for validating the demo-
graphic bias in FR algorithms. As opposed to other large-
scaled face image datasets with heavily unbalanced and
long-tailed distributions, these two datasets have a balanced
number of subjects in each of the four ethnicity groups in-
cluded.

Robinson et al. proposed the Balanced Faces in the Wild
(BFW) in [27]. The data consists of four different ethnic
groups (Asian, Black, Indian, and White). Each ethnic-
ity is further split into two subgroups of balanced males
and females. Each subgroup has 25 faces of 100 subjects
and aggregated to 20K faces in total. This dataset is used
both for the investigation of ethnicity bias and gender bias,
where we combined all female and male subjects across
all ethnicity groups. Five folds cross-validation is used
in the BFW dataset, with in total more than 920K pairs
of 240K genuine and 680K imposter comparisons. Based
on these comparison pairs, we separate them further into
Caucasian-Caucasian, Asian-Asian, African-African, and
Indian-Indian pairs, as well as the female-female and male-
male pairs.

The Racial Faces in-the-wild (RFW) in [40]] also con-
sists of four testing ethnicity groups, namely Caucasian,
Asian, Indian, and African. Each subset contains around
10K images of 3K individuals. In RFW, the images
are carefully balanced and cleaned. As no gender la-
bels are provided for this dataset, we only use this dataset
for the investigation of FR models on ethnicity differ-
ences. RFW dataset composes of 6000 pairs of equal gen-
uine (3000) and imposter (3000) pairs for each ethnicity
(Caucasian-Caucasian, Asian-Asian, African-African, and

Indian-Indian pairs), which makes in a total of 24K pairs of
genuine and imposter comparisons.

4.2. Face recognition models

Our experiments are performed on two FR models. Both
FR models are trained with ArcFace loss [9]] and publicly
released by their creators El Both backbones of the FR mod-
els are based on the ResNet architecture [16] of different
scales. The larger backbone is the ResNet-100, which has
deeper middle layers for the feature extraction compared to
the smaller backbone with ResNet-50. This selection is mo-
tivated by the effect of the model scale on ML bias pointed
out in [[17]. We chose the ArcFace r100 model, as the so-
lution shows high performance on face identification accu-
racy, across substantial changes in viewpoint, illumination,
expression, and quality [9} [20]. We base our investigations
on FR models of different scales to further show the be-
havioral patterns of demographic fairness across models of
different scales.

To match the input expected by the FR models, each
face image is first cropped and aligned (similarity trans-
fer) using MTCNN [45] 9] into standardized face images
of 112 x 112 pixels. For both ArcFace models, the output
layer net.layer4 is used for activation mapping. To mitigate
the non-symmetry issue, we include both the horizontally
flipped version of the input image and its original version
for the activation mapping.

4.3. Fairness evaluation metrics

To measure the fairness of the FR models, as a moti-
vation for our explainability efforts, we adopt the Fairness
discrepancy ratio (FDR) proposed in [8]. The FDR takes
both verification errors, namely the false match rate (FMR)
and the false non-match rate (FNMR) into consideration for
a given decision threshold. A biometric verification system
is said to be fair only if, at a given decision threshold, statis-
tical equality can be achieved for all pairs of demographic
groups in terms of both FMR and FNMR. A higher FDR
value indicates a fairer behavior between two demographic
groups. The equation of FDR is given by Eq.

FDR(1)=1—- (a¢A(T)+ (1 — @)B(1)), (6)

where the term A(7) and B(7) are the two premises in [8]]
considering both the FMR and FNMR measures. The equa-
tions are A(7) = max([FMR (1) — FMR%(7)|) < ¢
and B(1) = maxz(|FNMR%Y (1) — ENMR%Y (7)|) < e,
where dg;, dg; are each from one demographic group. «
is set to 0.5 in our experiments, giving both error types an
equal contribution to FDR. € is a relaxation constraint that
puts a limit of when to consider a system “fair” [8]], which
we set in our analyses to zero.

Zhttps://github.com/deepinsight/insightface
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Figure 2. Fairness Discrepancy Rate (FDR) of two FR models over multiple decision thresholds 7 to compare the considered FR models

over ethnicity and gender groups.

RFW BFW
ArcFace r100 ArcFace r50 ArcFace r100 ‘ ArcFace r50

T@FMRyo- | 102 [107° J10°" [10% [10 % J10T [102 [10% J10°T [10* [J10 % [10 T
Demographic FMR FMR FMR FMR
Caucasian 1.5E-1 | 1.OE-2 | 1.6E-3 | 1.9E-1 | 1.5E-2 [ 0.7E-3 | 0.7E-2 | 0.4E-3 [ 0.1E-4 | 0.9E-2 | 0.6E-3 | 0.4E-4
Asian 38E-1 | 80E2 | 12E-3 | 4.1E-1 | 74E2 | 9E-3 | 2.6E-2 | 3.6E-3 | 3.9E-4 | 1.9E-2 | 2.6E-3 | 3.1E-4
African 42E-1 | 9.0E-2 | 17E-3 | 5.1E-1 | 10E-2 | 13E-3 | 1.7E-2 | 1.8E-3 | 2.2E-4 | 1.9E-2 | 2.2E-3 | 2.1E-4
Indian 39E-1 | 8.1E2 | 11E-3 | 46E-1 | 9.0E-2 | 8E-3 | 22E-2 | 2.1E-3 | 1.8E-4 | 2.3E-2 | 2.4E-3 | 2.4E-4

FNMR FNMR FNMR FNMR
Caucasian 0.7E-3 [ 0.005 | 0.008 | 0.003 | 0.013 [ 0.043 | 0.040 | 0.057 | 0.090 | 0.044 | 0.073 | 0.112
Asian 1.3E-3 [ 0.004 | 0.012 | 0.004 |0.022 [0.063 | 0.127 | 0.160 | 0.205 | 0.137 | 0.178 | 0.224
African 0.7E-3 | 0.002 [ 0.005 | 0.002 | 0.011 | 0.037 | 0.085 | 0.109 | 0.136 | 0.090 | 0.121 | 0.155
Indian 0.7E-3 [ 0.003 | 0.006 | 0.003 | 0.014 | 0.044 | 0.082 | 0.105 | 0.131 | 0.087 | 0.119 | 0.151
FDR [0.879 [0.964 [0.992 [0.892 [0.966 [ 0985 [0.946 [0.946 [0.942 [0.948 [0.946 | 0.943
FDR AUC | 0.949 | 0.953 | 0.943 | 0.947

Table 1. FNMR(7), FMR(7), and FDR(7) are given per demographic group, where the operational points are defined as 7 at FM R. Itis

to note that 7 is set using the entire test dataset as a global threshold.

To better compare the two FR models, we plot the FDR
as a function of an operational threshold 7. The global
threshold 7 is determined on the entire test dataset from all
demographics following [8]. For the FDR curve, we vary
T, the global threshold that results in an FMR of 107! to
1075 in 5 steps, the 7 will be noted by the FMR threshold
is calculated. We also provide the area under the curve of
FDR (within the same range) as another measure to assess
the fairness of a certain FR model.

4.4. Investigation

The experiments are designed to address the two main
demographic variations of our study (1) ethnic differences,
and (2) gender differences.

Before introducing the findings of the research scope, we
first motivate the need by looking at the demographic fair-
ness issue in both considered FR models in terms of verifi-
cation performance and FDR metric. Then, we applied our
proposed explainability tools to the BFW and RFW datasets
using both FR models of different scales to back-propagate
the network’s decision via activation mapping on the input
data. Both FR models have the same DCNN-based back-
bone ResNet-100 and RestNet-50. We build our analysis
on these sets of activation mappings. As we only have gen-
der labels for the BFW dataset, the experiments on gender
bias addressing the second aspect are only conducted on the
BFW dataset. Similarly, we applied our chain of tools to
the gender-balanced dataset to draw implications on the net-

work’s commonality on the gender aspect.

As both FR solutions are trained on face datasets with
Caucasian males as the majority class and as will be demon-
strated, perform the best on Caucasians and males, the ex-
periments conducted in this study compare the demographic
groups against the Caucasian group when considering de-
mographics as a reference, and the female group against the
male group as a reference when considering gender.

5. Results

In this section, we discuss the results of the two explain-
ability aspects (ethnic and gender differences) using our
presented tools with respect to both considered FR models.

5.1. Demographic fairness

Demographic fairness requires the automatic FR algo-
rithms to perform equally on all different demographic
groups for any 7. However, recent studies [[13}|37]] show that
depending on the underlying FR model, the system does not
perform equally well for all ethnic groups.

Here, to build a basis for our explainability analyses, we
analyse the fairness of the considered FR models. We first
discuss the fairness in demographics in terms of verification
performance comparison for our datasets. Table [I| shows
that both FR models produce different performances for dif-
ferent ethnicity groups. For the BFW benchmark, both FR
models performed the best (in terms of FMR and FNMR)
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Figure 3. The Explainability tool is applied to all four ethnic groups in the BFW dataset, using ArcFace r100 as the FR model. The 1st
column shows the MAM of each ethnic group, while the 2nd column shows the MAM map superimposed on a sample image of each
group. The 3rd column shows the distribution of the values of the MAM map of two groups. The 4th column is the AM-V. The 5th column
visualizes the distribution of AM-V values in two demographic groups. The D-AM-V maps in column 6 and overlaid with sample images
in column 7, showing the main areas that trigger different behavior in the FR models. The last two columns, 8 and 9, summarize the AM-V
by summing its values on the horizontal and vertical face axes for two different demographic groups. Higher values indicate higher local

variation in activation for this ethnic group.

African Asian Caucasian

Indian

MAM MAM,, vs. MAMc AM-V

AM-Vq vs. AM-V¢

left ear nose right ear forehead nose chin

Spatial-Variation-y

D-AM-V Spatial-Variation-x

Figure 4. The Explainability tool is applied to all four ethnic groups in the RFW dataset, using ArcFace r100 as the FR model. The different

columns follow the explanation in Figure@caption.

on faces from the Caucasian demographic group. Other
ethnicity groups in BFW do perform worse than the Cau-
casian group by scoring higher FNMR and FMR values at
most global operational thresholds. Similar conclusion can
be made from the RFW benchmarks, especially from the
FMR values, with the FNMR is slightly less consistent due
to the lower number of the genuine pairs (lower statistical
significance) in the RFW benchmark in comparison to BFW
(See Section @) In general, ArcFace r100 outperforms
the smaller model ArcFace r50, as expected, in most exper-
imental settings on both the BFW and RFW benchmarks.

Fairness, or rather the lack of it, is observed for both
FR models on both datasets by looking at Figure [2| (a) and
(b), as well as the FDR and FDR AUC values in Table [T}
The FDR score varies widely over a wide range of 7 in the
RFW dataset. For BFW dataset, the FDR values are gen-
erally slightly higher for the smaller ArcFace r50 model, as
seen in Figure [2](b). However, the FDR AUC specifies the
smaller model ArcFace r50 as having slightly higher fair-

ness towards ethnicity groups compared to ArcFace r100 in
both datasets.

In Table 2] we see that males perform slightly better
compared to females in terms of FNMR and FMR across
multiple thresholds, indicating some form of inherent gen-
der bias in both FR models. Now, looking at Figure[J{c),
the FDR curve shows the slightly higher gender fairness of
the larger ArcFace r100 model.

In summary, both FR models have consistent perfor-
mance trends and less-than-perfect fairness in both the gen-
der and ethnicity demographic groups. Thus, explaining the
differences in the FR model’s reaction to these groups, and
the consistency of this explainability, is highly relevant to
understanding their behaviour.

5.2. Explainability of ethnic differences in FR

In Figures [3] [} 5] and [f] the MAM of different ethnic-
ity groups are visually very similar. This goes as well to
the histogram of the MAM values comparison between the
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Figure 5. The Explainability tool is applied to all four ethnic groups in the BFW dataset, using ArcFace r50 as the FR model. The different

columns follow the explanation in Figure@caption.
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Figure 6. The Explamablhty tool is applied to all four ethnic groups in the RFW dataset, using ArcFace r50 as the FR model. The different

columns follow the explanation in Figure 3] caption.

ArcFace r100 | ArcFace 150
T@QFMR,0” [ 1072 [10% [10~" [10% [107% 107

Gender FMR FMR

Males L1E-2 [ 1.IE-3 | 1.2E-4 | 1.IE2 | 1.1E-3 | 1.1E-4

Females 1.6E-2 | 1.8E-3 | 1.7E-4 | 1.6E-2 | 1.8E-3 | 1.8E4
FNMR FNMR

Males 0.085 [0.106 [0.131 | 0.089 [0.118 [ 0.147

Females 0.083 | 0.110 | 0.151 [ 0.091 | 0.128 [ 0.173

FDR 0.997 10.998 ]0.990 [0.996 [0.994 [0.987

FDR AUC | 0.992 0.990

Table 2. FNMR(7), FMR(7), and FDR(7) are given per gender as
subgroup, where the operational points are defined as 7 at FM R,.
It is to note that 7 is set using the entire test dataset, due to missing
development set.

ethnic groups. This inability to see differences in the FR
model’s reaction to different groups, which is expected due
to the demonstrated lack of fairness, is the main motivation
behind our explainability tools. Rather than searching for
differences in the model activation maps, we look for dif-
ferences in the variation of these activations, thus the AM-V
and its derivative, the D-AM-V.

The D-AM-V reveals better the spatially related differ-
ence between these demographic groups. Local areas with a
higher difference in the activation variation indicate a higher
difference between the way FR models see different ethnic
groups. As indicated by the pipeline in Figure[T} we build

our investigations always to the Caucasian group as refer-
ence. Figure[3] [} [3] and [6] show the same shape of the D-
AM-V maps for all demographics sets (E-C, A-C, and I-C)
over two different datasets within the same FR model. D-
AM-V maps demonstrate for Indian strong differences on
the nose and outer eye corners, while for Africans the focus
lies around the mouth, chin, and forehead, and for Asian
on the cheeks and forehead area. Mapping the D-AM-V
along the x- and y- direction show a higher difference in
the activation variation between Caucasians (red) than non-
Caucasians (blue) ethnic groups. Looking at the s, maps (in
E-C, A-C, and I-C) for the forehead, nose, and chin areas,
the same findings as before can be obtained while observing
large gaps in the cheek areas for the Asian group, between
the mouth-chin area in Africans, and between the nose re-
gion in Indians. In general, Asians show higher D-AM-V
values, which is probably related to them scoring some of
the worse verification performances across ethnicity groups
on both FR models (see Table[T).

These observations are rather consistent to a large degree
on both FR models and both databases (see Figures 3] f] 3]
and|[6). However, comparing the AM-V distributions across
non-Caucasians and Caucasians for BFW in Figure[3] and
Figure[5] one sees a stronger variation in ArcFace r50 than
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Figure 7. The Explainability tool is applied to both gender demographic groups in the BFW dataset, using ArcFace r100 (upper) and
ArcFace 50 (below) as the FR model. The different columns follow the explanation in Figure [3|caption.

in ArcFace r100, suggesting that a smaller backbone causes
stronger variations in activation, which can be related to its
general lower verification performance. The same trend is
also observed for RFW across ArcFace r100 and ArcFace
150 in Figure[ and Figure[6]

In summary, the observations made on the most im-
portant areas of difference in the activation variation be-
tween the different ethnic groups and the Caucasian group
are to a large degree consistent for both FR models and
datasets. Different demographics show characteristic pat-
terns in terms of the D-AM-V map in comparison to Cau-
casians highlighting specific areas of interest across demo-
graphic groups. In a study on the facial anthropometric dif-
ferences among ethnicity [47]], the authors pointed out that
the chin arc and sub-nasal arc (mouth region) were on the
top in terms of average change between African Americans
and Caucasians, which is consistent with our observations
through the eyes of FR models and confirms the validity of
our explainability tools. Unfortunately, the study did not
include information about the Indian and Asian groups.

5.3. Explainability of gender differences in FR

Figure[7]shows the group characteristics of the AM maps
for the gender aspect. Only considering the shape of the
MAM, no clear deviation is visible between both genders.
However, when we focus on higher-order analysis, such as
the D-AM-V, we observe a differentiation in the forehead
and chin regions. This is rather consistent for both FR mod-
els. Very interestingly, in a study that analyse the facial
areas that mostly affect the human judgment on the gender
of the face [6]], the chin and brow (forehead) areas came on
top. Which, to some degree points out the sanity of our pro-
posed explainability tools. Additional study on the facial
anthropometric differences among genders [47] pointed out
that the chin arc and frontal arc (forehead) were on the top
in terms of average change between females and males’ fa-
cial measurements.

One limitation of our study is the number of experimen-
tal variations that can fit in such a work. We chose to build
variations in the FR model architecture and the dataset to
avoid “’bias” outcomes in these regards. However, inter-
esting questions regarding the explainability tool’s outcome
across FR training losses [9, 13} 4l], network architectures
[L6l 2 1431 [5], FR training datasets [15} [7], the set of anal-
ysed demographics (or even non-demographic) variations
[I37]], the combined analyses of demographic groups (e.g.
African females in comparison to Indian males), and the
pairing of the compared demographic groups (we chose the
top performer as a reference here), are yet to be explored.

6. Conclusion

In this work, we aimed at explaining the difference in the
perspective of FR models between different demographic
groups. Towards that, we presented a set of explainabil-
ity tools visualizing the ethnic and gender differences for
the underlying FR models. In general, both considered
FR models show ethnic bias in both datasets in terms of
unequal verification performance in different demographic
groups. Our tools and analyzing the results on two datasets
and two FR models pointed out certain regions that might
cause the FR model’s behavior differences between certain
ethnic groups and the Caucasian ethnicity on one hand, and
between males and females on the other hand. Interestingly,
the outcome is, to a large degree, consistent with the avail-
able clues from facial anthropometric differences studies
and studies on the human judgment of gender from faces.
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