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Abstract—Capturing both local and global features of irregular
point clouds is essential to 3D object detection (30D). However,
mainstream 3D detectors, e.g., VoteNet and its variants, either
abandon considerable local features during pooling operations
or ignore many global features in the whole scene context. This
paper explores new modules to simultaneously learn local-global
features of scene point clouds that serve 30D positively. To this
end, we propose an effective 30D network via simultaneous
local-global feature learning (dubbed 3DLG-Detector). 3DLG-
Detector has two key contributions. First, it develops a Dynamic
Points Interaction (DPI) module that preserves effective local
features during pooling. Besides, DPI is detachable and can be
incorporated into existing 30D networks to boost their perfor-
mance. Second, it develops a Global Context Aggregation module
to aggregate multi-scale features from different layers of the
encoder to achieve scene context-awareness. Our method shows
improvements over thirteen competitors in terms of detection
accuracy and robustness on both the SUN RGB-D and ScanNet
datasets. Source code will be available upon publication.

Index Terms—3D object detection, dynamic points interaction,
multi-scale feature learning.

I. INTRODUCTION

EAL-world complex scenes can be flexibly and effi-
ciently represented by point clouds [1], [2]. 3D object
detection (30D) in scene point clouds is a prerequisite for
supporting the tasks like autonomous driving and augmented
reality. However, the captured point clouds of real-world
scenes are natively irregular, compared to 2D (regular) images.
Moreover, these point clouds are often sparse, incomplete,
noisy, and contain outliers. Feature extraction from such
irregularly-sampled yet degraded point clouds tends to weaken
cutting-edging 30D models to localize and recognize objects.
Representing the point clouds for effective processing in
deep learning architectures is the first step for 30D. Currently,
two representations have been widely used: voxel-based or
point-based. The voxel-based methods [3] divide a point cloud
into regular 3D voxels and apply 3D CNNs to learn the high-
level features. However, the memory and computational cost
are growing exponentially with the increase in the resolution
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Fig. 1: Dynamic Points Interaction, which can preserve the
local features during pooling. Each feature encoder includes
three sub-modules, i.e., the Sample-and-Group (SG) module,
the Residual Points Learning (RPL) module, and the Dynamic
Points Interaction (DPI) module. SG first performs a down-
sampling operation on the input point cloud and then groups
the neighbor points near the sampled point to form point set
features f°. These point sets are fed into RPL for deep feature
representation learning. The max-pooling operation is used to
aggregate the point set features into the seed as point-wise
features fP. DPI takes f® and fP as input, where f° is a
supplement to make up the lost features of fP due to the
max-pooling operation.

of voxels; it is also hard to trade-off between efficiency and
accuracy for these methods [4].

The point-based methods directly take raw point clouds as
input to learn feature representations. To handle the irregularity
of point clouds without transformations, the seminal work of
PointNet [5] and PointNet++ [6] apply multi-layer perceptrons
(MLPs) independently on each point, which enables to directly
process sparse 3D points. Inspired by PointNet/PointNet++,
3D detectors [7l], [8], [9], [10] have achieved satisfactory
performance by designing various detection heads.

The key to 30D is to simultaneously learn different scales
and types of features from scene point clouds, such that the
learned features can effectively capture both local geometric
details and global scene features (context). The local features
contribute to regressing the size and orientation of object
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bounding boxes, and the global features enhance inferring
the classification of objects. The existing point-based 3D
detectors learn point features based on PointNet/PointNet++,
which inherit several drawbacks of PointNet/PointNet++. First,
utilizing PointNet/PointNet++ as backbones loses part of
important local features. PointNet/PointNet++ utilizes simple
symmetric functions, such as max-pooling, which is an indis-
pensable component to deal with the permutation invariance
for point cloud processing. However, the intrinsic character
of max-pooling forces it to select the maximal value in each
dimension as the representative feature. That means some
equally important non-maximum features are lost in each
dimension. We attempt to preserve such local features by
designing a Dynamic Points Interaction module. Second, the
global context can well describe the semantic information of
the whole scene and the correlations between different objects
in the scene. PointNet/PointNet++ only extracts the high-level
feature representation by continuously expanding the receptive
field while ignoring the global context. The lack of global
contextual information hinders the performance of these point-
based detectors. Although the recent Pointformer [[11] resorts
to Transformer [12] to learn the context-aware representation
to capture the long-range dependency, it relies on plenty of
data for long-term training, which is more difficult to train.
We attempt to mine the global features by designing a Global
Context Aggregation module.

We propose 3DLG-Detector, a 3D object detection network
by simultaneously learning local and global features. Inspired
by dynamic learning [13]], [[14], [1S], we design a Dynamic
Points Interaction (DPI) module to preserve local features
during pooling (see Figure [T). In DPI, the input point cloud
is first sampled and grouped to form a series of point sets.
Then these point sets are fed to the Residual Points Learning
module, which consists of several residual MLP blocks, to
learn the deep feature representation and aggregate these point
sets to seeds by the max-pooling operation. The pooled seeds
have simplified local context-aware features, while the grouped
point sets possess detailed and redundant local geometric
features. The DPI allows a seed to interact with each point
in the corresponding point set to preserve local features.
Meanwhile, we observe that with the decreasing number of
sampling points, the receptive field of each point in differ-
ent encoder stages constantly increases. Hence, we design
a Global Context Aggregate (GCA) module to concatenate
the multi-level features together to represent the contextual
guidance. The final extracted features by GCA are therefore
aware of the global information.

We conduct experiments on two indoor datasets, ¢.e., Scan-
Net [16] and SUN-RGBD [17]. Extensive experiments have
demonstrated the effectiveness of improvement under several
evaluation metrics.

In summary, our contributions are as follows:

o We propose a novel 3D object detection network, 3DLG-
Detector, which has a strong ability to learn local and
global context features simultaneously. Extensive exper-
iments show clear improvements of our 3DLG-Detector
over thirteen competitors in terms of both numerical and
visual evaluations.

o We design three modules, among which the DPI and RPL
modules extract rich local geometric information, and the
GCA module captures the global scene context. Ablation
experiments show the effectiveness of these modules in
promoting detection performance.

II. RELATED WORK
A. Feature Extraction for 3D Object Detection

Local features extraction. Local feature extraction strate-
gies can be divided into two categories: voxel-based and
point-based methods. Voxel-based methods mostly use 3D
sparse convolution [18] on regular voxel grids. PointPillars
[4] directly adopts the mature 2D convolution by compressing
the voxels into a pillar from the vertical dimension. For point-
based methods, PointNet [5] and PointNet++ [[6] directly con-
sume unorganized 3D points and utilize symmetric functions
and Set Abstract (SA) layers to learn the point-wise features
and the local features progressively. PCCN [19] exploits
parameterized kernel functions to generalize convolution to
learn the non-grid structured data. DGCNN [20] constructs a
graph in the local region of sampled points and dynamically
computes message propagation in each layer of the network.
The above-mentioned strategies mostly use pooling operation
for feature aggregation to progressively expand the receptive
field of the sampled points, leading to the loss of local features.
Similarly, our method extracts point-wise features from the
local and global perspectives, respectively.

Multi-scale features learning. With the continuously sam-
pling operation on the point clouds, the perception field of each
sampled point is extended incessantly. Multi-scale features
are concatenated together as the overall scene information
to ensure the local features are aware of the global context.
PV-RCNN [21] introduces the Voxel Set Abstraction (VSA)
module to encode multi-scale voxel-wise features from the
feature volumes to the key points. MLCVNet [22]] incorporates
the multi-level context information from local point patches to
global scenes into VoteNet. HVPR [23] proposes an Attentive
Multi-scale Feature Module (AMFM), which can refines the
hybrid pseudo image to obtain scale-aware features.

B. Voxel-based Object Detection

Voxel-based detectors first convert the point clouds into
regular and compact voxel grids to utilize the matured con-
volutional neural networks. The current approaches can be
divided into two groups: one-stage [24], [25], [26], [27], [28]]
and two-stage detectors [29], [30], [31], [32]]. The one-stage
detectors focus on lightweight and efficiency, which usually
lose the detailed structural information due to the voxelization
and continuously down-sampling. SA-SSD [26] introduces
an auxiliary network to transform the convolution features
into the point-wise representations to exploit the structural
information. HVNet [27] proposes a novel voxel feature en-
coder to attentively aggregate features at different levels and
project the multi-scale feature maps to achieve accurate object
localization. CIA-SSD [28] proposes a lightweight aggregation
module to fuse the semantic and spatial features to predict
with accurate confidence, which is subsequently rectified by
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Fig. 2: The pipeline of our 3DLG-Detector. The input scene point clouds are first fed into the feature learning module, in
which a feature encoding (FE) block learns the high-level feature representations, and a feature decoding (FD) block recovers
the discarded foreground points for accurate prediction. In each FE block, a Sample-and-Group (SG) module samples the
seed points and groups the local region features near the seeds to expand the receptive field of the sampled points. Then, a
Residual Points Learning (RPL) module further learns and aggregates the deep features. Finally, a Dynamic Points Interaction
(DPI) module recovers the pooled local features. The outputs of FE at different levels have various receptive fields, which
are concatenated together by a Global Context Aggregation (GCA) module as the global context to incorporate the global

information into point features.

an IoU-aware rectification module. In comparison, the two-
stage detectors pay more attention to the accuracy of detection.
These detectors rely on the post-processing stage to refine
the candidate proposals from the previous stage, which often
has high demands in computation and memory. Voxel-RCNN
[31] exploits voxel Rol pooling to aggregate the voxel features
within proposals for further refinement. Part-A2 [32] proposes
a network with part-aware and part-aggregation stages, in
which the former predicts proposals and locations of intra-
object parts by the part supervision using ground truth boxes,
and the latter excavates the spatial relationship of intra-object
part locations to refine the proposals.

C. Point-based Object Detection

Point-based methods [33]], [34], [35], [8] directly take
point clouds, which keeps the original geometric information
without any quantitative loss. However, it is challenging to
achieve feature extraction due to the sparse and irregular
characteristics of point clouds. PointRCNN [7]] is a two-
stage 3D object detector, which first segments the foreground
points and generates a small number of proposals. Then
semantic features and local spatial cues are excavated from the
proposals for further refinements. VoteNet [8] is a one-stage
detector based on the Hough voting algorithm, which identifies
instance centroids by voting from the points in a local region.

Based on the VoteNet, MLCVNet [22] proposes three context
learning modules, respectively Patch-to-Patch Context, Object-
to-Object Context, and Global Scene Context to capture the
long-range dependencies at different levels. 3DSSD [9] de-
signs a novel fusion sampling strategy, which samples the
farthest point according to the feature and Euclidean distance.
Pointformer [11] designs a transformer backbone to learn
the context-dependent local features and context-aware global
representations for 3D object detection.

The aforementioned point-based object detection methods
mostly use PointNet++ as the backbone to extract features.
However, their insufficient feature learning capacity limits the
performance of the detectors. In this paper, we propose a novel
feature learning framework for 3D object detection, which
excavates and retains the complete local geometric cues by
a dynamic points interaction module and captures the global
scene context from different-level feature encoders.

III. METHODOLOGY
A. Overview

We propose a novel 3D object detector by learning both
local and global features. It effectively preserves the local
features after the pooling operation by dynamic points interac-
tion and meanwhile learns the global context from multi-scale
encoder blocks. As shown in Figure 2] the feature learning
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Fig. 3: ustration of the Dynamic Points Interaction module.
The input includes grouped features and pooled features. The
grouped features conduct position encoding to embed the
position information as the query, and the pooled features are
equally split to generate key-value pairs for carrying out dot-
product with the query.
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module is an encoder-decoder structure. The feature encoder
learns the high-level semantic features, in which the Sample-
and-Group (SG) module first conducts points down-sampling
and feature grouping. Then the Residual MLP (ResMLP)
block learns a deeper feature representation from the grouped
features. Lastly, the Dynamic Points Interaction (DPI) mod-
ule takes the grouped features and pooled features as input
and exploits grouped features to alleviate feature loss. The
feature decoder follows the feature propagation module of
PointNet++ to recover the discarded foreground points caused
by downsampling. The outputs of the feature encoder blocks
are concatenated together as global guidance, making point
representations aware of the scene context.

B. Background

The VoteNet [8]] is the baseline of our model, which consists
of two components: the point features extraction module and
the detection head. PointNet++ is the backbone network to
extract high-level point features from the input point clouds.
The detection head contains a voting module and a proposal
module. The voting module takes the features from the previ-
ous component as input and regresses the offset from each seed
point to the corresponding object center by MLPs, simulating
the Hough voting process. The proposal module groups the
predicted centers as object candidates to generate the 3D
bounding boxes and classified labels.

In the succeeding works, MLCVNet [22] reveals that the
contextual information between different objects plays an
active role in object recognization. Hence it designs three
levels of context modules to learn the contextual information
in the voting and proposal stages of VoteNet, respectively
are Patch-to-Patch Context(PPC), Object-to-Object Context
(00C), and Global Scene Context (GSC) modules. Besides,
Pointformer [11] resorts to the popular Transformer to effec-
tively learn context-aware feature representations. Specifically,
a pointformer block consisting of the Local Transformer (LT)

module and the Global Transformer (GT) module replaces
the set abstract module of PointNet++ for feature extraction.
However, these methods all neglect features loss during the
pooling stage.

C. Residual Points Learning Module

The residual feed-forward MLPs have been proven to be
effective for feature learning in PointMLP [36]. We introduce
the Residual Points Learning (RPL) module by stacking the
residual MLP blocks to learn the deeper point representations.
As shown in Figure [2| the RPL module can be formulated as

where f; ; is the feature of the jth point near the ith
sampled point, and ¢(-) denotes the residual MLP block used
to capture the deep feature. Specifically, the residual MLP
block includes the mapping function M LP(x) + z, in which
MLP(-) is combined by full connection, normalization, and
activation layers. The aggregation function A is the max-
pooling operation conducted on the features from the last
residual MLP block to aggregate the local region features into
the sampled point. Similar to ResNet [37], benefiting from
the residual connections, the MLPs can easily be extended to
dozens of layers for deeper feature representations.

D. Dynamic Points Interaction Module

Although max-pooling operation leads to the loss of part of
local geometric features, it is still an indispensable component
in dealing with the permutation invariance for point cloud
processing. Thus we design a Dynamic Points Interaction
(DPI) module to compensate for the feature loss caused by
max-pooling without bypassing the max-pooling operation.
This dynamic interaction operation is similar to the attention
function, which can be described as a mapping from the query
term and key-value pairs to the output. The self-attention
mechanism usually takes the same or similar features as
input to perform QKYV operations, focusing on excavating the
inner relationship in features. In contrast, our dynamic points
interaction (DPI) module takes grouped and pooled features
as the query term and key-value pair. The QKV operation
simulates the interaction process between pooled seeds and
grouped sets and recovers the lost features progressively by
continuous queries. Finally, the output is added with the pooled
features to avoid pooled features being disturbed from the
background point features in the grouped features.

The specific process is shown in Figure [3| where the input
of the DPI module includes the previous grouped features
F9 ¢ RBXBHC)XNxn and pooled features FP € REXCXN,
F9 ={ci1,ca,...,cn}, where ¢; = {p;,p;,j =1,...,n—1} is
a grouped points set in the local region. p; is a sampled point
as the centroid of the set and p; is a neighboring point of p;
within a given radius. Let {z;, f;}+ denotes the point p; in
the ¢, point set, where x; € R> represents the coordinates
and f; € RC denotes the features of points. Subsequently, the
Position Encoding (PE) module takes x; as input to transform
the dimension as the same of f; and adds x; to the f; in
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TABLE I

3D OBJECT DETECTION RESULTS ON THE SCANNET V2 VALIDATION SET (LEFT) AND THE SUN RGB-D VALIDATION SET
(RIGHT). THE EVALUATION METRIC IS THE MEAN AVERAGE PRECISION WITH 3D IoU THRESHOLDS OF 0.25 AND 0.5.
THE RESULTS OF THE COMPETING METHODS ARE QUOTED FROM THEIR PUBLISHED PAPERS OR THE RELEASED CODES.

ScanNet V2 | Input | mAP@0.25 | mAP@0.5 SUN RGB-D | Input | mAP@0.25
DSS [38] Geo + RGB 15.2 6.8 DSS [38] Geo + RGB 42.1
F-PointNet [39] Geo + RGB 19.8 10.8 2D-driven [46) Geo + RGB 45.1
GSPN [40] Geo + RGB 30.6 17.7 COG [47] Geo + RGB 47.6
3D-SIS [41] Geo + 5 views 40.2 22.5 F-PointNet [39] Geo + RGB 54.0
VoteNet [8] Geo only 58.6 33.5 VoteNet [8] Geo only 57.7
HGNet [42] Geo only 61.3 344 H3DNet [48] Geo only 60.1
DOPS [43] Geo only 63.7 38.2 3DETR [45] Geo only 59.1
RGNet [44] Geo only 48.5 26.0 RGNet [44] Geo only 59.2
MLCVNet [22] Geo only 64.7 42.1 MLCVNet [22] Geo only 59.8
3DETR [45] Geo only 65.0 47.0 PointFormer [11] Geo only 61.1
PointFormer [11] Geo only 64.1 42.6 BRNet [49] Geo only 61.1
Ours Geo only 66.3 48.0 Ours Geo only 61.6

an element-wise manner for generating the queries f;. This
process can be formulated as follows

fq =Py ) PE(pxyz)» 2)

where p;,. represents the coordinates and p; denotes the
features of points.

The pooled features F), first carry out dimension extension
from C to 2 % C' x C'/m by a convolution layer. Then these
features are equally split into key-value pairs in the feature
channel dimension, respectively are keys fp(: C x C/m)
(Param1 in Figure [3) and values f,(C % C/m :) (Param2 in
Figure [3). The reshape operation is adopted on the QKV fea-
tures to change the arrangement of the feature dimension (f, €
RB><N><n><C”f]C c RBXNXCX(C/m),fU c RBXNX(C/m)XC)
to fit the succeeding Dot-Product function between queries and
key-value pairs. To improve efficiency, we present a bottleneck
structure between the key and value. We attempt to reduce the
number of feature channels by a factor of m. In this paper, we
set m to 4. The whole calculation process can be formulated
as follows,

3)
“4)

where W,, Wy, and W, are reshape operations for query, key,
and value, respectively. R and B denote the activation function
and the normalization function, respectively.

The prior feature extraction modules in [[L1], [22] rely on the
sophisticated feature extractor to excavate the local geometric
information by using attention mechanisms. However, they
do not design an effective strategy to preserve the extracted
local features. The succeeding aggregation function (e.g., max-
pooling) still inevitably deserts part important features. We
give full consideration to this issue. The grouped set has
redundant and comprehensive local features, in particular,
including the part features lost by pooled seed. Hence we
take the pooled seed continuously interacts with each point in
the corresponding grouped set to acquire the completed local
geometric information.

y = RB(RB(f; © fr) © fo),

OZR(y+FZD)7

E. Fourier Position Encoding

Position encoding is an essential component of Transformer
since it can embed relative or absolute position information of
each entry in the input to the corresponding features. For 3D
point clouds, the position information of each point still plays
a crucial role in describing the local geometric structure of the
point clouds.

Inspired by [50], [51]], we introduce a Fourier Position
Encoding to map the low-dimension coordinates to the higher
frequency representations by the heuristic sinusoidal function.
Specifically, the function v maps the coordinates (zyz € [0, 1])
of the input points to the higher dimensional hypersphere with
a set of sine-cosine functions

0;(v) = (a;cos(2mb;v), a;sin(2wbv)), )
Y() = [01(v), .oey I (V)] v € {2, y, 2}, (6)

where b; is the Fourier basis frequency and a; is the cor-
responding Fourier series coefficient. For simplicity, we set
a; = 1 and generate b; by a power function b; = T%/™,
i =0,...,m — 1. The results from the Fourier embedding are
concatenated together as position encoding with a dimension
of 3m, and they are further transformed such that their
dimension is the same as the corresponding point features.

F. Global Context Aggregation Module

The global context describes the semantic information of
the whole scene, which is considerable in inferring the classes
of objects as there is a close connection between the scene
and objects. Prior works, no matter point-based models using
PointNet++ or voxel-based methods using sparse 3D convo-
lution, only extract the high-level feature representation by
continuously expanding the receptive field but neglect the
global context.

We note that the high-level features include rich semantic
information while the low-level features contain the local geo-
metric cues. Hence we propose the global context aggregation
(GCA) module to concatenate them together as the global
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TABLE II
RESULTS COMPARISON WITH THE STATE-OF-THE-ART METHODS ON THE SCANNETV2 VALIDATION SET. THE
EVALUATION METRIC IS THE AVERAGE PRECISION WITH 0.5 IOoU THRESHOLD.

Methods ‘ cab bed chair sofa table door wind bkshf pic cntr desk  curt  fridg showr  toil sink  bath  ofurn ‘ mAP
VoteNet [8] 8.1 76.1 672 688 424 153 6.4 28.0 1.3 9.5 375 116 278 100 865 168 789 117 335
MLCVNet [22] 117 808 742 704 448 224 177 50.0 1.8 246 398 21.8 402 246 828 295 187 17.2 40.7
Pointformer [11] | 19.0 80.0 753 69.0 505 243 150 419 1.5 269 451 303 419 253 759 355 829 260 42.6
3DETR [45] 244 794 765 678 530 257 157 41.8 6.1 20.8 468 267 378 40.1 96.0 302 844 283 44.5
Ours ‘ 200 806 791 777 613 341 217 412 108 283 390 348 543 346 904 361 883 319 ‘ 48.0

context guidance, to promote the ability of feature representa-
tions for 3D bounding box regression and object classification.
Specifically, we first conduct the channel normalization (CN)
to the outputs of each feature encoding block. This operation
is to compress the number of the feature channel to %k for
the succeeding concatenation. The formulation of CN can be
summarized as follows:

CN(f) = Max — Pooling(MLP(f)), (7

To solve the problem of the inconsistent number of the
sampled points from different encoders, the max-pooling
function is applied to compress the features to a 1D vector.
Subsequently, these vectors representing respective encoders
are concatenated together as the global context,

g =MLP(Cat[CN(f;),i = 1,2,3,4]). @®)

The global context representations not only promote the
message propagation among different objects in the scene, but
also benefit the inference in object classification.

IV. EXPERIMENTS

In this section, we conduct extensive experiments on two
indoor datasets to evaluate the proposed 3DLG-Detector and
compare it with the state-of-the-art 3D object detection meth-
ods. In Section [[V-Al we introduce the details of datasets
and the setup of the model. In section we demonstrate
the qualitative and quantitative comparison results on indoor
datasets. In section we analyze the effectiveness of each
component in 3DLG-Detector through comprehensive ablation
studies. In section we introduce the limitation of our
model by analyzing several failure cases.

A. Datasets and Implementation Details

We evaluate our method on two indoor datasets, SUN RGB-
D [17] and ScanNet V2 [16].

SUN RGB-D [17] is a single-view RGB-D dataset for
3D scene understanding. It contains ~ 5K indoor RGB and
depth images annotated with amodal oriented bounding boxes
of 37 object categories for training, and the rest ~ 5K
RGB-D images for testing. Before feeding the data into the
network, depth images are first converted to point clouds by
the provided camera parameters. The evaluation metric is the
standard mean Average Precision (mAP), and the evaluation
is conducted on the 10 most common categories.

ScanNet V2 [16] is a densely annotated dataset consisting
of 3D reconstructed meshes, which has rich texture, semantic

and geometric information. It contains 1513 indoor scenes
captured from hundreds of different rooms, with semantic and
instance labels for all the points, as well as 3D object bounding
boxes. Compared to the fragmentary scan in SUN RGB-D,
the scenes of ScanNet are larger and more complete, so local
geometric details of objects are well captured. The vertices of
the meshes in the dataset are sampled as point clouds.

Data augmentation. To reduce computational complexity,
we randomly down-sample each point cloud as input, <.e.,
20,000 points for the SUN RGB-D dataset and 40,000 points
for the ScanNet dataset respectively. The height attribute of
each point is also included as an extra feature to feed into the
network. To augment the training data, we apply randomly
flipping, rotating, and scaling operations to the point clouds,
following VoteNet [8].

Training details. Our model is implemented with PyTorch
on an NVIDIA GeForce RTX 3060 GPU and optimized by
the Adam optimizer in an end-to-end manner. For ScanNet
V2, we set the initial learning rate to le-3 and weight decay
to le-1. The total training epochs are 48, and the learning rate
continuously decreases in the 12, 24, and 36 epochs by 5x.
For the other dataset SUN RGB-D, we set the base learning
rate to le-3 and weight decay to Se-2. The total epochs are
36, and the learning rate continuously decreases in the 12 and
24 epochs by Hx.

B. Comparisons with the State-of-the-art Methods

We compare our method with the related works, which can
be divided into three groups: early methods [41], [46], [39],
[40], [47] that locate 3D objects via 3D-2D queries, voting-
based methods that excavate informative local representation
such as VoteNet [8]] and its successors [42]], [43], [49], [48],
and attention-based methods [44], [45], [11]], [22]] that explore
the relationships between the local objects and point clusters.
The results are reported in Table [[]and Table [T} The bold texts
denote the best results under the corresponding metrics.

Quantitative results. All results of comparison experiments
are summarized in Table [l We can observe that 3DETR [45]
has the highest mAP among the competing methods on the
ScanNet dataset, while our method still outperforms 3DETR
in both metrics on the ScanNet V2 validation sets (+1.3%
mAPQ0.25, +1% mAPQQ.5). Note that mAP@Q.5 is quite
a challenging metric since it requires more than 79% coverage
area in each dimension of the bounding box. Some methods
like HGNet [42] only achieve decent performance under the
metric mAPQ0.25 but perform exceptionally poorly in terms
of the mAP@Q.5 metric. Our model has the highest accuracy
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VoteNet

MLCVNet

Fig. 4: The qualitative results of different 3D object detection methods on the ScanNet V2 validation sets.

in object location, so it retains significant performance. The
ScanNet dataset consists of reconstructed meshes that cover
complete objects in larger areas, while the SUN RGB-D
dataset contains the single-view RGB-D images where point
clouds projected from the depth map have fragmentary objects
and smaller areas. The different characteristics result in the
inability of many methods to perform consistently well on both
datasets. For example, MLCVNet [22] performs well on the
ScanNet dataset but achieves poor results on the SUN RGB-D
dataset, while RGNet is the opposite. Our method has also
achieved impressive performance on the SUN RGB-D dataset,
indicating it has a strong generalization capability to deal with
different scenes.

The comparison results on the ScanNet dataset in terms of
mAP@Q.5 are shown in Table [l Our method achieves the
best performance in 13 out of the 18 categories. Especially
for the tabular objects like pictures and windows, whose
neighborhoods mostly are background points. Other methods
cannot detect them due to that the pooling operation aggregates
too many background features but discards important object

features. Nevertheless, our dynamic points interaction module
preserves object features, which improves the detection accu-
racy by 4% AP and 4.1% on windows and pictures.

Qualitative results. We visualize the representative detec-
tion results from the ScanNet dataset and SUN RGB-D dataset
in Figure [ and Figure [5] from which we can observe that
the VoteNet [8] and MLCVNet [22]] have wrong detection
regarding object number and category. For example, in the first
row of Figure [ VoteNet [8] and MLCVNet [22] recognize
many wrong chairs on the table and in the wall. In contrast,
enhanced by the proposed DPI and GCA modules, our model
achieves more accurate bounding boxes in terms of both
location and category.

C. Ablation Study

Residual points learning module. We first evaluate the
effect of the number of ResMLP blocks in the Residual Points
Learning (RPL) module on feature learning. We change the
depth of the RPL module by setting the number of ResMLP
blocks to 0, 1, 2, and 3, respectively. 0 block means using the
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Image

Fig. 5: The qualitative results of different 3D object detection methods on the SUN RGB-D validation sets.

TABLE III
ABLATION EXPERIMENTS REGARDING THE NUMBER OF
RESMLP BLOCKS IN THE RPL MODULE. NOTE ‘0*’
DENOTES USING THE TRADITIONAL MLPs.

ResMLP ScanNet V2
mAP@0.25 | mAP@0.5

0* block 63.9 454

1 block 64.9 47.1

2 blocks 66.3 48.0

3 blocks 65.2 47.0
TABLE IV

ABLATION EXPERIMENTS REGARDING THE NUMBER OF
RESMLP BLOCKS IN THE RPL MODULE. ‘-DPI” MEANS
THE 3DLG-DETECTOR WITHOUT THE DPI MODULE,
‘-GCA’ INDICATES THE 3DLG-DETECTOR WITHOUT THE
GCA MODULE.

ScanNet V2 \ SUN RGB-D
ResMLP
| mAP@0.25 | mAP@0.5 | mAP@0.25 | mAP@0.5
VoteNet 58.6 335 577 329
-DPI 64.7 454 58.5 35.1
-GCA 653 46.1 60.1 37.6
3DLG-Detector 66.3 48.0 61.6 38.5

traditional MLP layer for feature extraction. The experiment
results are reported in Table [l from which we observe an
increase in detection performance as the RPL module becomes
deeper. However, merely increasing the number of ResMLP
blocks would not always lead to better performance. When
setting the number of ResMLP blocks to 3, the detection
accuracy decreases mAP@0.25 by 1.1% and mAPQQ0.5 by
1.0%. In this work, two ResMLP blocks achieve the best
performance.

Dynamic points interaction module. DPI module is the
essential component in our model, which significantly im-
proves detection accuracy. The quantitative results are reported

TABLE V
ABLATION EXPERIMENTS ABOUT COMPARING DPI
MODULE WITH SELF-ATTENTION.

ResMLP ScanNet V2 SUN RGB-D
mAP@0.25 | mAP@0.5 | mAP@0.25 | mAP@0.5
self-attention 64.7 45.0 60.1 36.3
DPI 66.3 48.0 61.6 38.5

Fig. 6: Examples of failure cases on the ScanNet V2 dataset.
The red arrows denote the false positive bounding boxes, and
the green arrows indicate the missed objects.

in Table [Vl We can see that without the DPI module, the
performance drops 2.6% and 3.4% in terms of mAP@0.5 on
the ScanNet and SUN RGB-D validation sets, respectively.
The visualization of the object detection results is in the
first two rows of Figure [7] After removing the DPI module,
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Fig. 7: The visual results of ablation experiments on the ScanNet V2 validation sets. ‘-DPI’ denotes the 3DLG-Detector without
the DPI module, ‘-GCA’ indicates the 3DLG-Detector without the GCA module. The first and third rows demonstrate the whole

scenes, and the second and fourth rows are close-up views.

several chairs (green boxes) instead of the table (red boxes)
are incorrectly detected. This is also due to that the pool-
ing operation aggregates features from the neighbor regions
instead of object features. The sampled points of the table
integrate with the points from the chairs beside the table,
leading to the error of recognizing the table as several chairs.
Our DPI module enables the grouped features to interact with
the pooled features to preserve local features and thus ensures
correct table detection.

Differences between DPI and self-attention. Although
our dynamic points interaction module is similar to the self-
attention in formulation, the inputs are completed different.
Self-attention takes same or similar features as input while DPI
takes grouped and pooled features as the query term and key-
value pair. We apply the self-attention on the pooled features
to replace the DPI module. We can find the performance
has decreased by 3.0% and 2.2% in terms of mAP@0.5 on
the ScanNet and SUN RGB-D validation sets, respectively.
The reason is that self-attention only excavates the internal
relationship of features while neglecting to introduce the
external cues to compensate for the feature loss.

Global context aggregation module. GCA module plays a
substantial role in learning the global contextual information
for 3D object detection. As shown in Table [V] removing the

GCA module causes the detection accuracy to decrease by
1.9% and 0.9% in terms of mAP@Q.5 on the ScanNet and
SUN RGB-D validation sets, respectively. The visualization
results are shown in the last two rows of Figure[7} The fridge
near the sink is wrongly detected as a door by the model
without the GCA module. The global scene context encodes
the multi-scale features to generate scene context information
that helps to enhance object detection.

D. Limitations

Although 3DLG-Detector has demonstrated notable im-
provement on two indoor datasets, it still does not perform
well for a few tricky scenes. Two such failure cases are
presented in Figure [§] The common failures are false-positive
bounding boxes of objects (red arrows in Figure [6) and the
missed object detection (green arrows in Figure [6). We can
see that the picture and the window in the smooth wall are
the most challenging to be detected because they are too thin
and clung to the wall. The false-positive bounding boxes also
arise when several objects have similar shapes, for which the
global context cannot distinguish between them. It is worth
noting that these common failures are equally problematic for
most SOTA methods. Additionally, we have not resolved the
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over smoothing phenomenon caused by the residual points
learning module. The residual connection can deepen the
MLPs from several to dozens of layers to learn better deep
feature representations. However, the performance may not
be enhanced and may degrade when the number of layers
increases largely.

V. CONCLUSION

We have presented a novel framework to improve voting-
based 3D object detection networks. Our approach enhances
the learning of both local and global features by introducing
three different modules to the networks. The RPL module first
learns the deep local feature representation, and then the DPI
module captures the complete local geometric features. The
GCA module constructs global contextual information from
multi-scale feature encoders, thus enriching global features.
Extensive experiments have demonstrated the effectiveness of
the proposed approach.

Compared to prior works that propose sophisticated feature
extractors to excavate detailed local geometric information,
our work takes a different path to preserve the extracted
features. The flourishing extractors have saturated performance
in describing local geometric information while designing
effective feature retention strategies has been rarely studied.
We believe our work can promote the research in feature
retention.
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