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Latent Heterogeneous Graph Network for
Incomplete Multi-View Learning

Pengfei Zhu, Xinjie Yao, Yu Wang, Meng Cao, Binyuan Hui, Shuai Zhao, Qinghua Hu

Abstract—Multi-view learning has progressed rapidly in recent
years. Although many previous studies assume that each instance
appears in all views, it is common in real-world applications for
instances to be missing from some views, resulting in incomplete
multi-view data. To tackle this problem, we propose a novel
Latent Heterogeneous Graph Network (LHGN) for incomplete
multi-view learning, which aims to use multiple incomplete
views as fully as possible in a flexible manner. By learning a
unified latent representation, a trade-off between consistency and
complementarity among different views is implicitly realized. To
explore the complex relationship between samples and latent
representations, a neighborhood constraint and a view-existence
constraint are proposed, for the first time, to construct a het-
erogeneous graph. Finally, to avoid any inconsistencies between
training and test phase, a transductive learning technique is
applied based on graph learning for classification tasks. Extensive
experimental results on real-world datasets demonstrate the ef-
fectiveness of our model over existing state-of-the-art approaches.

Index Terms—Incomplete multi-view learning, heterogeneous
graph network, graph learning.

I. INTRODUCTION

In real-world applications, data are usually represented by
different views given by various modalities or types of features
[1], [2]. For example, a web document can be represented by
its URL and by the words on the page; images can be described
by a variety of visual features such as GIST [3], Gabor [4],
HOG [5], and SIFT [6]; and film segments can be represented
by video features and voices. Such forms of data are referred
to as multi-view data, which have been attracted considerable
interest by many researchers. Multi-view learning (MVL) aims
to exploit the consistency and complementarity of information
obtained from different views [7]. By using the complementary
characteristics among different views, MVL can achieve better
performance than that from just a single view [8].

Most traditional multi-view researches assume that all the
examples have complete information from all views, i.e.,
each example of the data has a complete feature set [9],
[10], [11], [12]. However, in real-world applications, several
uncontrollable factors mean that the collected multi-view data
are usually incomplete [13], [14]. For example, in Fig. 1,
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Fig. 1: An example of incomplete multi-view data. A sample can be
represented by different modalities such as images, text, and so on.
Several uncontrollable factors mean that some views may be missing.

the birds can be represented by visual and textual features.
Some samples only have visual or text information, and only
some of them share these features. We call such a dataset
“incomplete multi-view data.” These missing views lead to
many problems in MVL. First, the balanced information of
multiple views is seriously broken because these views may
have different numbers of instances and features. Second, it
is difficult to find complementary and consistent information
for these incomplete views. The violation of this assumption
makes incomplete MVL (IMVL) a very challenging task.

Recently, many IMVL methods have been proposed, and
can be divided into three types: data imputation-based meth-
ods, data grouping-based methods, and elastic representation-
based methods. Data imputation-based methods first fill the
missing views, and then apply a common MVL algorithm
[15], [16], [17], [18]. Some widely used filling methods
include zero filling, mean value filling, and k-nearest neighbor
filling [19]. Although this type of method is effective in
some cases, however, it relies on a large number of paired
data, making this approach very expensive and restricted in
practical applications. At the same time, harmful estimation
noise may be included when estimating the missing view,
and the introduction of such virtual samples may have a
negative impact on the model. Another natural strategy is
to first manually group samples according to the availability
of data, and then to train multiple models on these groups
for subsequent fusion. Although grouping-based methods are
more effective than those attempt to learn each individual
view, it may result in less available data, which can easily
lead to over-fitting. Additionally, grouping-based methods are
relatively inflexible, especially for data with a large number
of views. Elastic representation-based methods can effectively
avoid the limitations of the other methods, but the current
elastic representation mainly focuses on the use of complete-
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ness theory to learn better latent representations [20], while
ignoring the complex relationship between samples.

Although existing methods provide some schemes to ad-
dress the IMVL problem, they still suffer from the following
issues: (1) Most of the previous methods use the shallow
models to obtain the common representation, but do not fully
exploit the complex interaction between views and samples
from incomplete multi-view data. (2) Few of them consider
the negative effect of the inconsistency between training and
test phases. Since the missing data are randomly distributed
between the training and test sets, there may be inconsistencies
between training and test.

To solve these challenges, we propose an effective and
flexible IMVL network called the Latent Heterogeneous Graph
Network (LHGN). First, information of different views is
encoded into a unified latent representation that can im-
plicitly achieve the best trade-off between consistency and
complementarity for different views. To mine the structural
information of the samples, we propose, for the first time,
a view-existence constraint and a neighborhood constraint,
which are used to construct a heterogeneous graph on the
unified latent representation. Then, graph learning, concretely,
the graph attention convolution network (GAT), is applied to
take advantage of the complementary structural information
between samples based on the constructed graph. Finally, the
aggregation network is used to fuse the features of meta-
paths from different views, allowing different downstream
tasks to be performed on the aggregated features. The main
contributions of this paper can be summarized as follows:

• We propose a neighborhood constraint and a view-
existence constraint for the IMVL problem. Based on the
constraints, we construct a heterogeneous graph from the
latent representation that can flexibly handle all kinds of
incomplete cases. Through heterogeneous graph learning,
the complex relationship among samples in the hidden
space can be fully exploited.

• To avoid inconsistencies between the training and the test
process, we exploit the method of transductive learning to
construct a heterogeneous graph of the training samples
and test samples. Using graph learning, the representation
of the test samples can be updated during the training
process. When the training process is complete, the
learned representation of the test samples can be directly
used for downstream tasks.

• Experiments on nine real-world multi-view datasets
demonstrate the superiority of LHGN over other state-
of-the-art approaches, and show that it is robust to view
missing.

The remainder of this paper is organized as follows. Section
II introduces some related work on MVL, IMVL, and graph
neural networks. In Section III, we describe the proposed
method in detail. Experimental results on nine incomplete
multi-view datasets are presented in Section IV. Finally, the
conclusions of this study are summarized in Section V.

II. RELATED WORK

A. Multi-view Learning

The core of MVL is to use the consistency and comple-
mentarity among different views to discover the underlying
pattern of the data [21]. Existing MVL methods can be divided
into three groups: (1) co-training, (2) canonical correlation
analysis (CCA), and (3) multiple kernel learning (MKL).
Co-training algorithms operate under the consideration of
a multiple views consensus. The main aim of co-training
is to maximize the mutual agreement across all views and
reach the broadest consensus [22], [23], [24], [25]. CCA-
based multi-view models have been widely used for MVL.
CCA [26] seeks a common representation by maximizing the
correlation between different views. Representative algorithms
include deep CCA (DCCA) [27] and the deep canonical
correlation autoencoder (DCCAE) [28]. MKL algorithms are
developed to boost the search space capacity of possible kernel
functions, e.g., linear, polynomial, and Gaussian kernels, in an
attempt to achieve good generalization. Representative MKL
algorithms include semidefinite programming [29], SMO [30],
semi-infinite linear programming [31], SimpleMKL [32] and
JLMVC [1].

B. Incomplete Multi-view Learning

Most existing MVL methods assume that all instances are
present in all views. However, this assumption does not always
hold in real-world applications. Recently, many IMVL meth-
ods have been proposed [33], and can be roughly categorized
into three types: (1) data imputation-based methods, (2) data
grouping-based methods, and (3) elastic representation-based
methods. Data imputation-based methods focus on imputing
the missing data and then use the common MVL methods on
the imputed completed data. Xu et al. [34] and Shao et al. [35]
collectively completed the kernel matrices of incomplete views
by optimizing the alignment of shared instances. However,
their methods cannot be extended to widely used multi-view
methods. To address this issue, Tran et al. [18] proposed
a novel Cascaded Residual Autoencoder (CRA) to impute
missing modalities. By stacking residual autoencoders, CRA
grows iteratively to model the residual between the current
prediction and original data.

Data grouping-based methods aim to group the data accord-
ing to the existence of data and then divided it into multiple
learning tasks. For example, Yuan et al. [36] proposed to
divide the samples according to the availability of data sources,
and then to learn shared sets of features with state-of-the-
art sparse learning methods. Li et al. [37] proposed to use
information about the instance alignment to learn a common
latent subspace for aligned instances and a private latent
representation for unaligned instances via NMF. Following this
approach, various extensions have been proposed [38], [39].
However, these methods fail to capture the hidden distribution
of missing data flexibly.

To this end, some elastic representation-based methods have
been proposed to deal with this issue. For instance, Shao et
al. [40] introduced a novel graph Laplacian term to couple
the complete samples in the latent subspace, thus making
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Fig. 2: The network architecture of Latent Heterogeneous Graph Network (LHGN) for incomplete multi-view learning. LHGN consists of
five parts, i.e., several view-specific encoder networks that learn a common latent representation of different views, a latent heterogeneous
graph construction layer, a graph learning layer, an aggregation layer that concatenates the learned features, and a classification layer.

similar samples more likely to be grouped together. Yin et
al. [41] proposed a regression-like objective for learning a
latent representation, while Zhao et al. [42] developed a deep
semantic mapping method for coupling incomplete multi-view
samples. Zhang et al. [43] proposed an elastic latent space
representation method that learns a complete common repre-
sentation, enabling the complex relationship between multiple
samples to be mined.

C. Heterogeneous Graph Neural Networks

Heterogeneous Graph. A heterogeneous graph [44], de-
noted as G = (V, E), consists of a sample set V and an
edge set E . A heterogeneous graph is associated with a node-
type mapping function φ : V → A and a link-type mapping
function ψ : E → R. A and R denote the sets of predefined
object types and link types, where |A|+ |R| > 2.

Heterogeneous graphs with different types of nodes and
edges are ubiquitous in real life, and have significant values in
many applications. Heterogeneous graph networks use the rich
semantic association between different types of edges hidden
in the graph to pursue a meaningful vector representation for
each node [45], [46]. Graph neural networks (GNNs) employ
deep neural networks to aggregate feature information from
neighboring nodes, which makes the aggregated embedding
more powerful. Recently, a handful of studies have focused
on heterogeneous graph embedding using GNNs. The basic
idea of these models is to split a heterogeneous graph into
multiple homogeneous subgraphs. For instance, GCN [47],
GAT [48], and GraphSAGE [49] employ a convolutional
operator, a self-attention mechanism, and a long short-term
memory architecture, respectively, to aggregate the feature
information of neighboring nodes. HAT [50] uses different
meta-path-defined edges to extract subgraphs, and then embeds
heterogeneous graphs with the attention mechanism of GNNs.
RGCN [51] retains a distinct linear projection weight for
each edge type to deal with the highly multi-relational data.
HetGNN [52] adopts different recurrent neural networks for

encoding the heterogeneous content of nodes and type-based
neighbor aggregation, and employs heterogeneous types to
integrate multimodal features.

III. PROPOSED METHOD

As described aforementioned, although existing IMVL
methods can obtain high-level representations, their applica-
tions are limited because of their restrictive conditions on miss-
ing views. In this section, we introduce LHGN, a more flexible
network to address this issue. As shown in Fig. 2, LHGN
includes several view-specific encoder networks, a latent het-
erogeneous graph construction layer, a graph representation
learning layer, an aggregation layer, and a classification layer.
Detailed information about each part of LHGN is presented
in the following subsections.

Definition 1. Incomplete Multi-view Classification. Consider
a dataset

{
X(v), v = 1, 2, . . . , V

}
with N instances, C cate-

gories, and V views, where X(v) ∈ Rdv×N is the v-th view
of the dataset and yn is the class label. Incomplete multi-view
classification aims to design a model and train a classifier
using training data in which several samples have missing
views, so that a new instance Sn with an arbitrary possible
missing-view pattern can be accurately classified [53].

A. View-specific Encoder Networks

To deal with samples that have arbitrary missing-view
patterns in a flexible manner, we project samples with arbi-
trary missing-view patterns into a common latent space. The
learned latent representation then encodes the observed view
information effectively and comprehensively.

The idea behind this approach is that the expression of
the hidden layers can extract common expressions from each
individual perspective, but this idea is not always feasible
in certain data environments. Zhang et al. [43] proposed a
representation based on the hidden space, whereby a potential
hidden layer representation is obtained through learning, and
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this is then mapped to the original space to obtain the original
data. If we denote the implicit space representation of the n-th
sample as hn and the implicit space mapping encoder as Ev ,
then the optimization objective of the elastic implicit space
representation is formulated as follows:

Lr (Sn,hn; Θr) =

V∑
v=1

snv

∥∥∥fv (hn; Θ(v)
r

)
− x(v)

n

∥∥∥2 , (1)

where Lr is the reconstruction criterion using the common
latent representation, which aims to learn the bidirectional
mapping between the original data space and the common
embedding space. fv

(
hn;Θ

(v)
r

)
is the reconstruction network

for the v-th view parameterized by Θ
(v)
r , and x

(v)
n represents

the input of view v with n samples. Sn is the indicator matrix
introduced to identify the present samples from the missing
samples for each view. The v-th element of this matrix, snv ,
is defined as follows:

snv =

{
1, if the n-th instance has the v-th view
0, otherwise . (2)

To map the hidden space hn back to the original space
xn, the number of encoders should be the same as the
number of views. Each encoder is implemented by a multilayer
perceptron, and the hidden space hn is also learnable. In
this way, hn encodes comprehensive information from the
different available views, and projects different samples into a
common space (regardless of their lost patterns), making them
comparable. Ideally, a complete representation will be learned
by minimizing Eq. (1). Because a complete representation
encodes information from different views, it should be more
versatile than each single view.

Through the latent space representation, we can learn a
common space that enables the samples for any missing
pattern to be reconstructed. This proves that the space has
learned the potential elastic representation from the observa-
tion perspective.

B. Heterogeneous Graph Construction

To better depict the complex relationship between the sam-
ples in the common latent space, we model the latent layer
with missing views using a heterogeneous graph.

Neighborhood Constraint: Considering that similar in-
stances should be close in the learned latent space, we
propose the neighborhood constraint on the common latent
representation of all views to preserve the local structure of
data samples. Generally, the neighborhood structure can be
obtained from a Gaussian-based kernel matrix. We denote the
matrices as An, and the entities in the matrix indicate the
similarity between two data samples under a specific view.
The detailed formulation is as follows:

Anij =

{
exp

(
−‖hi−hj‖2

2σ2

)
, hi ∈ Nk (hj) or hj ∈ Nk (hi)

0, otherwise
,

(3)
where Nk (hi) indicates samples of the K nearest neighbors
of hi.

View-existence Constraint:

Algorithm 1: Algorithm for LHGN
Input: Incomplete multi-view dataset {Sn, yn},

hyperparameter λ, and learning rate η.

Initialize: Initialize {hn}Nn=1,
{

Θ
(v)
r

}V
v=1

and{
Θ

(v)
g

}V
v=1

with random values.

while not converged do
for v = 1 to V do

Update Θ
(v)
r with gradient descent: Θ(v)

r ←
Θ

(v)
r − η∂ 1

N

∑N
n=1 Lr (Sn,hn; Θr) /∂Θ(v)

r

for n = 1 to N do
Update hn with gradient descent:
hn ← hn −
η∂ 1

N

∑N
n=1 (Lr (Sn,hn; Θr) + λLc (yn, y, zn)) /∂hn

for v = 1 to V do
Update Θ

(v)
g with gradient descent:

Θ
(v)
g ← Θ

(v)
g −

η∂ 1
N

∑N
n=1 (Lr (Sn,hn; Θr) + λLc (yn, y, zn)) /∂Θ

(v)
g

Output: Network parameters
{

Θ(v)
r

}V
v=1

,
{

Θ
(v)
g

}V
v=1

and learned representation {zn}Nn=1.

Ap
(v)
ij =

{
1, if x

(v)
i and x

(v)
j have same semantics

0, otherwise
. (4)

Using the inter-view and intra-view similarities, we define the
overall similarity matrix as:

Ap =
[
A

(1)
p , A

(2)
p , A

(3)
p , ..., A

(V )
p

]
, (5)

Av = An ·Ap. (6)

Then, we obtain:

A =
[
An ·A(1)

p , An ·A(2)
p , ..., An ·A(V )

p

]
. (7)

C. Graph Representation Learning

The heterogeneous graph constructed by Eq. (7) contains
different types of graph structures. With these graph structures,
we can determine the importance of each node to its neighbors
in the latent space, and further aggregate the characteristics of
these important neighbors to obtain latent space information
with some structural expression. To better capture feature
information from different types of neighbors, we apply GATs
[48] to aggregate the embedded content of heterogeneous
neighbors for each node. The target of each GAT is to obtain
sufficient expression power to transfer the input features into
high-level output features. GATs take a set of node features as
input (for LHGN, the input is the latent representation hv =
{h1, h2, . . . , hN}, where hv ∈ RD, N is the total number
of current samples; D is the dimension of latent space), and
output the adjacency matrix; A generated by multiple graph
learners based on different views. It is then possible to generate
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V groups of new features h′v = {h′1, h′2, . . . , h′N}, where
h′v ∈ RD′

.
First, the GAT transforms the latent representation into a

vector suitable for graph semantics, which requires a mapping
layer composed of learnable parameters Θg , according to:

h′
(v)

i = GAT
(
H

(v)
l , A(v); Θ(v)

g

)
, (8)

where H(v)
l is the stacked state of all nodes at layer l, A(v) is

the graph adjacency matrix, and Θ
(v)
g is the parameter set of

the GAT.
After obtaining the new representation hi, the network

uses the self-attention mechanism to calculate the importance
between nodes. The importance of each two hidden space
nodes can be calculated by eij = a (Whi,Whj). W is a
weight matrix, W ∈ RD′×D. In this process, the network
actually calculates the attention mechanism for each two nodes
and ignores the input graph structure Av . Therefore, during
the training process, we can use an attention mask to inject
the graph structure into the calculation, and only consider
nodes i, j that have relations in Av . We compute eij for nodes
j ∈ Ni, where Ni is some neighborhood of node i in the
graph. To describe the relationship between nodes, the network
uses the softmax operator to calculate the probability:

αij = softmaxj (eij) =
exp (eij)∑

k∈Ni
exp (eik)

. (9)

The attention mechanism adopts a single-layer feedforward
network, and uses nonlinear LeakReLU elements. Therefore,
the attention calculation can be converted to:

αij =
exp

(
LeakyReLU

(
aT [Whi‖Whj ]

))∑
k∈Ni

exp ( LeakyReLU (aT [Whi‖Whk]))
, (10)

where || is the concatenation operation. Furthermore, to sta-
bilize the learning process, the graph attention mechanism
introduces a multihead attention operation in which multiple
heads are used to predict the attention, and each head captures
different information. This can be considered as a form of
multiperspective learning at the attention level. If K heads are
used to capture attention when joining the network, the graph
features of the end of the fork can be expressed as follows:

h′i = ‖Kk=1σ

∑
j∈Ni

αkijW
khj

 , (11)

where Wk is the corresponding input linear transformation’s
weight matrix and || represents concatenation.

Once the graph attention mechanism has obtained the graph
features of the corresponding V perspectives, the network
attempts to aggregate the graph features from different per-
spectives. If the graph features are directly averaged, some
information will be lost. Therefore, the network tries to
connect the graph features first, before determining the final
features through the aggregation layer.

zn = Wagg

(
‖Vv=1 (h′1, h

′
V )
)
, (12)

where Wagg is the learnable parameter of the polymer layer.

D. Classification Using Aggregated Representation

Zhang et al. [43] proposed a training and test consis-
tency strategy in which the test set is used to fine-tune the
hidden expression layer to obtain a more coherent hidden
layer representation. However, this method cannot guarantee
consistency between the training and test results. In the het-
erogeneous graph framework proposed in this paper, training
set samples and test set samples can interact directly in the
hidden space, effectively enabling semi-supervised classifica-
tion by transpose learning. In this way, training and test are
carried out synchronously, which greatly reduces the impact
of any inconsistencies. Therefore, the heterogeneous graph
representation network based on the hidden space transforms
the classification problem without multiple perspectives into
a semi-supervised classification problem in which the training
set contains labeled data and the test set consists of unmarked
data. Formally, we denote the classification loss as ∆. For
the loss function, the network attempts to minimize the cross-
entropy of marked nodes between the true value and the
predicted value.

∆ (yn, y) = ∆ (yn, g (zn; Θc)) , (13)

g (zn; Θc) = arg max
y∈Y

Ez∼T (y)F (z, zn) , (14)

where F (z, zn) = φ (z; Θc)
T
φ (zn; Θc), in which φ (·; Θc)

is the feature mapping function for z, and T (y) is the set
of latent representations from class y. In our implementation,
we set φ (z; Θc) = z for simplicity and effectiveness. By
considering classification and representation learning together,
the misclassification loss is specified as:

Lc (yn, y, zn) = max
(
0,∆ (yn, y) + Ez∼T (y)F (z, zn)

−Ez∼T (yn)F (z, zn)
)
,
(15)

where yn represents the labeled samples in the training set.
Through this method, the optimized network can be obtained
by backpropagation, and the category of the test samples can
be determined.

E. Overall Objective Function

By synthesizing the above objectives, the overall optimiza-
tion problem of LHGN is formulated as:

min
{hn}Nn=1,Θr

1

N

N∑
n=1

Lr (Sn,hn; Θr) + λLc (yn, y, zn) , (16)

where Lr is the reconstruction loss defined in Eq. (1) and λ
is the weight of the classification loss.

IV. EXPERIMENTS

A. Datasets

• ORL1: ORL is a popular face database in the field of
face recognition. It contains 400 face images provided
by 40 volunteers, with 10 face images from each person.

1https://www.cl.cam.ac.uk/research/dtg/attarchive/
facedatabase.html
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TABLE I: Performance comparison under different PERs on four datasets (mean±standard deviation). Higher values indicate better
performance. The best results are in red, and the second best results are in blue.

Datasets Methods 0.0 0.1 0.2 0.3 0.4 0.5

ORL

FeatCon 96.40±1.13 90.95±2.62 83.30±3.27 75.70±3.15 69.28±2.41 70.01±4.55
CCA[26] 96.65±1.41 75.54±1.06 65.43±8.04 55.31±5.41 45.34±3.60 32.79±7.32

DCCA[27] 87.88±5.07 62.00±4.54 52.16±4.55 36.97±6.64 31.67±8.86 20.78±3.43
DCCAE[28] 88.90±4.38 58.20±6.46 56.82±4.62 35.47±6.89 29.36±3.14 20.12±4.18

DMF[54] 95.87±1.15 90.56±4.54 77.80±5.58 67.20±5.57 56.77±7.21 44.49±4.07
MDcR[55] 96.51±1.85 84.67±2.07 76.63±4.05 71.86±6.19 63.96±4.62 60.83±6.20
ITML[56] 97.10±1.04 84.09±4.08 84.01±2.98 72.17±2.47 61.03±5.81 56.81±3.08

LMNN[57] 97.37±1.25 85.65±3.55 83.78±3.84 75.15±4.74 66.34±3.47 68.20±4.65
CPM[43] 97.36±0.89 98.20±0.60 97.05±1.56 96.20±0.85 93.07±3.97 88.91±1.92
UEAF[58] 95.85±2.48 94.79±2.41 92.15±3.34 90.27±1.91 88.15±2.37 87.85±2.48

COMPLETER[59] 97.52±1.76 97.35±1.28 96.24±1.32 95.18±2.68 95.26±2.63 92.83±3.18
LHGN 97.78±1.29 97.37±1.22 97.13±1.36 96.85±1.53 95.77±2.93 93.46±1.09

YaleB

FeatCon 88.84±1.08 78.22±3.21 71.65±2.37 61.40±3.36 64.17±2.79 57.79±4.00
CCA[26] 96.47±0.95 82.97±5.96 70.95±3.52 61.65±3.57 56.11±6.27 44.93±1.94

DCCA[27] 94.83±3.74 68.50±4.77 55.91±4.61 48.46±7.92 41.48±4.29 22.30±8.15
DCCAE[28] 94.24±2.66 67.48±3.18 48.87±4.77 39.28±6.57 24.17±1.93 16.72±2.39

DMF[54] 84.41±2.64 76.37±3.48 69.17±1.76 57.71±4.47 49.37±2.68 48.47±4.05
MDcR[55] 71.54±2.74 64.67±1.95 58.31±2.74 57.84±2.36 55.77±4.77 47.57±6.35
ITML[56] 91.35±1.19 86.06±2.40 77.66±2.31 69.72±4.12 55.40±2.19 45.87±4.20

LMNN[57] 97.21±0.48 92.15±3.32 85.04±3.42 72.57±4.45 65.08±4.72 52.17±2.75
CPM[43] 98.65±0.61 98.55±0.63 98.52±1.18 94.81±1.13 92.35±1.88 91.02±1.91
UEAF[58] 97.73±1.27 95.18±2.71 92.61±2.69 85.37±2.14 83.37±1.41 83.19±2.73

COMPLETER[59] 96.43±1.65 95.79±1.88 94.21±2.63 93.44±2.48 92.32±3.89 91.66±3.55
LHGN 95.39±1.98 94.13±2.83 93.77±3.29 94.90±1.95 94.22±2.44 93.38±1.52

PIE

FeatCon 79.82±1.35 64.19±3.45 49.90±5.69 36.22±2.52 29.31±3.51 23.40±2.22
CCA[26] 88.49±1.97 75.52±1.83 61.82±4.89 55.40±2.26 47.52±3.66 37.47±2.15

DCCA[27] 83.27±3.37 70.68±2.36 65.61±4.46 56.22±3.19 42.21±2.41 34.56±3.05
DCCAE[28] 85.23±4.43 77.26±1.26 65.21±3.36 54.50±6.98 44.30±4.43 39.00±1.39

DMF[54] 83.33±2.49 72.83±2.84 64.05±4.85 52.38±3.17 40.01±3.68 30.95±3.68
MDcR[55] 82.82±3.76 66.04±5.49 55.35±6.48 39.68±4.07 33.49±2.44 27.70±1.74
ITML[56] 88.37±3.57 73.52±4.55 60.98±4.70 47.86±5.90 38.06±6.49 20.73±3.16

LMNN[57] 94.44±1.45 79.96±2.30 66.67±5.02 61.81±5.55 56.71±5.47 46.91±3.50
CPM[43] 90.30±1.06 88.78±2.91 85.21±3.45 82.33±2.13 74.24±3.31 61.84±3.45
UEAF[58] 93.52±1.29 87.67±1.84 85.74±2.71 77.21±2.38 70.14±4.05 63.72±3.16

COMPLETER[59] 89.74±1.22 88.54±1.32 83.52±1.57 79.04±1.45 75.13±1.39 66.27±2.81
LHGN 94.25±2.64 88.83±1.52 86.53±2.75 79.16±3.08 75.87±1.22 64.82±3.55

CUB

FeatCon 86.28±2.94 75.97±1.70 72.14±3.06 73.21±2.22 68.69±5.96 69.75±2.81
CCA[26] 84.26±2.44 70.85±1.89 67.93±4.89 56.63±4.00 49.92±2.26 31.73±4.44

DCCA[27] 72.15±2.81 57.70±4.06 49.69±5.39 48.33±2.05 40.14±3.47 31.90±4.28
DCCAE[28] 76.14±1.63 58.22±6.35 53.86±2.76 45.03±3.57 40.81±4.25 34.88±4.69

DMF[54] 53.47±5.09 55.90±5.72 45.00±2.50 38.15±4.88 35.33±1.90 30.41±2.71
MDcR[55] 85.18±1.97 77.46±2.74 76.84±4.46 70.22±3.27 68.78±3.32 69.20±2.03
ITML[56] 84.01±3.00 82.63±3.00 77.86±4.46 72.60±4.07 70.41±2.68 69.75±2.81

LMNN[57] 86.28±0.85 81.48±1.37 77.82±2.95 72.79±4.20 70.32±4.10 48.11±5.61
CPM[43] 89.48±3.64 88.38±1.27 84.32±2.58 81.36±3.59 77.13±3.64 76.31±3.67
UEAF[58] 90.53±4.87 86.44±4.21 83.96±3.13 74.59±1.09 69.53±1.52 67.25±1.83

COMPLETER[59] 91.15±1.85 87.52±1.25 84.16±1.66 81.34±4.51 76.56±4.95 75.03±2.63
LHGN 91.02±1.84 86.50±1.34 84.33±2.72 81.39±1.78 77.15±3.84 76.78±2.56

Three types of features, i.e., LBP, Gabor, and intensity,
are extracted as the three views for representing every
face image.

• YaleB2: Similar to previous work [60], we choose a
subset with 650 samples and categorize it into 10 clusters.
Three types of features: intensity, LBP and Gabor are
extracted.

• PIE3: A subset contains 680 facial images of 68 subjects,
and the intensity, LBP, and Gabor features have been
extracted.

2ftp://plucky.cs.yale.edu/CVC/pub/images/yalefacesB/
3http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-Pie/Home.html

• CUB [61]: Caltech-UCSD Birds (CUB) contains 11,788
bird images associated with text descriptions from 200
different categories, and the first 10 categories are used.
We extracted features based on images using GoogLeNet
and text using doc2vec [62].

• Handwritten (HW)4: This dataset contains 200 handwrit-
ten images of each of the digits 0–9. Six kinds of features,
i.e., pixel average, Fourier coefficient, profile correlation,
Zernike moment, Karhunen–Loeve coefficient, and mor-
phological, have been extracted from every sample to give
six views, where the feature dimensions are 240, 76, 216,

4https://archive.ics.uci.edu/ml/datasets/Multiple+Features
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TABLE II: Performance comparison under different PERs on two datasets (mean±standard deviation). Higher values indicate better
performance. The best results are in red, and the second best results are in blue.

Datasets Methods 0.0 0.1 0.2 0.3 0.4 0.5

HW

FeatCon 98.15±0.73 96.92±0.52 94.48±0.96 93.49±0.82 91.29±1.42 87.14±2.18
CCA[26] 95.41±2.12 82.55±2.79 76.31±1.21 65.84±2.87 59.44±1.55 51.24±1.46

DCCA[27] 96.06±0.09 78.81±3.13 68.90±1.80 60.62±2.16 51.03±2.25 37.87±3.53
DCCAE[28] 96.74±0.49 88.64±1.23 80.47±0.96 70.29±1.45 59.08±2.27 50.00±1.33

DMF[54] 72.28±1.21 63.40±2.83 59.00±2.70 48.28±6.54 44.77±2.08 37.33±3.83
MDcR[55] 97.70±0.36 95.76±0.76 95.25±1.24 92.55±1.09 91.27±0.81 87.10±1.30
ITML[56] 96.84±0.56 90.83±1.62 85.45±2.90 81.39±2.44 74.76±4.15 76.41±1.38

LMNN[57] 98.13±0.39 94.18±1.29 91.25±1.33 87.89±2.45 83.15±2.12 81.49±2.03
CPM[43] 95.01±0.89 94.82±0.75 93.67±1.21 93.57±1.64 92.67±0.47 91.01±2.43
UEAF[58] 93.28±2.06 92.39±2.23 92.81±1.83 92.23±2.68 92.47±2.35 91.57±2.42

COMPLETER[59] 96.91±1.89 95.68±1.26 95.57±1.65 94.78±1.27 93.27±1.68 92.82±2.15
LHGN 95.97±1.94 95.79±1.79 95.64±1.27 95.31±1.73 94.18±2.49 93.05±1.91

Animal

FeatCon 82.30±1.30 76.32±0.68 71.93±0.52 68.11±0.82 64.87±0.55 60.63±1.39
CCA[26] 47.30±0.68 37.30±0.82 33.28±0.78 28.93±0.84 24.87±0.54 8.53 ±0.41

DCCA[27] 38.33±0.38 7.72 ±0.20 6.45 ±0.33 5.19 ±0.14 4.24 ±0.20 2.63 ±0.31
DCCAE[28] 44.50±0.33 27.38±0.85 22.77±0.69 19.19±1.29 15.59±0.47 11.79±0.42

DMF[54] 79.38±0.24 71.91±1.60 63.46±1.02 55.16±0.96 47.41±0.60 39.93±0.73
MDcR[55] 82.17±0.24 76.93±1.10 72.25±1.52 68.65±0.47 66.15±0.94 61.36±0.79
ITML[56] 83.59±0.68 77.19±1.01 70.85±0.88 66.54±0.74 64.73±0.71 61.27±0.86

LMNN[57] 83.84±1.39 78.03±1.08 70.85±0.85 66.50±1.16 64.95±0.43 61.01±1.16
CPM[43] 86.88±0.68 84.13±0.41 81.00±1.18 76.80±0.45 73.31±0.78 67.33±3.21
UEAF[58] 88.67±1.97 83.17±2.67 78.87±2.23 75.68±2.19 73.76±2.14 70.61±1.98

COMPLETER[59] 88.93±2.38 85.16±1.73 80.87±2.33 77.01±2.66 73.82±2.85 70.64±2.37
LHGN 88.38±1.24 85.94±0.95 81.01±1.30 77.03±2.29 74.52±1.61 70.67±3.60

Fig. 3: Performance comparison under different PERs on three datasets.

TABLE III: Runtime (s) comparison on nine datasets.

Methods ORL YaleB PIE CUB HW Animal Caltech101-20 LandUse-21 Scene-15
CPM[43] 30 40 25 25 60 70 60 50 65
UEAF[58] 40 45 40 35 135 150 140 130 160

COMPLETER[59] 35 40 30 30 65 75 55 45 70
LHGN 65 70 65 60 255 260 255 245 280

47, 64, and 6, respectively.
• Animal [63]: There are 10,158 images provided by 50

classes in the dataset, where each image is represented
by two kinds of features extracted by DECAF [64] and
VGG19 [65], respectively.

• Caltech101-20 [66]: Caltech101-20 consists of 2,386 im-
ages of 20 subjects with the views of HOG and GIST
features.

• LandUse-21 [67]: LandUse-21 consists of 2,100 satellite
images from 21 categories with PHOG and LBP features.

• Scene-15 [68]: Scene-15 consists of 4,485 images dis-
tributed over 15 scene categories, which is with PHOG

and GIST features.

B. Methods for Comparison

To assess the effectiveness of the proposed LHGN, we com-
pared its performance against that of the following methods:

(1) FeatCon directly concatenates the features of different
views, and then performs the classification task on the con-
catenated features.

(2) CCA [26] maps multiple types of features to a common
space, and then concatenates the low-dimensional features of
different views.
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Fig. 4: t-SNE visualization of (a) concatenation features, and the consensus representation obtained by (b) DCCA, (c) DMF, (d) LMNN, (e)
CPM, (f) V-LHGN, (g) N-LHGN, (h) L-LHGN, (i) C-LHGN, and (j) LHGN on the YaleB dataset with a PER of 0.5.

Fig. 5: Accuracy (%) against λ and learning rate (lr) of LHGN on (a) YaleB, (b) ORL, and (c) CUB datasets with PER = 0.5.

(3) DCCA [27] uses a neural network to learn low-
dimensional features and then concatenates them.

(4) DCCAE [28] uses autoencoders to acquire a common
representation, and then combines the low-dimensional fea-
tures of these projections.

(5) DMF-MVC (Deep Semi-NMF for Multi-View Cluster-
ing) [54] uses nonnegative matrix factorization and a deep
network structure to obtain a common feature representation.

(6) MDcR (Multi-view Dimension co-Reduction) [55] uses
kernel matching to regularize the dependencies among mul-
tiple views, and projects each view into a low-dimensional
space.

(7) ITML (Information Theoretic Metric Learning) [56]
uses the Mahalanobis distance function as a metric, and
transforms this into a specific Bregman optimization problem.

(8) LMNN (Large Margin Nearest Neighbors) [57] searches
the Mahalanobis distance metric to optimize a k-nearest
neighbor (KNN) classifier. For metric learning method, the
original features of multiple views are connected, and then the
projection from the learned metric matrix is used to obtain a
new representation.

(9) CPM-Nets (Cross Partial Multi-View Networks) [43]
uses a degradation process that mimics data transmission to
learn the latent multi-view representation, allowing the optimal
trade-off between consistency and complementarity across
different views to be achieved.

(10) UEAF [58] proposes a Unified Embedding Alignment
Framework (UEAF) for robust incomplete multi-view clus-
tering. In particular, a locality-preserved reconstruction term
is introduced to infer the missing views such that all views
can be naturally aligned. A consensus graph is adaptively
learned and embedded via the reverse graph regularization to
guarantee the common local structure of multiple views and
in turn can further align the incomplete views and inferred
views. Moreover, an adaptive weighting strategy is designed
to capture the importance of different views.

(11) COMPLETER (inCOMPlete muLti-view clustEring
via conTrastivE pRediction) [59] provides a theoretical frame-
work that unifies the consistent representation learning and
cross-view data recovery. To be specific, the informative and
consistent representation is learned by maximizing the mutual
information across different views through contrastive learn-
ing, and the missing views are recovered by minimizing the
conditional entropy of different views through dual prediction.

C. Experimental Setup

Incomplete Multi-view Construction. To generate in-
complete multi-view datasets from complete multi-view
datasets, all baselines were randomly selected partial exam-
ples/instances under different partial example ratios (PERs).
The PER is defined as β =

∑
v Mv

V×N , where Mv indicates
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Fig. 6: Performance comparison with view completion using cascaded residual autoencoder (CRA).

Fig. 7: Convergence curves with PER = 0.5 on (a) YaleB dataset, (b) ORL dataset, and (c) CUB dataset.

the number of samples without the v-th view. Specifically,
in constructing such incomplete data, views are removed at
random from each instance until the desired PER is attained,
under the condition that all samples retain at least one view.

In our experiment, each dataset was randomly divided into
a training set (80%) and a test set (20%). For all methods,
we tuned the parameters through a 10-fold cross-validation
process. To remove any bias introduced by the dataset con-
struction process, we ran each algorithm 10 times and report
the average values of the performance measures.

D. Experimental Results and Analysis

We first evaluate the performance of the proposed algorithm
using six multi-view datasets (Table I and Table II). The
LHGN model is then evaluated by comparing it with state-
of-the-art multi-view representation learning methods. The

parameters in the comparative methods are set to the default
values in the original papers. In the experiments, the PER
ranged from 0.1–0.5 at intervals of 0.1. Experiments were also
conducted with PER = 0, i.e., all the views are complete.

The average accuracy and standard deviation are presented
in Tables I and II. From the results, we can make the following
observations:

• The results clearly show that LHGN has the advantage
in the case of missing views, which indicates that the
proposed method would be highly useful in handling
multi-view classification tasks with multiple missing data,
e.g., the scenarios where PER is high.

• In general, as the incomplete sample ratio increases, the
performance of all methods decreases. This demonstrates
that the absence of views is harmful to multi-view learn-
ing.
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Fig. 8: Ablation study using three multi-view datasets. Higher values indicate better performance.

• Our model is rather robust to missing views. Generally,
as the PER increases, the classification performance of all
approaches drops. However, the performance of LHGN
does not drop as much as that of other methods. For
example, as the missing view rate increases from PER
= 0.0 to PER = 0.5, the performance decline with the
ORL dataset is less than 5%, and the decline is less than
3% on the YaleB and HW datasets. This implies that our
method can effectively explore the complex relationship
between views and samples, even with a relatively large
incomplete sample ratio.

To better evaluate LHGN, we also conducted experiments
on three datasets, Caltech101-20, LandUse-21, and Scene-15.
The comparison method includes three recent SOTA models,
CPM, UEAF, and COMPLETER. The results show that the
proposed method can outperform other methods in Fig. 3,
which demonstrates its effectiveness.

In Fig. 4, we used the t-SNE [69] to visualize the features
or consensus representations obtained by different methods
on the YaleB dataset with a PER of 0.5. The consensus
representation obtained by the proposed LHGN exhibits the
best separability for different classes, where samples from
the same class are naturally gathered together and the gap
between different groups is obvious. This demonstrates the
effectiveness of LHGN for IMVL.

In order to further explore the impact of completion view
on model performance, we visualized the model performance
after completion through CRA [70]. We filled the missing
views with the imputation method in CRA and include a
performance comparison in Fig. 4. C − LHGN denotes that
LHGN with view completion using CRA. Since CRA needs
a subset of samples with complete views in training, we set
50% of data as complete-view samples and the remaining are
samples with missing views (PER = 0.5). Fig. 4 (i) and (j)
distinctly show that LHGN filled with CRA by using part of
samples with complete views is more compact and the margins
between different classes become more clear due to capturing
the correlation of different views. We can see that with proper
data filling methods, the performance of our method can be
further improved, which demonstrates its effectiveness and
flexibility. Moreover, this also infers that the proposed method
can handle data with missing views effectively without using
additional filling techniques. In addition, as shown in Fig. 6,

by comparing the effects of CRA completion view, our method
has more potential than some methods of built-in completion
view.

Despite the effectiveness, a natural concern is that the
computational cost of graphs is extremely high. We ex-
plore this point by comparing the runtime of SOTA models,
CPM, UEAF, COMPLETER, and LHGN, respectively on nine
datasets. We implement our experiment with an NVIDIA 3090
GPU. The results are shown in Table III. It can be seen that
LHGN requires more computational cost than other models.
It is worth noting that the runtime of LHGN is less than
two times than that of UEAF. Considering the effectiveness
and flexibility of the proposed method, such additional cost is
acceptable.

E. Parameter Analysis

There are three main parameters in our proposed model:
learning rate lr, weight parameter λ, and the number of
attention heads K. In this section, we investigate how the
performance varies with changes to these two parameters. We
set the PER to 0.5, and selected λ from {0.1, 1, 10, 100, 1000}
and lr from {0.001, 0.005, 0.01, 0.02} in experiments using
the YaleB, ORL, and CUB datasets. Fig. 5 shows the accuracy
with respect to λ and lr. From Fig. 5 we can see that LHGN
achieves consistently good performance when λ is around 10
and lr is around 0.01. Based on these results, we set λ = 10
and lr = 0.01 in subsequent experiments.

In terms of K, it is a hyperparameter which is determined
according to the specific downstream task. We compared
and analyzed the determination of K value on six different
datasets, as shown in Fig. 9. In general, a larger value of K
helps to improve classification performance, but incurs high
computational cost due to the use of too many heads.

F. Convergence Study

To prove the effectiveness of the employed optimization
strategy for the objective function of our proposed LHGN, the
relationship between the loss of the LHGN and the classifica-
tion performance on the YaleB, ORL, and CUB datasets with
PER = 0.5 is shown in Fig. 7. In each subfigure, the x-axis
denotes the number of epochs, while the left and right y-axes
denote the classification performance and corresponding loss
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Fig. 9: Multihead attention analysis using six multi-view datasets with
PER = 0.5.

value, respectively. LHGN converges quickly for all datasets.
Specifically, it converges within 75 epochs on the YaleB, ORL,
and CUB datasets. This indicates that our proposed LHGN
method efficiently obtains an optimized solution.

G. Ablation Study

To explore the importance of neighborhood and view-
existence constraints, we study the contribution of having
neighborhood and view-existence constraints via t-SNE visu-
alization, as shown in Fig. 4. V −LHGN , N −LHGN , and
L − LHGN denote LHGN with view-existence constraint,
neighborhood constraint, and using only latent representa-
tion, respectively. It can be seen from subfigures (f) - (j)
that: (1) Either neighborhood or view-existence constraint
can benefit the learning in the latent space. (2) LHGN with
both constraints is more compact and the margins between
different classes become more clear compared to using one of
the constraints. Besides qualitative analysis, we conducted a
quantitative ablation study of both constraints.

To further verify the contribution of each module in LHGN,
we performed an ablation study using the ORL, PIE, and HW
datasets. The aim of this experiment is to isolate the effects of
the neighborhood constraint and the view-existence constraint.
The results are shown in Fig. 8. L−LHGN uses the learned
latent representation for classification, while N−LHGN uses
the neighborhood constraint to construct a graph on the learned
latent representation followed by graph attention for feature
aggregation. As we can see from Fig. 8, N−LHGN performs
better than L−LHGN , which demonstrates the effectiveness
of the neighborhood constraint and feature learning on the
graph. Furthermore, LHGN using both constraints performs
better than the other two methods, demonstrating the effec-
tiveness of the view-existence constraint.

V. CONCLUSION

In this paper, we proposed a novel LHGN model that pro-
vides sufficient flexibility for arbitrary missing-view patterns.
We developed a neighborhood constraint and a view-existence
constraint, which allow us to construct a heterogeneous graph
in the common latent space. Then, graph learning technique

is used to aggregate the features in the constructed graph. In
this way, the learned latent space can capture the complex and
flexible relationship between samples and views. In addition,
by conducting transductive learning on the graph, we not
only enhance the interaction between samples, but also avoid
any inconsistencies between training and test phases. The
superior performance of LHGN has been validated on several
incomplete multi-view datasets and in a comparison with
many state-of-the-art IMVL methods. In the future, we can
extend the study to various scenarios, such as fine-grained
recognition [71] and wireless communication [72].
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