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Abstract. Multi-modal MR imaging is routinely used in clinical prac-
tice to diagnose and investigate brain tumors by providing rich comple-
mentary information. Previous multi-modal MRI segmentation methods
usually perform modal fusion by concatenating multi-modal MRIs at an
early/middle stage of the network, which hardly explores non-linear de-
pendencies between modalities. In this work, we propose a novel Nested
Modality-Aware Transformer (NestedFormer) to explicitly explore the
intra-modality and inter-modality relationships of multi-modal MRIs for
brain tumor segmentation. Built on the transformer-based multi-encoder
and single-decoder structure, we perform nested multi-modal fusion for
high-level representations of different modalities and apply modality-
sensitive gating (MSG) at lower scales for more effective skip connec-
tions. Specifically, the multi-modal fusion is conducted in our proposed
Nested Modality-aware Feature Aggregation (NMaFA) module, which
enhances long-term dependencies within individual modalities via a tri-
orientated spatial-attention transformer, and further complements key
contextual information among modalities via a cross-modality attention
transformer. Extensive experiments on BraTS2020 benchmark and a pri-
vate meningiomas segmentation (MeniSeg) dataset show that the Nest-
edFormer clearly outperforms the state-of-the-arts. The code is available
at https://github.com/920232796/NestedFormer.

Keywords: Multi-modal MRI · Brain Tumor Segmentation · Nested
Modality-Aware Feature Aggregation · Modality-Sensitive Gating

1 Introduction

Brain tumor is one of the most common cancers in the world [3], in which gliomas
are the most common malignant brain tumors with different levels of aggressive-
ness and meningiomas are the most prevalent primary intracranial tumors in
adults [21]. Multi-modal magnetic resonance imaging (MRI) is routinely used
in the clinic by providing rich complementary information for analyzing brain
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Fig. 1: Multi-modal MRIs for (a) Gliomas; and (b) Meningiomas.

tumors. Specifically, for gliomas, the commonly used MRI sequences are T1-
weighted (T1), post-contrast T1-weighted (T1Gd), T2-weighted (T2) and T2
Fluid Attenuation Inversion Recovery (T2-FLAIR) images; see Fig. 1(a), each
with varying roles in distinguishing tumor, peritumoral edema and tumor core
[1, 2, 18]. For meningiomas, they have different characteristic appearances on
T1Gd [15] and contrast-enhanced T2-FLAIR (shorted for FLAIR-C) MRI im-
ages; see Fig. 1(b). Thus, automatic segmentation of brain tumor structures from
multi-modal MRIs is important for clinical diagnosis and treatment planning.

In recent years, convolutional neural networks (CNNs) have achieved promis-
ing successes in brain tumor segmentation. The main stream models are built
upon the encoder-decoder architecture [22] with skip connections, including S3D-
UNet [5], SegResNet [20], HPU-Net [13], etc. Recent works [9,25,28] also explore
transformer [24] to model long-range dependencies within images. For instance,
TransBTS [25] utilizes 3D-CNN to extract local spatial features, and applies
transformer to model global dependencies on high-level features. UNETR [9]
uses the ViT transformer as the encoder to learn contextual information, which
is merged with the CNN-based decoder via skip connections at multiple resolu-
tions. However, the transformer in these methods is used to enhance the encode
path without specific design for multi-modal fusion.

To utilize the multi-modal information, most of existing methods adopt an
early-fusion strategy, in which multi-modal images are concatenated as the net-
work input. However, this strategy can hardly explore non-linear relationships
between different modalities. To alleviate this problem, recent works follow a
layer-fusion strategy [7, 27, 29], where the modality-specific features extracted
by different encoders are fused in the middle layers of the network and share
the same decoder. In HyeprDense-Net [7], each modality has a separated stream
and dense connections are introduced between layers within the same stream
and also across different streams. MAML [27] embeds multi-modal images by
different modality-specific FCNs and then applies a modality-aware module to
regress attention maps in order to fuse the modality-specific features. Never-
theless, these multi-modal fusion methods do not build the long-range spatial
dependencies within and cross modalities, so that they cannot fully utilize the
complementary information of different modalities.

In this paper, we propose a novel nested modality-aware transformer, called
NestedFormer, for effective and robust multi-modal brain tumor segmentation.
We first design an effective Global Poolformer to extract discriminative volumet-
ric spatial features, with more emphasis on global dependencies, from different
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Fig. 2: An overview of the proposed NestedFormer. We design a Nested Modality-
aware Feature Aggregation (NMaFA) module to model both the intra- and inter-
modality features for multi-modal fusion.

MRI modalities. To better extract the complementary features and enable any
number of modalities for fusion, we propose a novel Nested Modality-aware Fea-
ture Aggregation (NMaFA) module. It explicitly considers both single-modality
spatial coherence and cross-modality coherence, and leverages nested transform-
ers to establish the intra- and inter-modality long-range dependencies, resulting
in more effective feature representation. Moreover, we design a computationally
efficient Tri-orientated Spatial Attention (TSA) paradigm to accelerate the 3D-
spatial-coherence calculation. To improve feature reuse effect in the decoding, a
novel modality-sensitive gating (MSG) module is developed to dynamically filter
modality-aware low-resolution features for effective skip connections. Extensive
experiments on BraTS2020 benchmark and a privately collected meningiomas
segmentation dataset (MeniSeg) show that our model clearly ourperforms the
state-of-the-art methods.

2 Method

Fig. 2 illustrates the overview of the proposed NestedFormer, which consists of
three components: 1) multiple encoders to obtain multi-scale representations of
different modalities, 2) a NMaFA fusion module to explore correlated features
within and between multi-modal high-level embeddings, and 3) a gating strategy
to selectively transfer modality-sensitive low-resolution features to the decoder.

2.1 Global Poolformer Encoder

Recent works show that transformer is more conducive to modeling global in-
formation than CNNs. To better extract local context information for each
modality, we extend the Poolformer [26] as the modality-specific encoder. As
discussed in [26], replacing the computation-intensive attention module in Trans-
former with average pooling can achieve superior performance than recent trans-
former and MLP-like models. Therefore, to enhance global information, we de-
sign Global Poolformer Block (GPB), which leverages global pooling instead of
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average pooling in Poolformer, followed by a fully connected layer. As shown in
Fig. 2, given the input feature embedding X, a GPB block consists of a learnable
global pooling (GP) and a MLP sub-block. The output Z is computed as,

Y = GP (LN(X))Wg +X,

Z = MLP (LN(Y )) + Y,
(1)

where LN(∗) denotes the layer normalization and Wg is the learnable parameter
in the FC layer. Our Global Poolformer encoder contains five groups of one
feature embedding (FE) layer and two GPB blocks. Each FE layer is a 3D-
convolution, while the first FE layer has a convolution patch size of 1 × 1 ×
1 and the rest layers have a patch size of 2 × 2 × 2 and a stride of 2. The
encoders gradually encode each modality image into high-level feature FL,i ∈
Rd×w×h×C , i ∈ [1,M ], where (d,w, h) = ( D

16 ,
W
16 ,

H
16 ) are 1/16 of input spatial

resolutions H, W and depth dimension D; M is the number of modal images,
the channel dimension C and the layer number L are set as C = 128, L = 5.

2.2 Nested Modality-Aware Feature Aggregation

Given high-level features FL,i, i ∈ [1,M ], NMaFA leverages a spatial-attention
based transformer Ttsa and a cross-modality attention based transformer Tcma

in a nested manner; see Fig. 3. First, transformer Ttsa utilizes the self-attention
scheme to compute the long-range correlation between different patches in the
space within each modality. Specifically, FL,i is concatenated in the channel di-
mension to obtain high-level embedding Fs ∈ Rd×w×h×MC . In this work, each
location of Fs is considered as one “patch”. Then a patch embedding layer maps
Fs to a token sequence F̂s ∈ Rdwh×C . Ttsa takes F̂s and the position encoding [24]
as the input, and outputs spatially-enhanced feature F̃s ∈ Rdwh×C .

Second, transformer Tcma utilizes the cross-attention scheme to further com-
pute the global relation among different modalities to achieve inter-modality
fusion. To this end, FL,i is concatenated in the spatial dimension to obtain the

flatten sequence F̂c ∈ RMP×C . Here, P (P = 32) denotes the number of dom-
inant tokens learnt via the Token Learner strategy [23], which helps to reduce
the computational scope especially when the number of tokens increases greatly
along with more modalities. After that, both F̃s and F̂c are fed into Tcma to get
the modality-enhanced feature embedding F̃ .

Also note that our two modules are different from traditional channel-spatial
attention networks, which reweigh feature maps channel-wise and spatial-wise.
Our NMaFA relies on transformer mechanism and the two transformers are fused
in a nested form, rather than serial [12] or parallel [19] fusion.

Transformer with Tri-orientated Spatial Attention. To improve the com-
putational efficiency of spatial attention for volumetric embeddings, inspired by
[10, 16], we leverage axial-wise attention MHAz, plane-wise attention MHAxy,
and window-wise attention MHAw; see Fig. 3(b). Concretely, MHAz models
the long-range relationship among feature tokens along the vertical direction;
MHAxy models the long-range relationship within each slice; MHAw uses slid-
ing windows to model the relationship across local 3D-windows. We employ
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Fig. 3: NMaFA: Nested Modality-aware Feature Aggregation. (a) The overall
architecture. (b) The transformer with tri-orientated spatial attention Ttsa. (c)
The transformer with cross-modality attention Tcma.

axial and planar learnable absolute position encodings [24] for MHAz and
MHAxy, respectively, and use relative position encoding for window-wise at-
tention MHAw [16]. The resultant attention is computed as follows,

MHAtsa(z) = MHAz(z) +MHAxy(z) +MHAw(z), (2)

where z ∈ RN×C denotes the embedding tokens with sequence length N and
embedding dimension C after layer normalization, N = d×w× h. By this way,
the model not only enhances feature extraction of local important regions, but
also calculates global feature dependencies with less computation.

Transformer with Cross-Modality Attention. By concatenating features
in the channel dimension, Ttsa mainly enhances the dependencies within each
modality and yields F̃s, although the inter-modality integration also takes place
via patch embedding. To explicitly explore relationship among modalities, we
concatenate the feature tokens of different modalities along the spatial dimen-
sion, yielding F̂c ∈ RMP×C ; and then use a cross-attention transformer Tcma to
enhance the modality dependency information into F̃s; see Fig. 3(c). The input
triplet of (Query, Key, Value) to the cross-attention is computed as

Q = F̃sWq, K = F̂cWk, V = F̂cWv, (3)

where Wq,Wk,Wv ∈ RC×d are the weight matrices, d = 128 is the dimension of
Q,K, V . The cross attention CA is then formulated as

CA(F̃s, F̂c) = F̂s + SoftMax(
QKT

√
d

)V. (4)

The resultant token sequence F̃ from Tcma fuses and enhances the input features
with increasing receptive fields and the cross-modal global relevance.

2.3 Modality-Sensitive Gating

In feature decoding, we first fold the tokens F̃ back to a high-level 4D feature
map RL ∈ Rd×w×h×C . RL is progressively processed in a regular bottom-up style
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with a 3D convolution and 2× upsampling operation to recover a full resolution
feature map R1 ∈ RD×W×H×Nc for segmentation, where Nc is the number of
segments. Note that the encoder features are multi-modal. Hence, we design
a modality-sensitive gating strategy in skip connection, to filter the encoder
features {Fl,i, l ∈ [1, 4], i ∈ [1,M ]} according to the modality importance. To be

specific, for the l-th layer, an modality importance map Il ∈ R
D

2l−1 × W

2l−1 × H

2l−1 ×M

is learnt from F̃ that is the output of NMaFA, as follows,

Il = σ(U2×
L−l(FC(F̃ ))), (5)

where FC(∗) is a 1×1×1 full connection layer, U2×
l denotes upsampling l times,

and σ(∗) is the sigmoid function. Denote � as element-wise multiplication. Then
the filtered encoder feature Fl is formulated as

Fl =
∑
i

(Il,i � Fl,i). (6)

3 Experiment

3.1 Implementation Details

Our NestedFormer was implemented in PyTorch1.7.0 on a NVIDIA GTX 3090
GPU. The parameters were initialized via Xavier [8]. The loss function was a
combination of soft dice loss and cross-entropy loss and we adopted the AdamW
optimizer [17] with a weight decay of 10−5. The learning rate was empirically
set as 10−4.We adopted two Ttsa sequentially and just one Tcma. In MHAw, the
window-size was set as (2, 2, 2) for BraTS2020 and (2, 4, 4) for MeniSeg.

3.2 Datasets and Evaluation Metrics

For evaluation, we use a public brain tumor segmentation dataset BraTS2020 [18]
and a private 3D meningioma segmentation dataset (MeniSeg) collected from
Brain Medical Center of Tianjin University, Tianjin Huanhu hospital. Dice score
and 95% Hausdorff Distance (HD95) are adopted for quantitative comparison.

BraTS2020 Dataset. The BraTS2020 training dataset contains 369 aligned
four-modal MRI data (i.e., T1, T1Gd, T2, T2-FLAIR), with expert segmentation
masks (i.e., GD-enhancing tumor, peritumoral edema, and tumor core). Each
modality has a 155×240×240 volume and is already resampled and co-registered.
The segmentation task aims to segment the whole tumor (WT), enhancing tumor
(ET), and tumor core (TC) regions. Following the recent work [14], we randomly
divide the dataset into training (315), validation (17) and test (37).

Meningioma Dataset. The MeniSeg dataset contains 110 annotated two-
modal MRIs (i.e., T1Gd and FLAIR-C) from the meningiomas patients, who
had undergone tumor resection between March 2016 and March 2021. MRI scans
were performed with four 3.0T MRI scanners (Skyra, Trio, Avanto, Prisma from
Siemens). Two radiologists annotated meningioma tumor and edema masks on
T1Gd and FLAIR-C MRIs, and the third high-experienced radiologist made
examination. Each modality data has a volume of 32× 256× 256, and is aligned
into the same space and sampled to volume sizes of [32, 192, 192] for training.
Two-fold cross-validation is conducted for all the compared methods.
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Table 1: Quantitative comparison on BraTS 2020 dataset.

Methods
Param

(M)
FLOPs

(G)

WT TC ET Ave

Dice↑ HD95↓ Dice↑ HD95↓ Dice↑ HD95↓ Dice↑ HD95↓
3D-UNet [6] 5.75 1449.59 0.882 5.113 0.830 6.604 0.782 6.715 0.831 6.144

SegResNet [20] 18.79 185.23 0.903 4.578 0.845 5.667 0.796 7.064 0.848 5.763

MAML [27] 5.76 577.65 0.914 4.804 0.854 5.594 0.796 5.221 0.855 5.206

nnUNet [11] 5.75 1449.59 0.907 6.94 0.848 5.069 0.814 5.851 0.856 5.953

SwinUNet(2D) [4] 27.17 357.49 0.872 6.752 0.809 8.071 0.744 10.644 0.808 8.489

TransBTS [25] 32.99 333 0.910 4.141 0.855 5.894 0.791 5.463 0.852 5.166

UNETR [9] 92.58 41.19 0.899 4.314 0.842 5.843 0.788 5.598 0.843 5.251

NestedFormer 10.48 71.77 0.920 4.567 0.864 5.316 0.800 5.269 0.861 5.051

3.3 Comparison with SOTA Methods

We compare our network against seven SOTA segmentation methods, including
three CNN-based methods (3D-UNet [6], SegResNet [20], MAML [27], nnUNet [11]),
and three transformer-based methods (SwinUNet(2D) [4], TransBTS [25], and
UNETR [9]). For a fair comparison, we utilize the public implementations of
compared methods to re-train their networks for generating their best segmen-
tation results. Considering the computation power, all the methods are trained
for at most 300 epochs on BraTS2020 and 200 epochs on MeniSeg.

BraTS2020. Table 1 reports the Dice and HD95 scores on three regions (WT,
TC, and ET) as well as the averaged scores of all the methods on BraTS2020.
Apparently, our NestedFormer achieves the largest Dice score on WT, the largest
Dice score on TC, the smallest HD95 scores on TC, and our method also ranks
second in Dice score on ET, and second in HD95 score on WT and ET. More
importantly, our method has the best quantitative performance with averaging
Dice and HD95 scores to be 0.861 and 5.051. It is noted that HD95 is for the
distance difference between two sets of points, which is more sensitive than
Dice [25]. Hence, Dice is often used as the main metric and HD95 as the reference.
We also experimented with two-fold cross-validation for UNETR, TransBTS and
our method, while our method outperforms the two methods in WT and TC,
and is quite close to the best result in ET. As for model complexity, our model
has 10.48M parameters and 71.77G FLOPs which is a moderate size model.

MeniSeg. In Table 2, we list Dice and HD95 scores of our network and com-
pared methods on tumor and edema regions on the MeniSeg dataset, as well as
the average metrics. Among all the compared methods, MAML has the largest
Dice score of 0.819 at the tumor segmentation, while UNETR has the largest
Dice score of 0.693 at the edema segmentation, and average Dice score of 0.755.
In comparison, our method has a 1.5% Dice improvement in meningioma tumor,
0.2% Dice improvement in edema, and 1.0% average Dice improvement. Regard-
ing HD95, our method achieves the 4th smallest score of 2.647 on the tumor
segmentation, and the smallest score of 6.173 on the edema segmentation.

Visual Comparisons on BraTS2020 and MeniSeg. Fig. 4 visually com-
pares the segmentation results predicted by our network and SOTA methods
on BraTS2020 and MeniSeg. From these visualization results, we can find that
our method can more accurately segment brain tumor and peritumoral edema
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Table 2: Quantitative comparison on MeniSeg dataset.

Methods
Tumor Edema Ave

Dice HD95 Dice HD95 Dice HD95

3D-UNet [6] 0.799 5.099 0.676 9.655 0.737 7.377

SegResNet [20] 0.813 2.970 0.665 10.438 0.739 6.704

MAML [27] 0.819 2.112 0.682 9.158 0.750 5.635

SwinUNet(2D) [4] 0.807 1.817 0.679 7.986 0.743 4.901

TransBTS [25] 0.809 1.742 0.679 6.388 0.744 4.065

UNETR [9] 0.818 3.279 0.693 7.837 0.755 5.813

NestedFormer 0.834 2.647 0.695 6.173 0.765 4.410

Table 3: Ablation study for different modules on MeniSeg.

Methods
Encoder Fusion Dice

CNN PB GPB Ttsa T cma MSG Tmuor Edema Ave

baseline 1 X 0.805 0.675 0.74

baseline 2 X 0.810 0.679 0.75

baseline 3 X X 0.816 0.688 0.752

baseline 4 X X X 0.825 0.699 0.762

baseline 5 X X X X 0.823 0.697 0.76

NestedFormer X X X X 0.834 0.695 0.765

Image GT Ours UNet SegResNet Swin-UNet TransBTS UNETR MAML

B
ra
T
S
20
20

M
en
iS
eg

dice:0.95 dice:0.80 dice:0.88 dice:0.91 dice:0.93 dice:0.88 dice:0.89

dice:0.87 dice:0.84 dice:0.85 dice:0.65 dice:0.85 dice:0.86 dice:0.79

dice:0.86 dice:0.83 dice:0.83 dice:0.79 dice:0.84 dice:0.81 dice:0.81

dice:0.75 dice:0.57 dice:0.42 dice:0.44 dice:0.55 dice:0.74 dice:0.50

Fig. 4: The visual comparison results on BraTS2020 and MeniSeg dataset.

regions than all the compared methods. The reason behind is that our method is
able to better fuse multi-modal MRIs by explicitly exploring the intra-modality
and the inter-modality relationships among multiple modalities.

3.4 Ablation study

We conduct ablation studies on the MeniSeg dataset to evaluate the contribu-
tions of main modules in our method; see Table 3. We not only compared the
effects of three different encoder backbones based on CNN, PB, and GP, but also
verified the effect of our proposed fusion modules. Among them, baseline1 uses
multiple U-Net encoders to extract features of different modal images, and per-
forms feature fusion by concatenation. baseline2-baseline4 uses multiple GPB
encoders to extract features, and conducts skip connection via simple convolu-
tion, w/o Ttsa and Tcma (see Fig. 3), respectively. baseline5 replaces GPB block
with the original PoolFormer block (PB) in the encoder, using the proposed
NMaFA module (including Ttsa and Tcma) as well as MSG. It can be observed
clearly that compared with baseline2, using the NMaFA module enhances the
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extraction of long-distance dependency information and effectively improves the
segmentation results, while GPB outperforms PB by considering global informa-
tion. Moreover, the MSG module is added to increase the feature reuse capability
of skip connections, which further improves the segmentation effect, achieving
the best average segmentation Dice (0.765) on the MeniSeg dataset.

4 Conclusion

We propose a novel multi-modal segmentation framework, dubbed as Nested-
Former. This architecture extracts the features of M modalities by using multiple
Global Poolformer Encoders. Then, the high-level features are effectively fused
by the NMaFA module, and the low-level features are selected by the modality-
sensitive gate (MSG) module. Through these proposed modules, the network
effectively extracts and hierarchically fuses features from different modalities.
The effectiveness of our proposed NestedFormer is validated on BraTS2020 and
MeniSeg datasets. Our framework are modality-agnostic and can be extended to
other multimodal medical data. In the future work, we will explore more efficient
feature fusion on low-levels to further improve the segmentation performance.
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ural Science Foundation (Grant No. 20JCYBJC00960) and HKU Seed Fund for
Basic Research (Project No. 202111159073).
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