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Variational quantum algorithms (VQAs) may have the capacity to provide a quantum advan-
tage in the Noisy Intermediate-scale Quantum (NISQ) era. Here, we present a quantum machine
learning (QML) framework, inspired by VQAs, to tackle the problem of finding time-independent
Hamiltonians that generate desired unitary evolutions, i.e. multi-qubit quantum gates. The Hamil-
tonians are designed by tuning local fields and two-body interaction terms only. We find that our
approach achieves high fidelity quantum gates, such as the Toffoli gate, with a significantly lower
computational complexity than is possible classically. This method can also be extended to real-
ize higher-order multi-controlled quantum gates, which could be directly applied to quantum error
correction (QEC) schemes.

I. INTRODUCTION

Quantum computing holds the promise of being able to
solve some difficult computational problems faster than
is possible classically [1, 2]. Recently variational quan-
tum algorithms (VQAs) have emerged as a family of
algorithms that could provide a quantum advantage in
the Noisy Intermediate-Scale Quantum (NISQ) era [3, 4].
VQAs provide a framework to solve a variety of optimi-
sation [5], linear algebra problems [6], and the prospect
of simulating large quantum systems [7–12]. In partic-
ular, quantum machine learning has received significant
attention as a potentially useful near-term application of
VQAs, where the cost function can be efficiently com-
puted by a noisy quantum circuit [13].

Unitary evolution of the form U(t) = e−iHt describes
the transformation of a time-independent Hamiltonian H
on a set of qubits. Since scaling the interaction strengths
of the Hamiltonian leads to the same dynamics with re-
ciprocally scaled times, we consider these cases equiva-
lent. Therefore, we only consider t = 1 for simplicity.
The question of whether time-independent Hamiltonians
comprising physical (such as two-body) terms can im-
plement useful multi-qubit quantum gates, such as the
Fredkin, Toffoli or 3-qubit quantum Fourier transform,
and other useful quantum tasks has been an area of re-
cent research interest [14–18], with various classical ma-
chine learning and other optimization techniques being
deployed. The obvious advantage of the result (the ob-
tained optimized time-independent Hamiltonian) will be
in “time-control”. The time independent Hamiltonian is
simply switched “on” once and then switched “off”, and
it should accomplish a target unitary gate. We call the
collection of qubits evolving according to this Hamilto-
nian a multi-qubit gate automata. Such automata should
be preferable to a sequence of several gates as in a cir-
cuit model implementation of the target unitary, as that
will naturally involve several on and off processes (one

∗ arunavaangshuman@iitkgp.ac.in

for each gate).
In most current circuit model approaches for quantum

computing, two-qubit gates are implemented using two-
qubit interactions at the hardware level and then a multi-
qubit unitary is synthesized by using a sequence of these
and local gates – here we intend to explore beyond this
common strategy and seek whether a collection of var-
ious two-qubit interactions, kept static and “on” for a
certain amount of time, can be directly used to imple-
ment a multi-qubit unitary. This problem is not triv-
ial because when one looks at typical useful multi-qubit
gates, if they are to be performed naively with a single
term time-independent Hamiltonian, then this has to be a
multi-qubit interaction, which is not so physical and will
be typically difficult to realize on most experimental plat-
forms. A subset, Γ, of interactions should thus be consid-
ered, depending on hardware. In most cases, this subset
contains only single-term and two-body interactions that
could be implemented relatively straightforwardly exper-
imentally. The question of whether a general unitary
evolution is possible from such a restricted subset of in-
teractions while avoiding time-dependence (the extreme
version of which is a sequence of gates) is highly rele-
vant for quantum simulation of Hamiltonians on quan-
tum computers [19] and large-scale universal quantum
computation itself [20, 21], where implementation relies
on the capability of performing entangling gates involv-
ing multiple qubits with high fidelity. Strategies to di-
rectly implement higher-order quantum gates, such as
Toffoli gates, have been considered from a quantum con-
trol perspective [22–24], and using larger Hilbert spaces
with ancillary information carriers [25]. The identifica-
tion of experimentally-realizable and low-noise alterna-
tive strategies for gate synthesis and simulation could be
significant for near-term quantum computing architec-
tures because effective multi-qubit gates can implement
general quantum circuits more efficiently, i.e. in a lower
gate depth [24, 26] (a lower depth is obviously very use-
ful for variational circuits). It is worth highlighting that
the framework advanced in this paper differs significantly
from techniques such as quantum control for generat-
ing multi-qubit gates [24, 27]and quantum gate compi-
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lation [28–30]. Quantum control theory allows for time-
dependent Hamiltonians, while quantum gate compila-
tion foregoes dealing directly with Hamiltonians, looking
instead for sequences of gates whose overall action results
in a target operation.

There is, however, a severe bottleneck in the opti-
mization of physical couplings to obtain multi-qubit gate
automata that give useful multi-qubit gates. For ev-
ery choice of variational parameters, the evolution of
the multi-qubit system according to a time-independent
Hamiltonian has to be computed – a 2n × 2n matrix
problem for a classical optimizer. Thus techniques used
so far [14–18] for designing multi-qubit gate automata
cannot be scaled. In this paper, we demonstrate that
VQAs can be used to efficiently compute the interaction
strengths of the collection of physical (local and two-
body) terms constituting the time-independent Hamil-
tonian for a Toffoli gate, and unitary operations corre-
sponding to higher-order many-body qubit interactions
with high fidelity. Not only is there a computational
complexity reduction by optimizing the couplings of the
automata through a quantum circuit, for the examples we
study, we also find that it actually leads to better, more
optimal, results than has been found previously though
classical optimizations. Trotterization, even to low order,
still has sufficiently low errors that it is ideal for imple-
mentation in a gate-based VQA circuit. The basic idea
is that we optimize the couplings required in the hard-
ware through a gate-based VQA circuit and then use the
results to design the hardware automata where quibits
are coupled according to the optimal strengths obtained
from the VQA.

II. VARIATIONAL QUANTUM ALGORITHMS

Fault-tolerant quantum computers could still be many
years, or even decades, away [3]. In the near-term, a
key question for quantum computing is whether there are
useful applications for NISQ devices that offer a quantum
advantage. Any practical use case must therefore have
a limited number of qubits, limited qubit connectivity,
and coherent and incoherent errors that limit quantum
circuit depth [31]. Here, VQA plays an important role.
Problems that can be solved by VQAs with cost func-
tions that can be efficiently implemented as low-depth
quantum circuits offer a route for potential quantum ad-
vantage for NISQ devices. VQAs consist of two parts, a
quantum processor, where the given problem is addressed
via state preparation and unitary operations, and a clas-
sical computer with a feedback loop which optimizes the
cost that the quantum computer provides.

In general, the initial task of any VQA problem is to
prepare a quantum state and then measure the output af-
ter applying parameterized unitaries within the quantum
processing unit (QPU). The measured outcome is pro-
cessed through a classical optimization procedure where
the updated parameters are sent back to the quantum

processor in order to minimize the cost. The optimiza-
tion process will continue until the termination condi-
tion is met. In our case, the VQA is used to efficiently
compute the difference between two different dynamical
evolutions. The difference is then minimised in order to
find the qubit couplings that implement more complex
multi-qubit gates with a single time-independent Hamil-
tonian. The minimization consists of a cost function that
is generated by the Hilbert-Schmidt test. The variational
unitary in this problem is named the Hamiltoian Varia-
tional Ansatz (HVA) and its structure is dependent on
the problem Hamiltonian [32, 33]. Fig. 1 shows the VQA
structure we have implemented.

The ansatz of a VQA is important, as is must be able
to efficiently encode the solution to the problem of inter-
est. Thus, the specific structure of the ansatz generally
depends on the task at hand, where the details of the
problem itself are used to tailor the ansatz [34]. In gen-
eral, a variational ansatz can be expressed as the product
of L sequentially applied unitary matrices [35],

U(θ) =

L∏
l=1

Ul(θl), (1)

Ul(θ) =

K∏
k=1

e−iθkHkWk, (2)

where the set of Hk with k ∈ {1, . . . ,K} is the generator
of the variational unitary matrices for each layer; the
set of θk parameters are optimized classically to find the
solution; and the set of Wk are unparameterized gates in
each layer.

In general, there can be several ways to de-
sign a suitable problem-inspired ansatz, for exam-
ple, quantum approximate optimization algorithm
(QAOA) [36], hardware efficient ansatz [37], quantum-
optimal-control-inspired ansatz (QOCA) [38], symme-
try motivated ansatze [39] and Hamiltonian variational
ansatz (HVA) [32, 33]. In this paper, we use an HVA-
inspired approach.

In our case, the Hamiltonian terms are at most two-

body interactions σαi ⊗ σβj , which are Pauli operators
applied to spins i and j. In general, the Hamiltonian
terms are therefore non-commuting. The Hamiltonian H
is Trotterized with finite Trotter-Suzuki depth m, each
Hamiltonian term is then scaled by a vector of tunable
parameters θ, while t is set to 1. The unitary evolution
of this circuit would thus be

UHVA(θ) =

m∏
l=1

Q∏
j=1

e−iθjHj ≈ e−iHt, (3)

where Q is the number of terms in the Hamiltonian H.

Here, we use this efficient state preparation to find the
approximate evolution of H and compare its evolution
with that of the target quantum gate.
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FIG. 1. The VQA structure we have implemented is depicted as a control flow that alternately uses the QPU then CPU until
a termination condition is met – the cost C(θ) is sufficiently small. The Hilbert-Schmidt test circuit used for computing the
fidelity is given in Fig. 3.

III. GATE DESIGN PROBLEM

The design of a time-independent Hamiltonian, H(θ),
that generates a target unitary operator, Utarget, is gen-
erally an optimization problem to minimize the distance
between e−iH(θ) and Utarget. Previously, various nu-
merical methods such as differential evolution and su-
pervised learning have been used [15, 17]. The princi-
pal branch of the logarithm for the target unitary gate
gives a Hamiltonian that generates the target evolution
Hprincipal = −iV log(Λ)V †, with the spectral decomposi-
tion Utarget = V ΛV †. Thus, Hprincipal can be uniquely
determined from Utarget and is denoted as the principal
generator to distinguish it from other possible generators.
In general, it contains physical interactions that can be
easily realized in given experimental setups, as well as
unphysical interactions that are hard to implement, such
as non-local three- or four-qubit interactions. The main
goal of the approach proposed in Ref. [17] is to construct
a new Hamiltonian with only physical interactions such
that e−iH(θ)t ≈ Utarget. In particular, we consider only
local and two-qubit coupling terms. Here, we do not con-
sider ancillary qubits. Thus three conditions are imposed
on parameter Hamiltonians:

1. H(θ) contains only physical interactions;

2. the Hamiltonian commutator is vanishing,
[H(θ), Hprincipal] = 0;

3. the Hamiltonian difference gives terms that do not
contribute to the unitary evolution, Eig(H(θ) −
Hprincipal) = {2πni} for (ni ∈ Z).

The above three conditions simplify the problem of
gate synthesis. Physical parameter sets for the Fredkin
gate and Toffoli gate have been found [17]. Although
optimal parameters for a fidelity greater than 0.99 was
achieved for the Fredkin gate, for the Toffoli gate the

greatest fidelity was only about 0.98 – potentially due
to the computational complexity of the full supervised
learning approach.

Here, we propose a simple variational circuit approach
to reduce the computational complexity, even for classical
simulation, and find a fidelity greater than 0.99 for the
Toffoli gate. This approach allows quantum gates with
higher numbers of qubits to be realised, and we show
results for a 4-qubit parity check.

IV. TIME-INDEPENDENT HAMILTONIANS
FOR MULTI-QUBIT GATES

The most general Hamiltonian, H(θ) =
∑
j=1Hj(θj),

with at most two-qubit interaction terms can be written

H(h,J) =
∑
i

hαi σ
α
i +

∑
i,j

Jα,βi,j σ
α
i σ

β
j , (4)

where (h,J) = θ becomes the parameter set for the vari-
ational quantum circuit. For our imposition of a physical
gate set, we require α = β, such that the interactions be-
tween spins at their most complex are XYZ Heisenberg
interactions.

The parameter set θ is found using the HVA-inspired
variational hybrid approach. The Trotter-Suzuki method
is used to build the quantum circuit from the individual
Hamiltonian terms. With m Trotter steps, Q terms in
the Hamiltonian, and t = 1, the evolution becomes

U(θ) = e−iH(θ) =

(
Q∏
j=1

e−iHj(θj)/m

)m
+O(Q

2

m2 ). (5)

The quantum circuit is therefore equal to the consecu-
tive implementation of all individual two-qubit Hamil-
tonian terms rescaled by a prefactor 1/m. An Ising
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FIG. 2. Circuit to implement the evolution of the Ising ZZ
interaction, σz

i σ
z
j , between qubits i and j. The XX and YY

interactions can be similarly implemented with a simple basis
transformation at the beginning and end of the circuit.

interaction term between qubits i and j, σzi σ
z
j , is im-

plemented straightforwardly with the circuit shown in
Fig. 2. The quantum circuit corresponds to the evolu-

tion UQC(θ) =
∏Q
j=1 e

−iHj(θj). For large enough m, the

error term of the evolution in Eq. (5) is small and we
have U(θ) ≈ UQC(θ).

In the supervised machine learning approach to this
problem [17], the figure of merit that determines the cost
function involves the fidelity of the parameterized state
evolution, e−iH(θ)|ψ〉, with the target evolution of the

quantum state, F (ψ) = 〈ψ|U†targete−iH(θ)|ψ〉. The cost

function is the average fidelity, F̄ , for all possible states
|ψ〉 – of course, in practice, only a large sample of random
states is chosen. The fidelity is maximised during the
supervised machine learning procedure.

In the variational approach, we use an operator fidelity

measure, F (θ) = Tr
[
U†targetUQC(θ)

]
/2n, for n qubits.

The quantum circuit therefore only finds an approximate
fidelity F̃ (θ). The cost function uses this fidelity

C(θ) = 1− 1

22n

∣∣∣Tr
[
U†targetUQC(θ)

] ∣∣∣2. (6)

The cost in Eq. (6) can be efficiently obtained directly
using the Hilbert-Schmidt (HS) test [28], see Fig. 3. It
requires 2n qubits, where on the first n qubits the evo-
lution UQC(θ) is applied, while on the next n qubits,
the target unitary gate, Utarget, using one of its known
implementations using an array of quantum gates (for
example, for the Toffoli gate, 5 two qubit gates can be
used along with local gates [40]; for other multi-qubit uni-
taries, an implementation in terms of a series of quantum
gates can itself be generated, for example, by variational
circuit optimization [28–30] – we will target unitary op-
erations that have an efficient, i.e., polynomial, circuit
implementation). The two subsystems on which both
unitaries act are first maximally entangled (2n gates).
After both sets of gates are applied to each subsystem
separately, a global Bell state measurement (another 2n
gates) is performed to obtain the overall average fidelity∣∣Tr
[
U†targetUQC(θ)

] ∣∣2/d2. After the calculation of the

cost, a new θ is trialled. For this, the gradient must be
computed, which can be performed efficiently on a classi-
cal computer using the parameter-shift method [41]. For
larger n we will use the local Hilbert-Schmidt norm as
described in Ref.[28].

|0〉x1 H •

UQC(θ)

• H

|0〉x2 H • • H

.

.

|0〉xn H • • H

|0〉y1

U†target

|0〉y2

.

.

|0〉yn

FIG. 3. The Hilbert-Schmidt (HS) test. Two unitaries

UQC(θ) and U†target are acting on n qubit basis states. Mea-
suring all the 2n qubits in |0〉 state will give the output

|Tr
[
U†targetUQC(θ)

]
|2/22n and thus we can efficiently com-

pute the cost in Eq. (6).

A. Quantum Toffoli gate

We first demonstrate the ability to find an optimal
time-independent Hamiltonian with single and two qubit
terms that implements the Toffoli gate. For just m = 6
Trotter steps, the unitary evolution quickly finds a mini-
mum parameter set θmin, such that C(θ) is close to 0, see
Fig. 4. Remarkably, even for a low m Trotter steps, the
operator fidelity gives F (θmin) > 0.99, see Fig. 4. The
interactions found for the Toffoli gate are presented in
Fig. 5(a).

Apart from 3-qubit gate like Toffoli, our approach can
also be applied to realize the evolution of more compli-
cated interactions, such as the parity of multi-qubit sys-
tems.

B. Parity gate

An extension of the variational quantum optimization
algorithm is to see whether a parity check procedure,
to detect possible errors in the surface code, can be im-
plemented directly by a time-independent Hamiltonian.
Assuming three qubits with computational-basis states
zi ∈ {0, 1} with i = 1, 2, 3, the evolution at t = π/4 of
the interaction P = σz1 ⊗ σz2 ⊗ σz3 ⊗ σ

y
4 can be used to
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FIG. 4. (a) shows training data of the cost optimization for
a total Trotter steps m = 6, with gradient descent optimizer,
where the optimizer reaches the minimum after the first few
steps. (b) plots the evolution of the parameters with the
optimization steps. All of the parameters saturate after a few
steps. (c) shows the improvement of fidelity between UToff

and e−iH(θopt), for t = 1, as a function of the number of
Trotter steps where θopt is the set of optimal parameters in
the parameterized Hamiltonian of Eq. (4) for each number of
Trotterization steps.

measure the parity p = z1 ⊕ z2 ⊕ z3,

U(π4 )|z1z2z3〉|0〉 =
1√
2

(|z1z2z3〉|0〉+ iP |z1z2z3〉|0〉) (7)

=
1√
2
|z1z2z3〉 (|0〉 − (−1)p|1〉) , (8)

where U(π4 ) = e−iP
π
4 . The state of the last qubit is ei-

ther |+〉 or |−〉 depending if the parity p is even or odd
respectively. We can then perform an x-basis measure-
ment by applying a Hadamard to the last qubit followed
by a computational basis measurement. The measure-
ment outcome of the final qubit thus corresponds to the

a)

b)

FIG. 5. Interaction diagrams with single and two-qubit inter-
actions for (a) Toffoli gate and (b) Parity gate. All the pa-
rameters are found from variational circuit optimization and
give fidelities of F > 0.99. The Trotter steps used are m = 6
for (a) and m = 5 for (b). The interaction strengths for (a):
Jx

1 = 1.09, Jz
1 = 2.35, Jx

2 = 3.11, Jz
2 = −0.78, Jxx

12 = 0.07,
Jyy

12 = 0.07, Jzz
12 = 0.78, Jxx

13 = 1.089, Jzz
23 = 3.11. Interac-

tion strengths for (b): Jxx
12 = 1.42, Jyy

12 = 1.04, Jzz
12 = 1.30,

Jxx
23 = 1.23, Jyy

23 = 0.73, Jzz
23 = 1.60, Jxx

13 = 1.03, Jyy
13 = 0.29,

Jzz
13 = 2.57, Jzy

24 = 2.37, Jzy
14 = 2.29, Jzy

34 = 2.30.

parity of the first three qubits. Fig. 5(b) shows the single-
qubit and two-qubit interactions required to perform the
three-qubit parity check evolution with a fidelity of more
than 0.99.

V. COMPLEXITY OF THE ALGORITHM

The problem-inspired Ansatz is dependent on the tar-
get unitary evolution. However, we can bound the scal-
ing of the computational complexity by the worst case
for the number of physical interactions. First we con-
sider the UQC(θ) part of the algorithm. For quantum
complexity, we consider the number of two-qubit inter-
action terms, two-qubit gates, and ignore the number
of local gates as they can implemented arbitrarily fast.
The general parameterized Hamiltonian of Eq. (4) can
be represented by nine graphs, one for each of the pos-

sible σαi ⊗ σ
β
j between qubits i and j. The worst case

is thus a complete interaction graph for each. The num-
ber of edges in the complete graph scales as n(n− 1)/2.
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Hence, for the complete set of two-qubit gates, we find
9n(n−1)/2. However, this is only the complexity of a sin-
gle Trotter step. The complexity is O(mn2) for m Trotter
steps. Assuming m is constant as n increases, and it does
not decrease the fidelity significantly, the complexity is
G(n) = O(n2). However, m can scale as poly(n) with the
number of qubits [42]. Similarly the implementation of

U†target is efficient (we can only seek to find our automata
couplings through our VQA method for such types of
unitaries).

The overall complexity of the parameterized quantum
circuit must include the complexity of the cost func-
tion. The cost function of Eq. (6) is computed using the
Hilbert-Schmidt test of Fig. 3, which has a gate complex-
ity that scales as O(n2) for n qubits. Thus, the overall
quantum circuit for our variational quantum circuit also
scales as O(n2). Classically, the complexity of comput-
ing the natural dynamical evolution from an engineered
Hamiltonian is due to the complexity of exponentiation
of a matrix, which scales as O(N3) = O(23n) [43]. There-
fore, even if m scales as poly(n), we still find a significant
(exponential) complexity advantage in using the varia-
tional quantum approach for realizing multi-qubit quan-
tum gates.

VI. DISCUSSION

We have shown that variational quantum optimization
can find the coupling parameters for multi-qubit quan-
tum gates more efficiently than a classical supervised
learning approach. Besides the Toffoli gate, using vari-
ational quantum optimization, we have shown that we
can realize a unitary that results from a multi-qubit in-
teraction solely using two-body time-independent Hamil-
tonian terms, namely the parity gate in Section. IV B,
which could find use in quantum error correction [44, 45].

While our demonstrations have only been in terms of de-
signing Hamiltonians in 3 and 4 qubit systems, the prob-
lem should scale well for designing automata for multi-
qubit gates involving a larger number of qubits. As it is
a variational quantum circuit based method, it is possi-
ble that barren plateaus [46, 47] and local minima may
appear for larger numbers of qubits, but in our specific
examples they did not. For the Hilbert-Schmidt norm
cost function, for a larger number of qubits one can use
the local Hilbert-Schmidt test to avoid plateaus therein
[28]. Additionally, our ansatz is problem inspired, and
we impose certain conditions to our Hamiltonian so that
we are able to reduce the variational parameters we start
with. One could perhaps use inductive techniques – op-
timal values of couplings derived for gates for smaller
numbers of qubits could be used to formulate the initial
ansatz for a larger number of qubits. Our protocol is
an example of an application of VQAs for an useful task
within the field of quantum computation itself. The re-
sults will be useful in creating hardware of permanently
interacting qubits which will enact multi-qubit quantum
gates with time independent Hamiltonians, thereby al-
leviating the complexity of time control. On the other
hand, the results themselves (the multi-qubit gates per-
formed as an automata in the above sense), can be part
of new ansatze for variational circuits (as these new gates
become hardware feasible), which increases their scope in
parameter space and may well alleviate some their prob-
lems and quantum computation in general by reducing
depth.
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