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ABSTRACT

Large imbalance often exists between the foreground points (i.e., objects) and
the background points in outdoor LiDAR point clouds. It hinders cutting-edge
detectors from focusing on informative areas to produce accurate 3D object detec-
tion results. This paper proposes a novel object detection network by semantical
point-voxel feature interaction, dubbed PV-RCNN++. Unlike most of existing
methods, PV-RCNN++ explores the semantic information to enhance the quality
of object detection. First, a semantic segmentation module is proposed to retain
more discriminative foreground keypoints. Such a module will guide our PV-
RCNN++ to integrate more object-related point-wise and voxel-wise features in
the pivotal areas. Then, to make points and voxels interact efficiently, we utilize
voxel query based on Manhattan distance to quickly sample voxel-wise features
around keypoints. Such the voxel query will reduce the time complexity from
O(N) to O(K), compared to the ball query. Further, to avoid being stuck in learn-
ing only local features, an attention-based residual PointNet module is designed
to expand the receptive field to adaptively aggregate the neighboring voxel-wise
features into keypoints. Extensive experiments on the KITTI dataset show that
PV-RCNN++ achieves 81.60%, 40.18%, 68.21% 3D mAP on Car, Pedestrian, and
Cyclist, achieving comparable or even better performance to the state-of-the-arts.

1 INTRODUCTION

Object detection in both 2D and 3D fields Ren et al. (2016); Zheng et al. (2022); Wei et al. (2022);
Yin et al. (2021); Luo et al. (2021); Ji et al. (2022); Wang et al. (2022a) is increasingly important
with the development of autonomous driving Geiger et al. (2012), robot systems, and virtual reality.
Much progress has been made in 3D object detection via various data representation (e.g., monocular
images Yan & Salman (2017); Reading et al. (2021); Chen et al. (2020); Li et al. (2019a), stereo
cameras Chen et al. (2017a); Li et al. (2019b), and LiDAR point clouds). Compared to 3D object
detection from 2D images , LiDAR point cloud casts a critical role in detecting 3D objects as it
contains relatively precise depth and 3D spatial structure information.

LiDAR-based 3D object detectors can be roughly grouped into two prevailing categories: Voxel-
based Zhou & Tuzel (2018); Yan et al. (2018); Ye et al. (2020); Lang et al. (2019); Shi et al. (2019b)
and Point-based Shi et al. (2019a); Shi & Rajkumar (2020); Yang et al. (2020); Xie et al. (2021).
The former discretizes points into regular grids for the convenience of the 3D Sparse Convolutional
Neural Network (CNN). Then, the voxelized feature map can be compressed to Bird’s Eye View
(BEV) which is fed to Region Proposal Network (RPN) Ren et al. (2016); Yan et al. (2018) to
produce predictions. On the contrary, the point-based ones mainly adopt PointNet++ Qi et al. (2017)
as the backbone, which take raw points as input, and abstract sets of point features through an
iterative sampling-and-grouping operation. Different from only the single voxel-based and point-
based methods, PV-RCNN Shi et al. (2020) explores the interaction between point-wise and voxel-
wise features. Specially, PV-RCNN deeply integrates both 3D Voxel CNN and PointNet-based Set

1

ar
X

iv
:2

20
8.

13
41

4v
1 

 [
cs

.C
V

] 
 2

9 
A

ug
 2

02
2



Abstraction (SA) to enhance the ability of feature learning. To be concrete, a Voxel Set Abstraction
(VSA) is proposed to encode voxel-wise features of different scales through sampled keypoints
by Furthest Point Sampling Qi et al. (2017) (FPS). Through coordinate transform and projection,
VSA also concatenates the features of BEV and raw point features into keypoints to have a more
comprehensive understanding of 3D scenes.

Nevertheless, we observe that the large imbalance between small informative areas containing 3D
objects and large redundant background areas exists in outdoor LiDAR point clouds. It poses a
challenge for accurate 3D object detection. Generally, the point cloud obtained by LiDAR covers
a long range of hundreds of meters, where only several small cars are captured and the rest are
numerous background points. However, in PV-RCNN Shi et al. (2020), the whole 3D scene is sum-
marized through a small number of sampled keypoints by FPS. When selecting keypoints, FPS tends
to choose distant points to evenly cover the whole point cloud, which causes excessive unimportant
background points retained and many valuable foreground points discarded. Consequently, the per-
formance of PV-RCNN is limited largely due to insufficient features provided by the foreground
objects. Therefore, we consider that if there is any prior knowledge that can lead the detector to
focusing on the pivotal foreground objects to extract more valuable features. The inspiration is to
leverage the result of point cloud semantic segmentation as the prior knowledge to guide the detector.

To this end, we present a novel 3D object detection network via semantical point-voxel feature inter-
action (termed PV-RCNN++). First, we introduce a lightweight and fast foreground point sampling
head meticulously modified from PointNet++ Qi et al. (2017) to select proper object-related key-
points. We remove the feature propagation (FP) layer in PointNet++ to avoid the heavy memory
usage and time consumption Yang et al. (2020). We only remain the SA layers to produce more
valuable keypoints. Concretely, in each SA layer, we adopt a binary segmentation module to clas-
sify the foreground and background points. Then, inspired by Chen et al. (2022), we adopt a novel
sampling strategy, semantic-guided furthest point sampling (S-FPS), taking segmentation scores as
guide to sample and group representative points. Different from FPS, S-FPS gives more preference
to positive points, making more foreground points retained in the SA layers. Hence, the sampled
points in the SA layers can act as the pivotal point-wise representation for the succeeding operation.

After obtaining the discriminative keypoints, the challenge would be how to efficiently integrate the
voxel-wise and point-wise features via keypoints. We seek to 1) to speed up the interaction between
points and voxels; and 2) to effectively summarize the 3D information from voxel-wise feature.
Specifically, 3D sparse convolution is first adopted to encode the voxelized point cloud. Then, we
propose a fast voxel-to-point interaction module to efficiently sample and group neighboring voxel-
wise feature around keypoints. The existing query strategy, ball query Shi et al. (2020), consumes
too much time to compute the Euclidean distance from every voxel to keypoints to identify whether
the voxel is within a given radius or not. Therefore, motivated by Deng et al. (2021), we regard
keypoints as voxels, which are regularly arranged in 3D space, and then a voxel query strategy based
on Manhattan distance is utilized to quickly identify the neighboring voxel-wise feature of each
keypoint. Compared with ball query, our voxel query greatly reduces the time consumption from
O(N) to O(K), where N is the total number of voxels and K means the number of neighboring
voxels around keypoints.

An Attention-based Vaswani et al. (2017) Residual PointNet Module is proposed to abstract the
neighboring voxel-wise features to summarize the multi-scale 3D information. We apply self-
attention mechanism on voxel set of each keypoint to produce corresponding attention maps, al-
lowing each voxel to have a more comprehensive perception field containing more 3D structure and
scene information of other nearby voxels. Last, we introduce a lightweight residual He et al. (2016);
Ma et al. (2022) PointNet module to further extract and aggregate the refined voxel-wise feature.

The main contributions are summarized as follows:

• We introduce a semantic-guided keypoint sampling module to retain more valuable fore-
ground points from the point cloud, which helps the detector focus on small pivotal areas
containing 3D objects.

• We utilize voxel query based on Manhattan distance to quickly gather the neighboring
voxel-wise features around keypoints, reducing the time consumption compared to ball
query and improving the efficiency of point-voxel interaction.
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• We propose an attention-based residual PointNet module, which allows each voxel to have
an adaptive and nonlocal summary of the neighborhood to achieve more accurate predic-
tions.

• Extensive experiments and results show that our proposed method achieves comparable
performance on common 3D object detection benchmark, KITTI dataset Geiger et al.
(2012).

2 RELATED WORK

Point-Based Method. Generally, point-based methods Shi et al. (2019a); Shi & Rajkumar (2020);
Zarzar et al. (2019); Yang et al. (2020); Zhang et al. (2021) mainly rely on PointNet++ Qi et al.
(2017) and Graph Neural Network Scarselli et al. (2008). To preserve the position information,
point-based methods operate directly on the point cloud to extract point-wise feature. Inspired by
Faster R-CNN Ren et al. (2016), PointRCNN Shi et al. (2019a) utilizes PointNet++ to design a
bottom-up 3D Region Proposal Network to generate 3D proposal boxes which are then refined in
canonical coordinate at the second stage. To reduce the time-consuming operation of the Feature
Propagation(FP) layer in PointNet++, 3DSSD Yang et al. (2020) removes the FP layer and proposes
a feature-guided sampling method to lead the SA layer to select more discriminative points. Dif-
ferent from common point-based methods, PC-RGNN Zhang et al. (2021) proposes a Graph-based
point cloud completion Yuan et al. (2018) module to capture the geometry clues of 3D proposals,
which provide more complete structure and shape information for refinement. Although point-based
methods have the potential to achieve more accurate detection, the problem of time complexity and
memory consumption cannot be settled properly, which limits their further development.

Voxel-Based Method. Voxel-based methods Zhou & Tuzel (2018); Yan et al. (2018); Ye et al.
(2020); Lang et al. (2019); Shi et al. (2019b); Zheng et al. (2021a;b) adopt the regular voxelized point
cloud as data representation. VoxelNet Zhou & Tuzel (2018) first proposes a generic single-stage
network for 3D box regression. In VoxelNet, Voxel Feature Encoder(VFE) is designed to divide
unordered points into grids and utilizes simplified PointNet to produce a representative feature of
each voxel. 3D CNN is then applied to extract the feature of the whole 3D scene. CIA-SSD Zheng
et al. (2021a) proposes a Spatial-Semantic feature aggregation module to extract low-level spatial
features and high-level semantic features of the BEV feature map for more accurate proposals. SE-
SSD Zheng et al. (2021b) utilizes Knowledge Distillation Hinton et al. (2015) to design a pair of
teacher and student SSDs. An effective IoU-based matching strategy is proposed to filter soft targets
from the teacher and formulate a consistency loss to align student predictions with them. Despite that
voxel-based methods improve the speed and efficiency of detection, they pay a price for degrading
the localization accuracy due to the loss of point-wise feature.

Point-Voxel Hybrid Method. To achieve both efficiency and accuracy, Point-Voxel hybrid methods
Yang et al. (2019); He et al. (2020); Shi et al. (2020) try to take advantage of the efficient computation
of voxel-based backbone and accurate position information from raw point clouds. STD Yang et al.
(2019) designs a Spherical Anchor to generate proposals from raw point clouds with the help of
PointNet-like networks. Then at the second stage, a local VFE is utilized to extract the voxel-wise
feature to help box prediction. At the basis of SECOND Yan et al. (2018), SA-SSD He et al. (2020)
adds a detachable auxiliary network to transform voxel-wise tensors into the point-wise feature and
then leverages point-wise structure information to help train the backbone network. PV-RCNN
Shi et al. (2020) designs a Voxel Set Abstraction module to integrate the multi-scale voxel-wise
and point-feature through sampled keypoints. VIC-Net Jiang et al. (2021) presents a two-branch
network, which consists of a point branch for geometry detail extraction and a voxel branch for
efficient proposals generation. In this paper, we propose a semantic-guided point-voxel interaction
method, PV-RCNN++, to efficiently integrate the voxel-wise and point-wise feature, providing a
more comprehensive and discriminative feature for accurate prediction.

LiDAR-Camera Fusion Method. Recently, many multi-modal works Chen et al. (2017b); Ku et al.
(2018); Qi et al. (2018); Huang et al. (2020); Vora et al. (2020); Yoo et al. (2020); Pang et al. (2022);
Zhang et al. (2022a); Wang et al. (2022b) have been proposed to explore the fusion of different
sensor data for 3D object detection. MV3D Chen et al. (2017b) is a pioneering work to directly
combine the feature from point cloud BEV map, front view map, and 2D images to locate objects.
EPNet Huang et al. (2020) adopts a refined way in which each point in the point cloud is fused
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with the corresponding image pixel to obtain more accurate detection. However, all these methods
inevitably consume a lot of computation time and memory. Moreover, the alignment error between
points and pixels will have a negative impact on the accuracy.

Attention Mechanism. In the past several years, attention mechanism Vaswani et al. (2017) has
shown its great power in many 2D visual tasks Dosovitskiy et al. (2020); Shu et al. (2022; 2021);
Tang et al. (2022); Li & Chen (2022) as it can effectively capture nonlocal information for feature
extraction. Nowadays, some works Zhao et al. (2021); Guo et al. (2021) apply attention mecha-
nism on 3D point cloud processing (e.g., point cloud segmentation) to obtain outperforming results.
However, these methods only explore the attentive relation among points while ignoring the po-
tential effects on voxels. Therefore, we introduce an attention-based voxel aggregation module to
adaptively extract the spatial information in the 3D scenes for more accurate 3D object detection.

3 METHODOLOGY

3.1 OVERVIEW

Beyond previous wisdom, we argue that 1) more foreground points are beneficial to capturing piv-
otal structure and position feature; 2) faster query strategy is needed to relieve the time-consuming
interaction between points and voxels; and 3) voxel-wise feature should have a more comprehen-
sive perception of neighboring structure feature instead of local convolution feature. To this end,
we present our PV-RCNN++: Semantical Point-Voxel Feature Interaction for 3D object detection,
which consists of the following modules: 1) a binary segmentation module is introduced to guide
FPS to select more object-related keypoints; 2) voxel query based on Manhattan distance replaces
the ball query to quickly sample voxel-wise feature; 3) an attention-based residual PointNet is de-
signed to adaptively fuse the neighboring voxel-wise feature to summarize the nonlocal 3D structure
information. Our backbone is illustrated as Fig. 1. Given point cloud P = {pi | i = 1, 2, 3...N} ⊆
R3+d as input, where N = 16384 and d denotes the point feature (e.g., reflection intensity), our
goal is to predict the center location (x, y, z), box size (l, w, h) and rotation angle θ around Z−axis
of each object.

3.2 VOXEL ENCODER AND 3D REGION PROPOSAL NETWORK

First, the unordered point cloud are transformed to uniformed 3D grids with voxel size v, and each
grid contains k points. Then, the mean Voxel Feature Encoder(VFE) Zhou & Tuzel (2018) is adopted
to compute the mean feature of k points as the representative feature of the grid.

3D Voxel CNN. Through mean VFE, the point cloud shapes as a L×W×H feature volume. We uti-
lize 3D Sparse Convolutional Neural Networks Yan et al. (2018) to encode the feature volumes with
1×, 2×, 4×, 8× downsample sizes. All four downsampled voxel-wise feature maps are preserved
for the subsequent point-voxel interaction module.

3D Region Proposal Network. After 3D Voxel Encoder, the forth 8× downsampled feature map is
compressed to 2D BEV feature map which is of L8 ×

W
8 resolution. We utilize anchor-based methods

Ren et al. (2016) on the BEV feature map to generate 3D anchor boxes with the average size of each
class. Considering the rotation angle around Z-axis, 0 and π

2 degree are set for each anchor pixel.
Therefore, the whole BEV map produces 3 × 2 × L

8 ×
W
8 proposals in total for three classes: Car,

Pedestrian, and Cyclist.

3.3 FOREGROUND POINT SAMPLING

Our motivation is to retain more foreground points to capture more valuable spatial and position
information while bringing no burden of time consumption, so we meticulously redesign the Point-
Net++ to act as our foreground point sampling module. As mentioned in 3D-SSD Yang et al. (2020),
despite the FP layer in PointNet++ Qi et al. (2017) can broadcast the semantic feature to all points to
improve segmentation precision, it takes much time to upsample points. Therefore, capturing more
foreground points in the SA layer would be a better choice. We remove the FP layer in PointNet++
and adopt a semantic-guided sampling strategy in SA layer. We first feed the raw points P with
feature F into the segmentation module to compute the score S. Then with the guide of S, we
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FP
S
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refined

Figure 1: An overview of our PV-RCNN++. The point cloud is first fed into 3D Voxel Encoder to
produce 3D proposals. Then, the Foreground Point Sampling module selects more valuable object-
related keypoints through the modified SA layers. Last, according to the sampled keypoints, the
voxel-wise feature, point-wise feature, and the BEV feature are concatenated to be fed into RoI-grid
pooling to refine the proposals to produce more accurate 3D boxes.

employ the modified sampling strategy to sample K keypoints in the SA layer. The specific process
is shown in Fig. 2 and described as follows.

Binary Segmentation Module. To avoid bringing high computation, we adopt a 2-layer MLP as
binary segmentation module to directly obtain the score of point. Concretely, given point feature set
Fk = {fdk1 , fdk2 , fdk3 , ...fdkNk

}, where dk denotes the d-dimension of point feature fdki fed into the
k-th SA layer, score si ∈ [0, 1] of each point is defined as:

si = Ω(MLPk(fdki )) (1)

where Ω means the sigmoid function,MLPk represents the segmentation module in k-th SA layer.
The real segmentation labels can be obtained from ground-truth boxes. We define the points inside
the ground-truth boxes as foreground points while the outside as background points. Therefore the
loss of the segmentation module can be calculated as:

Lkseg =

m∑
k=1

λk
Nk
·
Nk∑
i=1

BCE(ski , ŝ
k
i ) (2)

where ski denotes the predicted score and ŝki is the ground-truth label (0 for the background and 1
for the foreground) of the i-th point in the k-th SA layer. BCE is the binary cross-entropy loss
function. m means the number of SA layers, which is set to 4. Nk ∈ {4096, 2048, 1024, 256} is the
total number of the input points and λk ∈ {0.1, 0.01, 0.001, 0.0001} is the loss weight of k-th SA
layer.

Semantic-guided Further Point Sampling. Since we have obtained the point scores from the
binary segmentation module, it means that the possible foreground points have been masked. The
easiest way to select foreground points is to use Top-K scores as a guide. However, as observed
from Fig. 7 and Table 2, it will decrease the perceptual ability of the whole 3D scene if too many
foreground points are selected and few background points are involved. Motivated by Chen et al.
(2022), we modified the furthest point sampling strategy by adding a score weight called S-FPS.
Keeping the basic flow of FPS unchanged, we leverage scores of unselected points to rectify the
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Raw points or from last SA layer

CAR

Binary Segmentation S-FPS (K points) Group & Aggregation

Points with scores Selected key points Output key points with features

Figure 2: The structure of the modified Set Abstract(SA) layer in the Foreground Point Sampling
module. Points from raw data or the previous SA layer are fed to the binary segmentation module to
obtain the scores. Then, S-FPS is adopted to select more foreground keypoints to have a better un-
derstanding of the 3D structure information. Last, neighboring points around keypoints are grouped
and aggregated to produce the final keypoint feature, which is fed to the next SA layer.

distances to the selected points. Given point coordinate set P = {p1, p2, p3, ...pN} ⊆ R3 and the
corresponding score set S = {s1, s2, s3, ...sN}, the distance set D = {d1, d2, d3, ...dN} is the
shortest distances of N unselected points to the already selected points. In the original FPS, the
point with the longest distance is picked up as the furthest point. However, in S-FPS, we recalculate
each distance d̂i with score si as the following formula:

d̂i = (eγsi − 1) · di, (3)

where γ is an adjustable parameter deciding the importance of the score, which is set to 1 by default.
When γ is fixed, the closer score si is to 1, the greater d̂i is. Hence, S-FPS can select more pos-
itive points (i.e., foreground points) compared to FPS. Obviously, S-FPS will be similar to Top-K
algorithm if γ = +∞. The specific process of S-FPS is shown in Algorithm 1.

Algorithm 1 Semantic-guided Furthest Point Sampling. N is the number of input points. M is the
number of sampled keypoints.
Data: Coordinates of Points P = {p1, p2, ...pN};

Scores of Points S = {s1, s2, ...sN}
Result: Sampled keypoints K = {k1, k2, ...kM}
1: initialize an empty sampled points set K
2: initialize a distance array D = {d1, d2, ...dN} with all +∞
3: initialize a flag array F = {f1, f2, ...fN} with all zeros
4: for i = 1 to M do
5: if i = 1 then
6: ki = argmax(S)
7: else
8: D = {(eγsk − 1) · dk | fk = 0}
9: ki = argmax(D)

10: add ki to K, fki = 1
11: for j = 1 to N do
12: dj = min(dj , ‖ pj − pki ‖)
13: return K

3.4 FASTER NEIGHBORING VOXEL GROUP

The original neighboring voxel sampling strategy in PV-RCNN Shi et al. (2020) employs ball query
Qi et al. (2017) to sample 3D voxel feature around keypoints. However, the ball query occupies
too much time to compute the Euclidean distance between each voxel and keypoint, which is rather
low efficiency. It is worth noting that the voxels are regularly arranged in ordered 3D space, which
can be easily accessed by indices. Motivated by Voxel R-CNN Deng et al. (2021), we apply the
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Manhattan distance to replace the Euclidean distance to compute the query distance. Differently, we
directly operate on keypoints while Voxel R-CNN operates on 3D proposal grids, which makes our
approach take less computation but focus more on critical information.

Voxel grid Voxel center Query point

Ball Query Voxel Query

Figure 3: Demonstration of Ball query and Voxel query in 2D view (performed in 3D space).

Point to Voxel Coordinate. The coordinates of selected keypoints must be transformed to voxel
coordinates to query voxel indices in the corresponding 3D voxel feature map. Given point coor-
dinate [xp, yp, zp], voxel size [vx, vy, vz], point cloud range [xmin, xmax, ymin, ymax, zmin, zmax],
and 3D CNN downsample stride ck, the voxel coordinate [xv, yv, zv] in the k-th 3D voxel feature
map can be calculated as follows:

[xv, yv, zv] = [
xp − xmin
vx · ck

,
yp − ymin
vy · ck

,
zp − zmin
vz · ck

, ] (4)

Voxel Query. Compared to ball query, voxel query utilize a positive integer I (default I = 4) as
query range to produce offsets {4x,4y,4z | 4 ∈ [−I,+I]} to access the neighboring voxels
around center voxel [xv, yv, zv]. To determine whether a neighboring voxel is within the query
radius, a distance radius threshold is set to compute the Manhattan distance. To be concrete, given
the center voxel coordinate [xv, yv, zv] and queried voxel coordinate [xq, yq, zq], the Manhattan
distance dman can be computed as:

dman =| xv − xq | + | yv − yq | + | zv − zq | (5)

To sample M nearby voxels in total N voxels, the ball query needs to compute distance N times
while the voxel query only needs K times (M < K < N), where K is the number of neighboring
voxels around the center voxel, reducing the time complexity from O(N) to O(K).

3.5 ATTENTION-BASED RESIDUAL POINTNET

In previous work Shi et al. (2020), a simple PointNet-like MLP is directly adopted to aggregate the
coarse feature of sampled voxels. Nevertheless, each queried voxel feature contributes unequally to
learning the local structure information. 3D sparse convolution operation limits the voxel’s ability
to better understand the neighboring 3D structure and semantic information. Therefore, we con-
sider how to adaptively focus on the crucial voxel-wise feature to obtain more comprehensive and
important features.

Attention mechanism Vaswani et al. (2017) has shown its great power in various visual tasks. Bene-
fiting from the self-attention mechanism, the model can obtain a larger receptive field to summarize
the nonlocal feature. We note that sampled voxel-wise feature by voxel query can provide differ-
ent structure and spatial information from different areas of the point cloud. Hence, we propose
an Attention-based Residual PointNet Aggregation module to adaptively aggregate the voxel-wise
feature from the hotspot area of the point cloud.

Voxel Attention Module. As shown in Fig. 4, given feature set F = {f1, f2, f3, ...fN} ∈ Rdf ·N
of N sampled voxels by voxel query, queries Q, keys K and values V are generated from F as
following formula:

Q = WqF ∈ Rdk·N , K = WkF ∈ Rdk·N , V = WvF ∈ Rdv·N , (6)
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Wq:dk× df

F: df×N

Wk:dk× df Wv:dv× df

Q: df×N K: dk×N V: dv×N

Softmax

KTQ: N×N

N×N

dv×N

Output:(dv+ df)×N

Matrix multiply

Element-wise sum

Figure 4: Demonstration of Voxel Attention Module. The input is N sampled voxel-wise feature.

where Wq ∈ Rdk·df ,Wk ∈ Rdk·df ,Wv ∈ Rdv·df are linear projections consisting of learnable
matrices. Then the attention weights Si = {si1, si2, ..., siN | i ∈ [1, N ]} of the i-th query are
calculated by softmax function on dot-product similarity between keys Ki and queries Qi:

Si = softmax(
KT
i Qi√
dk

), (7)

where dk is a scaling factor, which is set to the length of the voxel-wise feature dimension. Since
we have got the attention weights of each query, then we generate the fine-grained values V̂i ∈ Rdv
by computing the weighted sum of V ∈ Rdv·N :

V̂i = Attention(Qi,K,V) =

N∑
m=1

Smi ·Vm. (8)

Finally, we add the weighted value V̂ ∈ Rdv·N and original voxel-wise feature F ∈ Rdf ·N to
represent the attention feature Ṽ ∈ R(dv+df )·N .

Residual PointNet Aggregation. Through the self-attention mechanism, each voxel point integrates
the weighted feature from surrounding voxels and can adaptively focus on the hotspot area of local
structure information. Next, the weighted values Ṽ = {v1, v2, v3, ...vN} are fed into a feed-forward
network to produce the final feature. Different from Transformer Vaswani et al. (2017), which adopts
simple linear layers, we propose a lightweight residual PointNet to forward the weighted values. As
illustrated in Fig. 5, given weighted values Ṽ, a plug-and-play module composed of Convolution1D,
Batch Normalization and Relu is stacked in a skip-connection way to extract the feature of Ṽ. In the
end, we adopt the MaxPooling function to produce the representative voxel aggregation feature.
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Figure 5: Demonstration of Residual PointNet Aggregation. It consists of simple Convolution1D,
Batch Normalization, Relu, and MaxPooling.
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3.6 ROI GRID POOLING

As shown in Fig. 1, besides summarizing the voxel-wise feature, keypoints P = {p1, p2, p3, ...pk}
also concatenate the grouped feature from raw points and BEV features, which make keypoints rich
in 3D spatial feature and semantic feature. Next, all the keypoint feature F̂ = {f1, f2, f3, ...fN} are
fed to the second stage, RoI-grid pooling, to refine the 3D proposals generated by RPN to achieve
more accurate and robust results. RoI-grid pooling uniformly divides each 3D proposal into 6×6×6
grids which can be denoted as G = {g1, g2, g3, ...g216}. Benefiting from our foreground sampling
module, the keypoint feature contains more object-related feature, which makes each grid gi contain
more informative foreground keypoints. Specifically, given a radius r̃ and grid point gj , the feature
fi of keypoint pi is grouped if the keypoint is within r̃. The grouped keypoint feature set K is
defined as follows:

K = {[fi; pi − gj ]T | ∀pi ∈ P,∀gj ∈ G, ‖ pi − gj ‖ < r̃, } (9)
where pi− gj is the relative location from pi to gj , which is concatenated to the feature fi. Then the
grouped keypoint feature set K is fed to a PointNet-like Qi et al. (2017) module to produce a refined
feature. After obtaining the refined RoI-grid feature of each proposal, a 2-layer MLP is adopted to
vectorize the RoI-grid feature to 256 dimensions to represent the final feature.

3.7 LOSS FUNCTION

Our method is an end-to-end trainable network, which is optimized by a multi-task loss Ltotal as
follows:

Ltotal = Lseg + Lrpn + Lrcnn + Lkey (10)
As we have mentioned in Sec 3.3, the segmentation loss Lseg is computed by binary cross-entropy
loss on sampled keypoints in SA layers. Similar to Yan et al. (2018), Lrpn is composed of three
partial loss:

Lrpn = α1Lcls + α2Lloc + α3Ldir (11)
where α1, α2, α3 are assigned {1.0, 2.0, 0.2} to represent the weight coefficient of object classifi-
cation loss Lcls, location regression loss Lloc, and direction regression loss Ldir respectively. To
avoid the case in which our model is stuck in determining the directions of objects, we give α3 a
relatively small parameter. To be concrete, Lcls is computed by focal loss introduced by RetinaNet
Lin et al. (2017) due to the large imbalance between the foreground and background classes. Lloc
is optimized by smooth-L1 loss function for box regression and Ldir is computed by sine-error loss
Yan et al. (2018) for angle regression.

Lrcnn Shi et al. (2020) is the loss of between RoIs and ground-truth labels, which consists of
the classification confidence loss Lrcnn cls, location regression loss Lrcnn loc, and box corner loss
Lrcnn corner in the refinement stage. The computation of Lrcnn is defined as follows:

Lrcnn = Lrcnn cls + Lrcnn loc + Lrcnn corner (12)
where Lrcnn cls is optimized with the binary cross-entropy loss function, and Lrcnn loc and
Lrcnn corner are optimaized smooth-L1 loss function as in Shi et al. (2020); Yan et al. (2018).

Besides, after the whole 3D scene is summarized into a small number of keypoints, it is reasonable to
re-weight them to ensure that the foreground point feature has greater weights to contribute more to
the refinement stage. As demonstrated in Fig. 6, the re-weighting loss of keypointsLkey is computed
by the focal loss Lin et al. (2017) between predicted keypoint scores and true labels in ground-truth
boxes.

4 EXPERIMENTS

4.1 DATASETS

KITTI. KITTI Dataset Geiger et al. (2012) is one of the most popular benchmarks for 3D object
detection in autonomous driving. It collects 7481 LiDAR point cloud frames for training and 7518
for testing. Although LiDAR scans the 360◦ point cloud scene, only the objects in Field of Vision
(FOV) are annotated with 3D boxes. Specifically, the training dataset is divided into train split (3712
samples) and val split (3769 samples) for our experiments. When submitting the test results to the
KITTI server, we train 90% training data to obtain a robust and highly generalized model.
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Figure 6: Demonstration of Keypoint Re-weighting Module.

4.2 IMPLEMENTATION DETAILS

Voxelization. For KITTI Dataset, we only use the FOV point cloud as raw data. The range of FOV
field is [0, 70.4] meters along X-axis, [−40, 40] meters along Y -axis and [−3, 1] meters along Z-
axis, which is regularly divided into regularly arranged voxels with voxel size 0.05m × 0.05m ×
0.1m.

Sampling Strategy Setting. In the foreground point sampling module, we place four SA layers for
summarizing the semantic feature with different numbers of keypoints. Before SA layers, we sample
16384 points from the raw points as input. For the reason that raw points have no segmentation
scores, we adopt the original FPS in the first SA layer to sample 4096 keypoints. Then, in the
next three SA layers, we utilize S-FPS to sample 2048, 1024, and 256 keypoints according to the
segmentation scores.

Network Architecture. As shown in Fig. 1, the point cloud is input in the form of quantitative
voxels with the resolution of 1600 × 1408 × 40 × 8 and sampled 16384 points by FPS. First, the
voxel-based backbone leverages 3D Voxel CNN with 1×, 2×, 4×, 8× downsample sizes to produce
four voxel-wise feature maps with 16, 32, 64, and 64 output dimensions. Following the last 3D CNN
layer, the output feature map is of the resolution of 200 × 176 × 2 × 128. Once the feature map is
reshaped to 200×176×256, the RPN Yan et al. (2018) network is applied to generate 3D proposals.
For the Voxel Query in Sec 3.4, we set the query range I to 4 and sample 16 neighboring voxels
around query point. Hence, the size of each attention map in Voxel Atttention Module is 16 × 16.
In the residual PointNet, the output dimension of Convolution1D is set to 32. The 16384 raw points
are input to the Foreground Point Sampling module which consists of 4 subsequent SA layers. Each
SA layer has 2 multi-scale radii r ∈ {[0.1m, 0.5m], [0.5m, 1.0m], [1.0m, 2.0m], [2.0m, 4.0m]} to
group neighbouring points which are input to 2-layer MLP to classify the foreground and back-
ground. Then, the sampled keypoints from SA layer integrate the point-wise feature, voxel-wise
feature, and 2D BEV feature to summarize the critical information of the 3D scene. In the end, RoI-
grid pooling divides the proposal box into 6×6×6 grids to refine the proposals with the aggregation
of feature-rich keypoints within 0.6m and 0.8m radius.

Training and Inference. Concretely, the model is trained 80 epochs with Adam optimizer and the
learning rate is initially set to 0.01 updated by one-cycle policy. We conduct the experiments on one
RTX 3090 GPU with batch size 4, which takes about 36 hours.

During training, to avoid over-fitting, we leverage data augmentation strategies like Yan et al. (2018).
We use GT-sampling to paste some foreground instances from other point cloud scenes to current
training frame. Besides, augmentation operations like random flip along X-axis, random rotation
with angle range in [−π4 ,

π
4 ], and random scaling with a random scaling factor in [0.95, 1.05] are

adopted to enhance the generalization and robustness of the model. At the RoI refinement stage, we
sample 128 proposals from RPN and set the threshold θfg = 0.55 to classify the foreground objects

10



and background objects. Half of them are recognized as foreground objects if the 3D Intersection
over Union(IoU) with the ground-truth box is over θfg while the lower is determined to be the
background.

At the inference stage, we employ non-maximum-suppression(NMS) on the 3D proposals with the
threshold of 0.7 to filter out top-100 proposals as the input of the refinement module. Then, in RoI
Grid Pooling, proposals are further refined with the feature-rich keypoints. Subsequently, NMS is
adopted again with a threshold of 0.1 to remove redundant predictions.

4.3 RESULTS ON KITTI

Evaluation Metrics. We follow the evaluation criteria that the KITTI benchmark provides to ensure
accuracy and fairness. The IoU threshold is set to 0.7 for Car and 0.5 for both Pedestrian and Cyclist.
The results reported to the official KITTI test server are calculated by average precision(AP) setting
of recall 40 positions to compare with the state-of-the-art methods.

We demonstrate the test results returned from the KITTI test server in Table 1 with the comparison
of performance on 3D detection. For the most critical Car detection, we surpass the PV-RCNN by
2.55%, 0.20%, 0.07% on easy, moderate, and hard levels. It is worth noting that our method im-
proves greatly on the Cyclist class, surpassing PV-RCNN by 4.89%, 5.09%, 4.36% on three levels.
However, our method achieves inferior results on the Pedestrian class compared with the state-of-
the-art methods, where we think the segmentation module has limited ability to classify the small
foreground objects like Pedestrian, and S-FPS tends to select keypoints on the big foreground objects
like the Car and Cyclist.

Table 1: Performance comparison on KITTI official test server. The 3D Average Precision is calcu-
lated by 40 recall positions.

Method Reference Modality Car 3D Detection(%) Ped 3D Detection(%) Cyclsit 3D Detection(%)
Easy Mod Hard Easy Mod Hard Easy Mod Hard

MV3D Chen et al. (2017b) CVPR2017 L+C 74.97 63.63 54.00 - - - - - -
AVOD-FPN Ku et al. (2018) CVPR2018 L+C 83.07 71.76 65.73 50.46 42.27 39.04 63.76 50.55 44.93
F-PointNet Qi et al. (2018) CVPR2018 L+C 82.19 69.79 60.59 50.53 42.15 38.08 72.27 56.12 49.01
EPNet Huang et al. (2020) CVPR2020 L+C 89.81 79.28 74.49 - - - - - -

PointPainting Vora et al. (2020) CVPR2020 L+C 82.11 71.70 67.08 50.32 40.97 37.87 77.63 63.78 55.89
3D-CVF Yoo et al. (2020) CVPR2020 L+C 89.20 80.05 73.11 - - - - - -

FAST-CLOCs Pang et al. (2022) CVPR2022 L+C 89.11 80.34 76.98 52.10 42.72 39.08 82.83 65.31 57.43
CAT-Det Zhang et al. (2022a) CVPR2022 L+C 89.87 81.32 76.68 54.26 45.44 41.94 83.68 68.81 61.45

SECOND-V1.5 Yan et al. (2018) Sensors2018 L 84.65 75.96 68.71 - - - - - -
PointPillars Lang et al. (2019) CVPR2019 L 82.58 74.31 68.99 51.45 41.92 38.89 77.1 58.65 51.92

Part-A2 Shi et al. (2019b) CVPR2019 L 87.81 78.49 73.51 53.10 43.35 40.06 79.17 63.52 56.93
PointRCNN Shi et al. (2019a) CVPR2019 L 86.96 75.64 70.7 47.98 39.37 36.01 74.96 58.82 52.53

STD Yang et al. (2019) ICCV2019 L 87.95 79.71 75.09 53.29 42.47 38.35 78.69 61.59 55.3
SA-SSD He et al. (2020) CVPR2020 L 88.75 79.79 74.16 - - - - - -

3DSSD Yang et al. (2020) CVPR2020 L 88.36 79.57 74.55 54.64 44.27 40.23 82.48 64.1 56.90
CIA-SSD Zheng et al. (2021a) AAAI2021 L 89.59 80.28 72.87 - - - - - -

VIC-Net Jiang et al. (2021) ICRA2021 L 88.25 80.61 75.83 43.82 37.18 35.35 78.29 63.65 57.27
HVPR Noh et al. (2021) CVPR2021 L 86.38 77.92 73.04 53.47 43.96 40.64 - - -

SVGA-Net He et al. (2022) AAAI2022 L 87.33 80.47 75.91 48.48 40.39 37.92 78.58 62.28 54.88
IA-SSD Zhang et al. (2022b) CVPR2022 L 88.34 80.13 75.04 46.51 39.03 35.60 78.35 61.94 55.70
PV-RCNN Shi et al. (2020) CVPR2020 L 87.98 81.40 77.00 44.61 39.04 36.89 78.57 63.12 56.81

Ours - L 90.53 81.60 77.07 45.94 40.18 37.28 83.46 68.21 61.17
Improvements - - +2.55 +0.20 +0.07 +1.33 +1.14 +0.39 +4.89 +5.09 +4.36

Note: L+C denotes LiDAR-Camera fusion methods, and L represents the LiDAR-only methods. The
result of PV-RCNN is obtained from the KITTI server tested with the local model trained on the official source
code: OpenPCDet Team (2020). The top two results are in bold.

4.4 ABLATION STUDIES

To comprehensively verify the effectiveness of our method, we conduct ablation studies on Fore-
ground Point Sampling, Voxel query, Voxel Attention Module, and Residual PointNet, respectively.

Effectiveness of Foreground Point Sampling. In this part, we test the influence of the different
numbers of foreground points on detection precision, as shown in Table 2. It seems feasible that
the more foreground points get caught, the more accurate the result will be. Therefore, we set γ in
Equation 3 with 1, 2, 3, and 100 to increase the number of sampled foreground points. However, it
turns out that when γ becomes larger, the performance decrease instead. The reason is that sampling

11



excessive foreground points with few background points (like the Top-K sampling strategy) makes
it hard for the model to have a global perception of the whole 3D scene, which limits its ability to
precisely locate the correct objects. As demonstrated in Fig. 7, when γ = 1, the sampled keypoints
can focus on foreground objects and preserve proper background points at the same time.

Table 2: Performance comparison on the KITTI val split with different γ controlling the number
of foreground keypoints. The 3D Average Precision is calculated by 11 recall positions for the Car
class.

Sampling Strategy Easy(%) Mod(%) Hard(%)

FPS 89.02 83.59 78.49
S-FPS(γ = 1) 89.65 84.34 79.11
S-FPS(γ = 2) 89.75 84.15 79.09
S-FPS(γ = 3) 89.69 84.11 79.02

S-FPS(γ = 100) 89.06 79.06 76.74

(a) Raw Points (b) 2048 points sampled by FPS

(c) 2048 points sampled by S-FPS ( γ =1 ) (d) 2048 points sampled by S-FPS ( γ =100 )

Figure 7: Visualization comparison of different point sampling strategies. (a) shows raw point cloud
scene. (b) shows that FPS samples too many background points while points on foreground objects
are too sparse. (c) demonstrates that S-FPS(γ = 1) can sample more foreground points and remains
proper background information. (d) shows that almost only foreground points are sampled by S-
FPS(γ = 100), which loses the perception of the whole 3D scene.

Effectiveness of Voxel Query. The function of Voxel Query is to boost the speed of voxel sampling
while bringing no loss of performance. Table 3 shows the 3D detection precision for Car class and
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frame per second (FPS) at the condition of ball query and voxel query. We only replace the ball
query with the voxel query while keeping other modules unchanged. Results show that the voxel
query improves the inference speed but causes no harm to precision.

Table 3: Performance and FPS comparison between ball query and voxel query. The 3D AP is
computed on the KITTI val split by recall 11 positions for the Car class.

Query Method Easy(%) Mod(%) Hard(%) FPS(Hz)

Ball Query 89.42 83.60 82.34 12.5
Voxel Query 89.60 83.58 82.45 15.15

Effectiveness of Attention-based Residual PointNet. We propose the Voxel Attention Module so
that voxel-wise feature can obtain a larger receptive field to integrate other voxels’ feature instead
of the only local feature of itself. Besides, a lightweight residual PointNet module is added to ef-
ficiently aggregate the voxel-wise feature. As demonstrated in Table 4, the performance is further
improved by attention-mechanism with residual PointNet. Fig. 8 shows the voxel-wise attention
features encoded into keypoints, where almost the whole object is highly focused on, not only lo-
cal spatial features are learned, indicating the importance of the attention-based residual PointNet
module.

Figure 8: Visualization of attention feature induced by attention-based residual PointNet module.
The aggregated features cover the whole object-related regions (red points) rather than small local
parts of the object.

Table 4: Performance demonstration of Attention-based Residual PointNet Aggregation. The 3D
AP is computed on the KITTI val split by recall 11 positions for the Car class.

S-FPS Voxel Query VAM Residual PointNet Easy(%) Mod(%) Hard(%)

% % % % 89.02 83.59 78.49
" " % % 89.60 84.08 78.98
" " " % 89.64 84.27 79.07
" " " " 89.65 84.34 79.11

4.5 VISUALIZATION AND DISCUSSION

Fig. 9 shows the visualization results on the KITTI dataset. Our model performs stably and makes
accurate detection in complex situations, especially in Fig. 9 (B). Moreover, as shown in Table 1,
higher average precision on car and cyclist proves the effectiveness of our proposed methods. How-
ever, our method still lags behind some state-of-the-art methods for detecting small objects such as
pedestrian. The reason is that our segmentation module performs badly to classify small objects,
resulting in fewer keypoints on pedestrians retained to integrate valuable feature for refinement.

13



（A） （B） （C）

Figure 9: Visualization results on KITTI(FOV). Detected cars, pedestrians, and cyclists are marked
by green boxes, blue boxes and yellow boxes.

5 CONCLUSION

In this paper, we present the PV-RCNN++ framework, a novel Semantical Point-Voxel Feature In-
teraction for 3D object detection, which achieves 81.60%, 40.18%, 68.21% 3D mAP on Car, Pedes-
trian, and Cyclist on the KITTI benchmark. We introduce a carefully designed point cloud segmen-
tation module as guide to sample more object-related keypoints. Through fast voxel query based
on Manhattan distance, we speed up the interaction between keypoints and voxels to efficiently
group the neighboring voxel-wise feature. The proposed attention-based residual PointNet abstracts
more fine-grained 3D information from nearby voxels, providing more comprehensive features for
the succeeding refinement. Extensive experiments on KITTI dataset demonstrate that our proposed
semantic-guided voxel-to-keypoint detector precisely summarizes the valuable information from
pivotal areas in the point cloud and improves performance compared with previous state-of-the-art
methods.
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