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Abstract. Adversarial machine learning is an emerging area showing
the vulnerability of deep learning models. Exploring attack methods to
challenge state—of-the—art artificial intelligence (AI) models is an area
of critical concern. The reliability and robustness of such AI models are
one of the major concerns with an increasing number of effective adver-
sarial attack methods. Classification tasks are a major vulnerable area
for adversarial attacks. The majority of attack strategies are developed
for colored or gray—scaled images. Consequently, adversarial attacks on
binary image recognition systems have not been sufficiently studied. Bi-
nary images are simple — two possible pixel-valued signals with a sin-
gle channel. The simplicity of binary images has a significant advantage
compared to colored and gray scaled images, namely computation effi-
ciency. Moreover, most optical character recognition systems (OCRs),
such as handwritten character recognition, plate number identification,
and bank check recognition systems, use binary images or binarization
in their processing steps. In this paper, we propose a simple yet efficient
attack method, Efficient Combinatorial Black-box Adversarial Attack
(ECoBA), on binary image classifiers. We validate the efficiency of the
attack technique on two different data sets and three classification net-
works, demonstrating its performance. Furthermore, we compare our pro-
posed method with state-of-the-art methods regarding advantages and
disadvantages as well as applicability.
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1 Introduction

The existence of adversarial examples has drawn significant attention to the
machine learning community. Showing the vulnerabilities of machine learning
algorithms has opened critical research areas on the attack and robustness ar-
eas. Studies have shown that Adversarial attacks are highly effective on many
existing Al systems, especially on image classification tasks [TH3]. In recent years,
a significant number of attack and defense algorithms were proposed for colored
and gray—scaled images [4HI0]. In contrast, AI binary image adversarial attacks
and defenses are not well studied. Existing attack algorithms are inefficient or
not well suited to binary image classifiers because of the binary nature of such
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images. We explain the inefficiency of existing attack methods under the Related
Works section.

Binary image classification and recognition models are widely used in daily
image processing tasks, such as license plate number recognizing, bank check
processing, and fingerprint recognition systems. Critically, binarization is a pre—
processing step for OCR systems, such as Tesseract [I1]. The fundamental differ-
ence between binary and color/grayscale images, regarding generating adversar-
ial examples, is their pixel value domains. Traditional color and grayscale attacks
do not lend themselves to binary images because of their limited black/white
pixel range. Specifically, color and grayscale images have a large range of pixel
values, which allows crafting small perturbations to affect the desired (negative)
classification result. Consequently, it is possible to generate imperceptive per-
turbations for color and grayscale images. However, in terms of perception, such
results are much more challenging for binary images because there are only two
options for the pixel values. Thus, a different approach is necessary to create
attack methods for binary image classifiers. Moreover, the number of added, re-
moved, or shifted pixels should be constrained to minimize the visual perception
of attack perturbations.

In this study, we introduce a simple yet efficient attack method in black—box
settings for binary image classification models. Black—box attack only requires
access to the classifier’s input and output information. The presented results
show the efficiency and performance of the attack method on different data sets
as well as on multiple binary image classification models.

1.1 Related Works

Szegedy et al. [3] show that even small perturbations in input testing images can
significantly change the classification accuracy. Goodfellow et al. [4] attempts
to explain the existence of adversarial examples and proposes one of the first
efficient attack algorithms in white-box settings. Madry et al. [I2] proposed
projected gradient descent (PGD) as a universal first-order adversarial attack.
They stated that the network architecture and capacity play a big role in ad-
versarial robustness. One extreme case of an adversarial attack was proposed by
[13]. In their study, they only changed the value of a single-pixel of an input
image to mislead the classifier. Tramer et al. [I4] show the transferability of
black-box attack among different ML models. Balkanski et al. [15] proposes an
attack method, referred to as scar, on binary image recognition systems. Scar
resembles one of our perturbation models, namely additive perturbations. In this
attack, it adds perturbation in the background of characters. Scar tries to hide
the perturbations by placing them close to the character. However, this requires
more perturbations to mislead the classifier.

Inefficiency of Previous Attack Methods Attacking the binary classifiers
should not be a complex problem at first sight. The attack method can only
generate white or black pixels. However, having only two possible pixel values
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narrow downs the attack ideas. State-of-the-art methods such as PGD or FGSM
create small perturbations to make adversarial examples look like the original
input image. Those attack methods are inefficient on binary images because the
binarization process wipes the attack perturbations in the adversarial example
before it’s fed to the binary image classifier. This method, binarizing the input
image, is considered a simple defense method against state-of-the-art adversarial
attacks. Wang et al. [16] proposed a defense method against adversarial attacks
by binarizing the input image as a pre-processing step before the classification.
They achieved 91.2% accuracy against white-box attacks on MNIST digits. To
illustrate this phenomenon, we apply PGD on a gray scaled digit image whose
ground truth label is seven. The PGD attack fools the gray-scaled digit classifier
resulting output of three. However, after the binarization process of the same
adversarial example, the perturbations generated by PGD are removed, and the
image is classified as seven, as illustrated in Figure[Il For this reason, the state
of art methods that generate perturbations less than the binarization threshold
is inefficient when the image is converted to binary form.

(a) original image (b) perturbed image (c) perturbed image

bl B’

(d) binary (e) binary

Fig. 1. The effect of binarization on adversarial examples created by the PGD method.
Perturbations in (b) are smaller than the binarization threshold, and perturbations in
(c) are more significant than the threshold. (d) and (e) are the binary versions of (b)
and (c), respectively.
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Adversarial perturbations created by the PGD attack method is disappeared
when the perturbations are smaller than the binarization threshold. After the
binarization process, the image is classified correctly for the case where per-
turbations are smaller than the threshold. On the other hand, adversarial per-
turbations can go through binarization when perturbations are bigger than the
threshold. However, the final adversarial example contains an excessive amount
of perturbations that ruin the main character (digit or letter), which is an un-
wanted situation for creating adversarial examples. Our proposed method pro-
duces a few white and black perturbations that can pass through the binarization
process and misleads the classifiers. We show those perturbations in the Figure 2}

2 PROBLEM DEFINITION

Let @ be a rasterized binary image with d x 1 dimension. Each element of x
is either 0 (black) or 1 (white). A trained multi—class binary image classifier F'
takes x as input and gives n probabilities for each class. The label with highest
probabilty, y, is the predicted label of @. Thus, y = argmax; F(x);, where F(-);
defines the binary image classifier, ¢« € n, and n is the number of classes.

2.1 Adversarial Example

An adversarial variation of x is &, and its label denoted as 7. Ideally, & resem-
bles  as much as possible (metrically and/or perceptually), while y # ¢§. The
classical mini—-max optimization is adopted in this setting. That is, we want to
maximize the similarity between the original input and adversarial example while
minimizing the confidence of the true label y. While minimizing the confidence
is generally straightforward, hiding the perturbations in adversarial samples is
challenging in the binary image case, especially in low (spatial) resolution images.

3 PROPOSED METHOD

Here we propose a black—box adversarial attack on binary image classifiers. The
ECoBA consists of two important components: additive perturbations and ero-
sive perturbations. We separate perturbations into two categories to have full
control over whether to apply the perturbations to the character. The additive
perturbations occur in the character’s background, while the erosive perturba-
tions appear on the character. Since preventing the visibility of attack pertur-
bations is impossible for the binary image case, it is important to damage the
character as less as possible while fooling the classifier successfully. Since the im-
ages are binary, we assume, without loss of generality, that white pixels represent
the characters in the image, and black pixels represent the background. Proposed
attack algorithms change the pixel value based on the decline in classification
accuracy. We define this change as adversarial error, ¢;, for the flipped i*" pixel
of input «. For instance, « + w; means image « with i*" pixel is flipped, from
black to white. Thus, the adversarial example is € = x + w;, and the adversarial
error is simply €; = x; — &;, for the flipped i*" pixel.



A Black-Box Attack on Optical Character Recognition Systems 5

3.1 Additive Perturbations

To create additive perturbations, an image is scanned, flipping each background
(black) pixel, one by one, in an exhaustive fashion. The performance of the
classifier is recorded for each potential pixel flip, and the results are ordered and
saved in a dictionary, D 4p, with the corresponding pixel index that causes the
error. Pixels switched from black to white are denoted as w;, where i represents
the pixel index. The procedure is repeated, with k indicating the number of
flipped pixels, starting with the highest error in the dictionary and continuing
until the desired performance level or the number of flipped pixels is achieved.
That is, notionally

arg min F(x + w;) where || — x||o < k. (1)

The confidence of the adversarial example applied to the classifier is recorded
after each iteration. If ¢; > 0, then the i*" pixel index is saved. Otherwise, the
procedure is repeated, skipping to the next pixel. The procedure is completed
by considering each pixel in the image.

3.2 Erosive Perturbations

In contrast to additive perturbations, creating erosive perturbations is the mirror
procedure. That is, pixels on the character (white pixels) are identified that cause
the most significant adversarial error and thus flipped. Although previous works
[15] utilize perturbing around or on the border of the character in an input
image, erosive perturbations occur directly on (or within) the character. This
approach can provide some advantages regarding the visibility of perturbations
and maximizes the similarity between the original image and its adversarial
example. Similarly, the sorted errors are saved in a dictionary, Dgp, with the
corresponding pixel index that causes the error. Pixels flipped from white to
black are denoted as b;. The optimization procedure identifies that the pixels
that cause the most considerable decrease in confidence are flipped. That is,
notionally

argmin F(x + b;) where || — x| < k. (2)
7

3.3 ECoBA: Efficient Combinatorial Black—box Adversarial Attack

The ECoBA can be considered as a combination, in concert, of both additive and
erosive perturbations. The errors and corresponding pixel numbers are stored in
Dap and Dgp, merging them in a composite dictionary, Dagp. For example,
the top row of the D sgp contains the highest € values for w; and b;. For k =1,
two pixels are flipped, corresponding to w; and by, resulting in no composite
change in the number of black (or white) pixels. That is, there is no change in
the Ly norm. Accordingly, we utilize k as the iteration index, corresponding to
the number of flipped pixel pairs and the number of perturbations.



6 S. Bayram and K. Barner

The detailed steps of the proposed attack method are shown in algorithm

Algorithm 1 ECoBA

1: procedure ADV(x) > Create adversarial example of input image x
2: T+

3: while arg min; F(x + w;) where || — z|lo < k do

4: w; < arg max; F'(&)

6: Dypr < wi,e; > Dictionary with pixel index and its corresponding error
T Dap < sort(Dapr) > Sort the index of pixels starting from max error.
8: while argmin; F'( + b;) where || — |0 < k do

9: b; « argmax; F(Z)
10: €; < F(l‘l) — F(if,,)
11: DEP’ <—b1',7€7',
12: Dgp + sort(Dgpr) > Sort the index of pixels starting from max error.
13: Dagp < stack(Dap,Dgp) > Merge dictionaries into one.
14: T x+ Dagp, > add perturbation couples from the merged dictionary
15: return 2

The amount of perturbations is controlled by k, which will be the step size
in the simulations. Figure [2| shows an example of the input image and the effect
of perturbations.

Fig. 2. From left to right: original binary image, adversarial examples after only addi-
tive perturbations, only erosive perturbations, and final adversarial example with the
proposed method.

4 SIMULATIONS

We present simulations over two data sets and three different neural network-
based classifiers in order to obtain comprehensive performance evaluations of the
attack algorithms. Since the majority of optical characters involve with numbers
and letters, we chose one data set for handwritten digits and another data set
for handwritten letters.
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4.1 Datasets

Models were trained and tested on the hand-written digits MNIST [I7] and
letters EMNIST [I8] data sets. Images in the data sets are normalized between
0 and 1 as grayscale images are binarized using a global thresholding method
with the threshold of 0.5. Both data sets consist of 28 x 28 pixel images. MNIST
and EMNIST have 70,000 and 145,000 examples, respectively. We use the split
of 85%-15% of each dataset for training and testing.

4.2 Models

Three classifiers are employed for the training and testing. The simplest classi-
fier, MLP-2, consists of only two fully connected layers with 128 and 64 nodes,
respectively. The second classifier, a neural network architecture, is LeNet [19].
Finally, the third classifier is a two-layer convolutional neural network (CNN),
with 16 and 32 convolution filters of kernel size 5 x 5. Training accuracies of each
model on both datasets are shown in Table [l

Table 1. Training performance of models.

H Top-1 Training Accuracy H

Dataset MLP2|LENET|CNN
MNIST 0.97 | 0.99 ]0.99
EMNIST 0.91 | 0.941 |0.96

The highest training accuracy was obtained with the CNN classifier, then
LeNet and MLP-2, respectively. Training accuracies for both datasets with all
classifiers are high enough to evaluate with testing samples.

4.3 Results

We evaluate the results of the proposed attacking method on three different
neural network architectures over two different datasets. Figure [3] shows the
attack performance over images from MNIST and EMNIST data sets. Ten input
images are selected among correctly classified samples for the attack. The Y-
axis of plots represents the averaged classification accuracy of input images, while
the X—axis represents the number of iterations (number of added, removed, or
shifted pixels).
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Fig. 3. Classification performance of input image with increasing step size. We include
AP and EP as individual attack on input images to observe their effectiveness.

An observation of Figure [3| shows that all approaches yield successful at-
tacks, with the proposed method generating the most successful attacks in all
cases. Moreover, the classifier results on the adversarial examples yield very high
confidence levels. The attack perturbations are applied even after the classifier
gives the wrong label as a classification result to observe the attack strength.
For instance, obtained average step size of ECoBA for misleading the MLP-2
classifier on the digit dataset is six. This means that changing the six pixels of
the input image was enough to mislead the classifier. The averaged confidence
level of the ground truth labels drops to zero when the attack perturbations are
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intensified on MLP-2. On the other hand, the proposed method generated more
perturbations to mislead CNN classifier. We show the average step sizes for a
successful attack for different attack types with respect to data sets in Table

Table 2. Step sizes for a successful attack with respect to different classifiers.

Average step sizes for a successful attack
classifier/method AP|EP |scar[15]|ECoBA
MLP (digits) 9 |11 8 6
MLP (letters) 919 7 5
LeNet(digits) 10|18 8 6
LeNet(letters) 8 [12| 10 5
CNN(digits) 12 (13| 17 8
CNN(letters) 9 |11 9 7

Another important outcome of the simulations is an observation of interpo-
lations between classes, as reported earlier in [20]. As we increase the number of
iterations, the original input image interpolates to the closest class. Figure[4 pro-
vides an example of class interpolation. In this particular example, the ground
truth label of the input image is four for the digit and Q for the letter. Once the
attack intensifies, the input image is classified as digit nine and letter P, while
the image evolves visually.

CICICIEC]
1

Fig. 4. Class interpolation with increasing k. The first row: only AP, the second row:
ECoBA, the last row: EP.
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Conclusion

In this paper, we proposed an adversarial attack method on binary image classi-
fiers in black-box settings, namely Efficient Combinatorial Black-box Adversarial
Attack (ECoBA). We showed the inefficiency of most benchmark adversarial at-
tack methods in binary image settings. Simulations show that the simplicity of
the proposed method has enabled a strong adversarial attack with few pertur-
bations. We showed the efficiency of the attack algorithm on two different data
sets, MNIST and EMNIST. Simulations utilizing the MLP2, LENET, and CNN
networks, show that even a small number of perturbations are enough to mislead
classifiers with very high confidence.
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