
XCAT - Lightweight Quantized Single Image
Super-Resolution Using Heterogeneous Group

Convolutions and Cross Concatenation

Mustafa Ayazoglu and Bahri Batuhan Bilecen

Aselsan Research, Ankara, Turkey
{mayazoglu,batuhanb}@aselsan.com.tr

Abstract. We propose a lightweight, single-image super-resolution mo-
bile device network named XCAT, and introduce Heterogeneous Group
Convolution Blocks with Cross Concatenations (HXBlock). The hetero-
geneous split of the input channels to the group convolution blocks
reduces the number of operations, and cross concatenation allows for
information flow between the intermediate input tensors of cascaded
HXBlocks. Cross concatenations inside HXBlocks can also avoid using
more expensive operations like 1x1 convolutions. To further prevent ex-
pensive tensor copy operations, XCAT utilizes non-trainable convolution
kernels to apply upsampling operations. Designed with integer quanti-
zation in mind, XCAT also utilizes several techniques in training, like
intensity-based data augmentation. Integer quantized XCAT operates in
real-time on Mali-G71 MP2 GPU with 320ms, and on Synaptics Dolphin
NPU with 30ms (NCHW) and 8.8ms (NHWC), suitable for real-time ap-
plications.

Keywords: Single image super-resolution, quantization, group convo-
lutions, mobile AI

1 Introduction

Super-resolution (SR) is an extensively studied computer vision problem that
aims to generate higher resolution (HR) image(s) given lower resolution (LR)
image(s). In single image super-resolution (SISR), a single image; and in multi-
image super-resolution (MISR), multiple images are utilized to generate a single
HR image. In either case, image super-resolution is an ill-posed problem, since
there is no unique solution. This ill-posed problem has been attempted to be
solved via classical methods [9] and deep-learning based methods [32][6]; how-
ever, many new methods based on deep-learning are still being developed, most
of which purely focus on data fidelity.

However, for the SR method to be practically applicable, the runtime is as
important as the method’s PSNR performance. Due to its practical importance,
recent literature studies on SR focus on deployability, runtime, quantization,
and efficiency, as well as PSNR of the method [2][8][3][13][26]. Yet, achieving

ar
X

iv
:2

20
8.

14
65

5v
1 

 [
ee

ss
.I

V
] 

 3
1 

A
ug

 2
02

2



2 Ayazoglu et al.

(a) HR

(b) Portion
of HR

(c) XCAT
(320ms)

(d) ESPCN
[32](363ms)

(e) ABPN
[8](600ms)

(f) FSRCNN
[7](485ms)

(g) XLSR
[2](370ms)

Fig. 1: Comparative results of UINT8 quantized models on DIV2K (Val image:
890). (d) and (f) yield both visually and numerically worse results than the rest.
Visual results of (c), (e), and (g) are indistinguishable to the naked eye; however,
XCAT runs the fastest

1x1 3x3

21

ReLU

7

ReLU

28

721

28

3x3

32

32

1x1

8 8 8

3x3 3x3 3x3

8

8

ReLU

8

ReLU

8

ReLU

8

ReLU

Fig. 2: Proposed HXBlock (left) vs. GBlock [2] (right). Dashed rectangles repre-
sent tensors. Group convolutions inside HXBlock are heterogeneous compared
to GBlock’s. HXBlock uses cross concatenation (a) instead of depth wise
1x1 convolutions (b), which provides information flow through different convo-
lutional kernels when HXBlocks are cascaded. For HXBlock, using (a) results
in a significant runtime performance increase in return of a small PSNR drop
compared to using (b)



XCAT 3

real-time performance with satisfactory visual quality during the quantization
process further complicates the problem and careful network design is needed.

In this study, we focus on the efficiency and mobile deployment, in the scope
of Mobile AI & AIM 2022 Real-Time Image Super-Resolution Challenge [14].
Our model, namedXCAT, is a SISR network incorporating the proposed HXBlock
and modifying both new and existing techniques from the literature for providing
a quantization-aware, robust, real-time performance model, suitable for mobile
devices.

Our work makes the following contributions:

1. HXBlocks, which are heterogeneous grouped convolutions with cross con-
catenation layers for allowing information flow with almost no computational
cost through different convolutional kernels of the group. Relevant studies
done on HXBlocks have shown that they can be replaced with traditional
group convolutions with little sacrifice from PSNR, but a significant gain in
run time performance.

2. A method for nearest neighborhood up sampling method with fixed 2D con-
volutional kernels to replace expensive tensor copy operations on mobile
devices, which makes the model robust to quantization.

3. An efficient, mobile device friendly, single image super-resolution network
named XCAT.

2 Related Works

DNN-based single image super-resolution. First deep-learning-based SISR
algorithm was proposed by Dong et. al. as SRCNN [6]. Later, as a speed improve-
ment on SRCNN, FSRCNN [7] was developed; which introduced a deconvolu-
tional layer at the end of the network, replaced ReLU with a PReLU activation
layer, and reformulated SRCNN by adopting smaller filter sizes but more map-
ping layers. Shi et. al. [32] introduced a novel, efficient sub-pixel convolutional
layer (also known as depth to space), which is actually widely used in many fast
SR networks right now. VDSR [19], EDSR [27], and WDSR [39] continued the
development of deep-learning-based SR by increasing the number of parameters,
in exchange for accuracy with speed.

With the recent developments in computer vision and deep learning, concepts
like attention mechanism [30], generative adversarial networks [25][35], recursive
& residual networks [20][33][1], and distillation layers [12][11][3][29] also started
to take part inside SR network architectures. GANs and networks with atten-
tion mechanism mostly generate a high-quality SR image by sacrificing speed,
whereas RNNs and distilling networks try to decrease the computational load.

Group convolutions. Group convolutions consist of groups of multiple con-
volutional kernels placed within the same layer. The motivation behind group
convolutions emerged with AlexNet [22], desiring to distribute the model over
multiple GPUs to overcome hardware limitations. Later on, besides the increase
in speed in AlexNet, group convolutions are also observed to improve classi-
fication accuracy when groups are accompanied by skipped connections with



4 Ayazoglu et al.

ResNetX [36]. ShuffleNet [41] introduced shuffling the intermediate tensors be-
tween group convolution blocks to increase feature extraction. DeepRoots [16]
and more recent studies use different convolutional kernels inside groups, such
as 1x1 depth wise convolutions [31] and dilated convolutions [38][42]. In ad-
dition, unitary [43] and interleaved [40] group convolutions also offer different
perspectives on how to extract various features from input images. Usage of
group convolutions due to their efficiency on super-resolution problems is also
present [2][3][18].

Model Optimization. Hardware limitations and specifications may require
the model to be optimized via different techniques, such as quantization, pruning,
clustering, network architecture search (NAS), and many more. Quantization
refers to converting floating point values to integers, hence decreasing memory
usage and computational cost when re-accessing and/or updating the mentioned
values, at a cost of decreasing the precision. Quantization is particularly useful
on neural network models since it can decrease inference times without sacrific-
ing much inference accuracy if done correctly [17]. Models also can be quantized
after quantization-aware training in floating point precision [34][21], as well as
training the network directly with low precision multiplications [5]. Removing
layers from a model having a minor effect on inference is called pruning [37][10],
and clustering is the method of decreasing the number of unique weights by
grouping weights and assigning the centroid values for each group. All of these
methods try to decrease processor utilization or memory usage, or both. Besides
optimizing an existing network structure, finding the most possible optimal net-
work structure in search space is also a study area, known as network architecture
search [44].

3 Method

In this section, XCAT is defined by its overall architecture and its components.
Details about the training techniques and the quantization procedure are ex-
plained thoroughly as well.

3.1 XCAT’s Architecture

As seen from Fig. 3, XCAT consists of 3 individual convolutional layers with
trainable 3x3 kernels, a single 1x1 convolutional layer with a fixed ”identity
kernel” to simulate nearest neighborhood upsampling operation, m HXBlocks,
a tensor addition layer, followed by a depth to space (D2S) layer and a clipped
ReLU activation layer. Input and output of XCAT are LR and SR, respectively,
where SR has x3 resolution of LR.

Each key component of XCAT will be detailed with their reasoning:
Group convolutions with heterogeneous filter groups and varying

kernels. Group convolutions, which include multiple convolutional kernels per
layer, are known to be able to extract and learn more varying features compared
to a single kernel [23]. XCAT inherits this idea of group convolution blocks to



XCAT 5

28

H
XB

lo
ck

H
XB

lo
ck

28

27

1x
1 

Id
en

tit
y

3

3

LR

27 3

D
ep

th
2S

pa
ce

SR28

1 m

H
XB

lo
ck

...

273x
3283x
3

R
eL
U

cl
ip
pe
dR

eL
U

3x
327

R
eL
U

1x
1

3x
3

21

R
eL
U

7

R
eL
U

7

21

28 28

Fig. 3: Network structure of XCAT. Numbers on arrows denote channel num-
bers, and numbers inside blocks represent kernel sizes of convolutional blocks.
Dashed blocks represent tensors, whereas non-dashed ones represent operators
like convolution and normalization. Convolution with 1x1 identity kernel per-
forms the upsampling method visualized in Fig. 4. XCAT has m HXBlocks,
where m=2 for this study

replace single-layered convolutions in a repeated manner. However, as opposed to
initial approaches [36], convolutional layers inside the group convolution blocks in
XCAT have different layer dimensions and different kernel sizes (Fig. 3).
This allows to pass the same source information between different convolutional
layers and allows for less computationally demanding feature extraction. The
input tensor is split into two parts in channel dimension, one processed by 1x1
and the other by 3x3 convolutional kernels. 1x1 convolution ”blends” the point-
wise information from previous HXBlocks and extracts inter-channel features,
whereas 3x3 convolution considers in-channel correlation as well. In addition,
a relevant study of Lee et al.’s [24] logarithmic filter groups in shallow CNNs
shows the positive effect of dividing group convolution input tensors unevenly.

Cross concatenation. First group convolutions in AlexNet [22] ended with
max pooling layers. However, group convolution designs such as DeepRoots [16]
started utilizing low-dimensional embeddings (like 1x1 convolutions) at the end
of the groups, with the inspiration taken from Lin. et. al. [28] and Cogswell
et. al. [4]. This was done to decrease the computational cost and number of
parameters without compromising accuracy. Later on, several efficiency-oriented
SR networks like XLSR [2] and IMDeception [3] also utilized group convolutions
ending with 1x1 depth-wise convolutions.

In XCAT, instead of using 1x1 depth wise convolutions for increasing the
spatial receptive field of each output of a group convolution block, the output
tensor of each group convolution block is cross concatenated. The inspiration



6 Ayazoglu et al.

came from ShuffleNet [41] and Swin Transformer [29]; where channel shuffling
and convolutional layers are inserted between group convolutions in the former,
and window partitions are cyclic shifted to enable information flow between win-
dows in the latter. Each cross concatenation in XCAT corresponds to a circular
shift of one-fourth of the input tensor (Fig. 3). This cyclic procedure allows the
information to pass through from 1x1 and 3x3 convolutions inside XCAT’s group
convolution blocks, hence having more chance for feature extraction.

It is worthy to note that ShuffleNet [41]’s channel shuffling is similar to the
XCAT’s; however, XCAT has a cross concatenation operation represented with
cyclic shifts, whereas ShuffleNet has a shuffle operation dividing and reorganiz-
ing tensors into many small partitions. This reorganization operation is reflected
onto the target device (Synaptics Dolphin NPU) as reshape and transpose op-
erations, which take much longer to process compared to XCAT’s simpler yet
effective approach.

During the experiments, it is observed that replacing cross concatenation
operations with 1x1 convolutions in XCAT increases the run time per frame,
but does not increase the PSNR test score considerably, making it less practical
for mobile networks.

Depth to space (D2S) operation. Shi et al. [32]’s pixel shuffling (depth to
space operator) is inserted at the end of the network, which aims to implement
sub-pixel convolutions in an efficient manner and is proven to increase PSNR
score in super-resolution problems in many studies.

Nearest neighborhood upsampling with fixed kernel convolutions.
We observed that providing the low-resolution input image to D2S with accom-
panying feature tensors increases the robustness, as opposed to only providing
the extracted feature tensors to D2S. With this motivation, XCAT also adds re-
peated input image tensors (where each channel of the input image is repeated
9 times) to feature tensors and provides them to D2S. From the perspective of
D2S, this operation is equivalent to the nearest neighborhood upsampling.

A relevant study done by Du et. al. named ABPN [8] also utilizes the nearest
neighborhood upsampling to be fed to the D2S block. However, it uses tensor
copy operations while repeating and concatenating the input image in the up-
sampling process, which are indeed expensive for mobile devices. For a better
alternative, a convolutional layer of 3 input channels and 27 output channels is
used, with a 1x1 non-trainable kernel which is set to serve the same purpose
as a tensor copy (Fig. 4). One point to note is that when this 1x1 kernel is set
as trainable, it gets affected by the quantization process and yields lower visual
quality results.

3.2 Training and Quantization Details

XCAT is trained in floating point precision and quantized afterward. However,
it is trained and designed with quantization in mind, with several techniques to
avoid PSNR decrease:

Intensity-augmented training. To minimize the PSNR difference while
quantizing the FP32 model to its UINT8, intensity values of the training images



XCAT 7

9

1

2

1 9

 R    G    B

1x
13 27

...

Fig. 4: Tensor copy operations done with convolutions. The identity kernel of
the 1x1 convolution is set in such a way that it reproduces the input tensor of 3
channels 9 times, generating an output tensor of 27 channels

are scaled with randomly chosen constants among (1, 0.7, 0.5). We have observed
that this strategy helped with quantization and avoided signal degradation, as
stated in [2].

Clipped ReLU. As proven and explained in [2], using clipped ReLU at the
end of the network allows better quantization while keeping the performance in
the real-time range.

Representative dataset selection. TensorFlow Lite requires a represen-
tative dataset while quantizing a floating point Keras or TensorFlow model.
As a rule of thumb, this dataset consists of entire training images. However, it
is observed that selecting a subset of all training images as the representative
dataset affects the final PSNR test score of the quantized UINT8 model im-
mensely. Hence, to find the most suitable representative dataset, a linear search
is applied to all DIV2K training images, generating single image representative
datasets. For each representative dataset (or rather an image), XCAT is quan-
tized and PSNR test scores are measured. The highest scoring quantized XCAT
model is chosen as the best.

Training details. XCAT is trained twice in floating point precision and
then quantized. Training details are as follows:

– DIV2K dataset is used for the first training, and Flickr2K dataset is added
alongside for the second training (fine tuning).

– Intensity, rotation, random crop, and flip augmentations are used while set-
ting up the dataset for both of the training. HR images are cropped to 96x96
patches.

– XCAT is trained with 50 epochs and 16 batches. Each epoch contains 10000
mini-batches.

– For the first training:
• Charbonnier loss is used, where C(x) =

√
(x2 + ϵ2) and ϵ = 0.1. Char-

bonnier loss is the smoother version of L1-loss having better convergence
characteristics than L2-loss.



8 Ayazoglu et al.

• Adam optimizer is used with initial learning rate = 0.001, β1 = 0.9,
β2 = 0.999, ϵ = 1e−8.

• Warm-up scheduler is used: Starting from the initial learning rate, at
each epoch, the learning rate is increased up to 25e−4 until the 5th
epoch. After the 5th epoch, the learning rate is linearly decreased at the
end of each epoch, where at the last epoch it decreases to e−4.

– For the second training for fine-tuning:
• Mean square error is used as the loss.
• Adam optimizer is used with an initial learning rate = 0.0001, and the
same beta and epsilon parameters.

• Warm-up scheduler is used again, but with the new initial learning rate,
and the maximum learning rate of 12.5e−4 instead of 25e−4.

4 Experimental Results

During the development of XCAT, many modified versions were created and
tested. Numerical results of XCAT models and the ablation study done for
HXBlocks are given in Tab. 1. Comparative visual results are given in Fig. 5.

To choose the most successful model, we used the score function in (1), which
is officially published in the competition’s evaluation criteria.

Score =
22(PSNR(UINT8)−30)

t(UINT8)10−5
(1)

Comparative study. Tab. 4 and Fig. 5 reveal that the network architec-
ture’s suitability for the quantization procedure plays a big role in producing
high-quality, super-resolved images. Despite XLSR and ABPN having higher
PSNR FP32 scores compared to XCAT, after the quantization, all three yielded
similar visual results and closer UINT8 PSNR scores to each other.

Ablation study. In Tab. 1, increasing layer number/sizes and parameter
numbers increased the PSNR score and decreased run time performance (E-G,
G-L, B-C). Decreasing number of groups had a negative effect on PSNR; how-
ever, the positive effect on runtime surpassed (A-E). Using (I) dynamic kernels
as opposed to not using (J) had a significant runtime boost with PSNR scores
almost unchanged. Different heterogeneous divisions of filters (G-H) are also
tried. Logically, when the input size of the 3x3 convolution layer increased, the
PSNR score also increased. However, the penalty of runtime overcame the pos-
itive benefits of the PSNR raise. Replacing cross concatenation layers with 1x1
convolutions (XCAT-B) had the same effect as in the previous case.

Tab. 3 shows the effect of using cross concatenation instead of directly con-
catenating the intermediate tensors in HXBlocks, as well as using different tensor
divisions and number of HXBlocks. It is proven that using cross-concatenation
allows for better information flow and increases the PSNR score, as opposed
to using direct concatenation. This effect is more visible when the number of
HXBlocks increase.



XCAT 9

Table 1: Different XCAT-based models and their performance. Runtime is eval-
uated on Mali-G71 MP2 GPU via AI Benchmark 5 [15]. Score is the metric
function described in (1). Note that the Config column describes the differences
among models. m is the number of HXBlocks. X/Y shows the splitting ratio,
where X+Y is the total number of channels of HXBlocks. axa/bxb represents
the convolutional kernels inside the group convolution blocks, where the tensor
with dimension X passes through axa, and Y through bxb

Model Config
PSNR

FP32/UINT8
Runtime

(ms)
Score

XCAT m=2, 21/7, 1x1/3x3
2 stage training

29.88/29.81 320 240

A m=2, 21/7, 1x1/3x3
1 stage training

29.85/29.79 320 233

B m=2, 21/7, 1x1/3x3
Cross Cat → 1x1 Conv.

29.92/29.84 340 235

C m=2, 21/7, 3x3/3x3
Cross Cat → 1x1 Conv.

30.04/29.96 780 121

D m=2
HXBlock → 3x3 Conv.

30.04/29.97 770 124

E m=4, 21/7, 1x1/3x3 29.98/29.89 370 232

F
m=4, 21/7, 1x1/3x3

Conv after last HXBlock:
3x3 → 1x1

29.82/29.75 300 236

G
m=4, 21/7, 1x1/3x3

Conv after last HXBlock:
removed

29.81/29.72 290 234

H
m=4, 16/12, 1x1/3x3

Conv after last HXBlock:
removed

29.87/29.76 300 238

I
m=4, 7/21, 1x1/3x3

Conv after last HXBlock:
removed

30.03/29.88 520 163

J
m=4, 7/21, 3x3/3x3

Conv after last HXBlock:
removed

30.04/29.87 550 152

K
m=3, 7/21, 1x1/3x3

Conv after last HXBlock:
removed

29.95/29.81 430 179

L
m=4, 16/4, 1x1/3x3

Conv after last HXBlock:
removed

29.61/29.45 205 228

M m=4, 16/4, 1x1/3x3
Replaced Add with Concat

29.63/29.15 298 103



10 Ayazoglu et al.

Table 2: PSNR test scores of XCAT and other algorithms with public datasets.
All models are FP32. To be consistent with the rest of the algorithms; XLSR,
ABPN, and XCAT’s PSNR results are calculated using Luminance (Y) channel
rather than RGB channels, except for DIV2K (*We performed our own training
since the pre-trained FP32 model from the authors performed poorly, around
15dB for DIV2K(Val))

Dataset Scale Bicubic FSRCNN ESPCN XLSR ABPN*
XCAT

(proposed)

Set5 x3 30.44 32.73 32.59 33.09 33.45 33.02
Set14 x3 27.63 29.30 29.18 29.59 29.73 29.54
B100 x3 27.13 28.26 28.18 28.45 28.56 28.42

Urban100 x3 24.43 26.03 25.87 26.48 26.73 26.38
Manga109 x3 26.87 30.21 29.70 31.13 31.47 31.12
DIV2K(Val) x3 28.82 29.67 29.54 30.10 30.10 29.88

Table 3: Effect of cross concatenation versus straight concatenation (no shuffling
of the tensors while concatenating), the number of HXBlocks, and the tensor
divisions. All models are based on XCAT. All parameter changes are mentioned
on the table, and the rest are kept the same among all models. Runtime is
evaluated on Mali-G71 MP2 GPU via AI Benchmark 5 [15]. Score is the metric
function described in (1). Split and kernel definitions are stated in Tab. 1

Split Kernel
m

(# of HXBlocks)
Cross
Concat

PSNR
(FP32)

PSNR
(UINT8)

Runtime
(ms)

Score

21/7 1x1/3x3 2 ✓ 29.88 29.81 320 240
21/7 1x1/3x3 2 × 29.87 29.79 320 233

21/7 1x1/3x3 4 ✓ 29.98 29.89 370 232
21/7 1x1/3x3 4 × 29.96 29.87 370 232

21/7 1x1/3x3 8 ✓ 30.04 29.97 480 200
21/7 1x1/3x3 8 × 30.01 29.89 480 179

21/7 1x1/3x3 12 ✓ 30.07 29.97 580 165
21/7 1x1/3x3 12 × 30.04 29.72 580 117

24/8 1x1/3x3 6 ✓ 30.02 29.92 410 218
24/8 1x1/3x3 6 × 30.01 29.89 410 209

56/8 1x1/3x3 4 ✓ 30.08 30.03 620 168
56/8 1x1/3x3 4 × 30.04 29.99 620 159



XCAT 11

(a) HR

(b) HR

(c) XCAT

(d) ESPCN

(e) ABPN

(f) FSRCNN

(g) XLSR

(a) HR

(b) HR

(c) XCAT

(d) ESPCN

(e) ABPN

(f) FSRCNN

(g) XLSR

Fig. 5: Comparative results of UINT8 quantized models on DIV2KVal dataset.
The proposed method is applied for (c)’s representative dataset, whereas all
DIV2KVal images are used for (d) and (f)’s. (e) and (g) are the pre-trained
quantized models provided by the authors. Visual results of (c), (e), and (g) are
indistinguishable; however, XCAT runs faster



12 Ayazoglu et al.

Table 4: PSNR (dB) drops for DIV2K(Val and Test, x3) before and after quan-
tization, number of parameters, and runtime scores (ms) on Mali-G71 MP2 via
AI Benchmark 5 [15] and Synaptics NPU (*FP32 and UINT8 scores are taken
from the paper. In addition, the authors’ pre-trained .tflite model gave a con-
catenation error on AI Benchmark 4 & 5, about the source tensor not being able
to be used multiple times. Hence, the model code is altered for ABPN, where the
relevant tensor is manually hard-copied and concatenated) (+Tested in NCHW
format)

Metric FSRCNN [7] ESPCN [32] XLSR [2] ABPN [8]*
XCAT

(proposed)

Val, FP32 PSNR 29.67 29.54 30.10 30.22 29.88
Val, UINT8 PSNR 18.52 17.50 29.82 30.09 29.81

∆PSNR 11.15 12.04 0.28 0.13 0.07

Test, UINT8 PSNR - - 29.58 29.87 29.67

# of parameters 25K 31K 22K 42K 16K
Synaptics Runtime+ - - 44.8 36.9 8.8

Mali Runtime 485 363 370 600 320
Score 0.003 0.061 210 188 240

5 Conclusions & Future Studies

This study proposes a lightweight, quantized single image super-resolution net-
work named XCAT, submitted to Mobile AI & AIM 2022 Real-Time Image
Super-Resolution Challenge. XCAT offers heterogeneous group convolution
blocks which includes convolutional kernels with different kernels and input &
output tensor sizes. Compared to other studies which include group convolu-
tions ending with 1x1 layers, cross concatenating the intermediate tensors
between group convolutions offer runtime efficiency with tolerable sacrifice from
PSNR test scores. To further increase runtime performance on mobile devices,
upsampling done by tensor copy operations by default is replaced by a 1x1 con-
volutional layer with a non-trainable kernel. XCAT is also shown to be robust
to quantization, with a decrease of 0.07dB from FP32 to the UINT8 model.

Comparative experimental results on slightly modified XCAT models reveal
that the design choices proposed in this study offer the model to be deployed
on mobile devices efficiently. To further prove the effectiveness of the proposed
method, XCAT is evaluated with standardized datasets in comparison to other
mobile-friendly super-resolution networks. Visual results indicate that XCAT
can produce super-resolved images nearly identical to the other slower networks’
outputs. Although HXBlock is designed for super-resolution problems, we believe
that it can help many heavy models to facilitate running on mobile devices.



XCAT 13

References

1. Ahn, N., Kang, B., Sohn, K.: Fast, accurate, and, lightweight super-resolution with
cascading residual network. CoRR abs/1803.08664 (2018)

2. Ayazoglu, M.: Extremely lightweight quantization robust real-time single-image
super resolution for mobile devices. CoRR abs/2105.10288 (2021)

3. Ayazoglu, M.: Imdeception: Grouped information distilling super-resolution net-
work (2022)

4. Cogswell, M., Ahmed, F., Girshick, R., Zitnick, L., Batra, D.: Reducing overfitting
in deep networks by decorrelating representations (11 2015)

5. Courbariaux, M., Bengio, Y., David, J.P.: Training deep neural networks with low
precision multiplications (12 2015)

6. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for
image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.)
Computer Vision – ECCV 2014. pp. 184–199. Springer International Publishing,
Cham (2014)

7. Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional
neural network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer
Vision – ECCV 2016. pp. 391–407. Springer International Publishing, Cham (2016)

8. Du, Z., Liu, J., Tang, J., Wu, G.: Anchor-based plain net for mobile image super-
resolution (2021)

9. Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: 2009
IEEE 12th International Conference on Computer Vision. pp. 349–356 (2009)

10. He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural
networks. In: 2017 IEEE International Conference on Computer Vision (ICCV).
pp. 1398–1406 (2017)

11. Hui, Z., Gao, X., Yang, Y., Wang, X.: Lightweight image super-resolution with
information multi-distillation network. pp. 2024–2032 (10 2019)

12. Hui, Z., Wang, X., Gao, X.: Fast and accurate single image super-resolution via
information distillation network. pp. 723–731 (06 2018)

13. Ignatov, A., Timofte, R., Denna, M., Younes, A., Lek, A., Ayazoglu, M., Liu, J.,
Du, Z., Guo, J., Zhou, X., Jia, H., Yan, Y., Zhang, Z., Chen, Y., Peng, Y., Lin,
Y., Zhang, X., Zeng, H., Zeng, K., Wang, S.: Real-time quantized image super-
resolution on mobile npus, mobile ai 2021 challenge: Report. pp. 2525–2534 (06
2021)

14. Ignatov, A., Timofte, R., Denna, M., Younes, A., et al.: Efficient and accurate
quantized image super-resolution on mobile npus, mobile ai & aim 2022 challenge:
Report. In: Proceedings of the European Conference on Computer Vision (ECCV)
Workshops (2022)

15. Ignatov, A., Timofte, R., Kulik, A., Yang, S., Wang, K., Baum, F., Wu, M., Xu,
L., Van Gool, L.: Ai benchmark: All about deep learning on smartphones in 2019
(10 2019)

16. Ioannou, Y., Robertson, D., Cipolla, R., Criminisi, A.: Deep roots: Improving cnn
efficiency with hierarchical filter groups (07 2017)

17. Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H.,
Kalenichenko, D.: Quantization and training of neural networks for efficient integer-
arithmetic-only inference. pp. 2704–2713 (06 2018)

18. Jain, V., Bansal, P., Kumar Singh, A., Srivastava, R.: Efficient single image super
resolution using enhanced learned group convolutions (08 2018)



14 Ayazoglu et al.

19. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep
convolutional networks. CoRR abs/1511.04587 (2015)

20. Kim, J., Lee, J.K., Lee, K.M.: Deeply-recursive convolutional network for im-
age super-resolution. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 1637–1645 (2016)

21. Krishnamoorthi, R.: Quantizing deep convolutional networks for efficient inference:
A whitepaper (06 2018)

22. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Pereira, F., Burges, C., Bottou, L., Weinberger,
K. (eds.) Advances in Neural Information Processing Systems. vol. 25. Curran
Associates, Inc. (2012)

23. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Pereira, F., Burges, C., Bottou, L., Weinberger,
K. (eds.) Advances in Neural Information Processing Systems. vol. 25. Curran
Associates, Inc. (2012)

24. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Pereira, F., Burges, C., Bottou, L., Weinberger,
K. (eds.) Advances in Neural Information Processing Systems. vol. 25. Curran
Associates, Inc. (2012)

25. Ledig, C., Theis, L., Huszar, F., Caballero, J., Aitken, A.P., Tejani, A., Totz, J.,
Wang, Z., Shi, W.: Photo-realistic single image super-resolution using a generative
adversarial network. CoRR abs/1609.04802 (2016)

26. Li, Y., Zhang, K., Timofte, R., Van Gool, L., Kong, e.a.: Ntire 2022 challenge on
efficient super-resolution: Methods and results (2022)

27. Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks
for single image super-resolution. CoRR abs/1707.02921 (2017)

28. Lin, M., Chen, Q., Yan, S.: Network in network (2013)
29. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin

transformer: Hierarchical vision transformer using shifted windows (2021)
30. Niu, B., Wen, W., Ren, W., Zhang, X., Yang, L., Wang, S., Zhang, K., Cao, X.,

Shen, H.: Single image super-resolution via a holistic attention network (2020)
31. Schwarz Schuler, J.P., Romańı, S., Abdel-nasser, M., Rashwan, H., Puig, D.:

Grouped pointwise convolutions reduce parameters in convolutional neural net-
works. Mendel 28, 23–31 (06 2022)

32. Shi, W., Caballero, J., Huszár, F., Totz, J., Aitken, A.P., Bishop, R., Rueckert,
D., Wang, Z.: Real-time single image and video super-resolution using an efficient
sub-pixel convolutional neural network. In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 1874–1883 (2016)

33. Tai, Y., Yang, J., Liu, X.: Image super-resolution via deep recursive residual net-
work. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 2790–2798 (2017)

34. Vanhoucke, V., Senior, A., Mao, M.: Improving the speed of neural networks on
cpus (01 2011)

35. Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., Loy, C.C., Qiao, Y., Tang,
X.: Esrgan: Enhanced super-resolution generative adversarial networks (2018)

36. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations
for deep neural networks. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 5987–5995 (2017)

37. Xu, S., Huang, A., Chen, L., Zhang, B.: Convolutional neural network pruning: A
survey. In: 2020 39th Chinese Control Conference (CCC). pp. 7458–7463 (2020)



XCAT 15

38. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions (05
2016)

39. Yu, J., Fan, Y., Yang, J., Xu, N., Wang, Z., Wang, X., Huang, T.S.: Wide activation
for efficient and accurate image super-resolution. CoRR abs/1808.08718 (2018)

40. Zhang, T., Qi, G.J., Xiao, B., Wang, J.: Interleaved group convolutions. In: 2017
IEEE International Conference on Computer Vision (ICCV). pp. 4383–4392 (2017)

41. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: An extremely efficient convo-
lutional neural network for mobile devices. In: 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 6848–6856 (2018)

42. Zhang, Z., Wang, X., Jung, C.: Dcsr: Dilated convolutions for single image super-
resolution. IEEE Transactions on Image Processing 28(4), 1625–1635 (2019)

43. Zhao, R., Hu, Y., Dotzel, J., De Sa, C., Zhang, Z.: Building efficient deep neural
networks with unitary group convolutions. pp. 11295–11304 (06 2019)

44. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures
for scalable image recognition. In: 2018 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition. pp. 8697–8710 (2018)


	XCAT - Lightweight Quantized Single Image Super-Resolution Using Heterogeneous Group Convolutions and Cross Concatenation

