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We analyze the barren plateau phenomenon in the variational optimization of quantum circuits
inspired by matrix product states (qMPS), tree tensor networks (qTTN), and the multiscale en-
tanglement renormalization ansatz (qMERA). We consider as the cost function the expectation
value of a Hamiltonian that is a sum of local terms. For randomly chosen variational parameters
we show that the variance of the cost function gradient decreases exponentially with the distance
of a Hamiltonian term from the canonical centre in the quantum tensor network. Therefore, as a
function of qubit count, for qMPS most gradient variances decrease exponentially and for qTTN as
well as qMERA they decrease polynomially. We also show that the calculation of these gradients is
exponentially more efficient on a classical computer than on a quantum computer.

1 Introduction
Noisy intermediate-scale quantum (NISQ) devices possess just a small number of imperfect qubits [1] but
offer unprecedented computational capabilities. Whilst not powerful enough to run paradigm-shifting quantum
algorithms with guaranteed quantum advantage, such as Shor’s algorithm [2] or Grover search [3], they can
already outperform classical computers [4, 5].
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Figure 1: Summary of the main results. We consider the qMERA with periodic boundary conditions (all gates shown; top
light green gates connect to bottom ones), the qTTN (dark red gates) and the qMPS (dark red gates in shaded area). For
most gates in these circuits the gradient variance with respect to randomly chosen parameters decreases exponentially with
the distance of the cost function’s observable from the canonical centre. As a function of qubit count this distance can grow
linearly for qMPS and it does grow logarithmically for both qTTN and qMERA so that the corresponding gradient variances
decrease exponentially and polynomially, respectively.

Variational quantum algorithms are a promising toolbox to work with NISQ devices and achieve a quantum
advantage [6–8]. The variational approach is characterized by an iterative feedback loop between a quantum and
a classical computer during which a parameterized quantum circuit (PQC) is optimized to solve the problem of
interest. On the quantum device, the PQC is applied to some initial state to realize the variational wavefunction
on which measurements are performed. The measurement results are subsequently processed on the classical
device which, e.g., evaluates the cost function, computes gradients and updates the PQC parameters.
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Since the seminal articles proposing the variational quantum eigensolver (VQE) [9] and quantum approxi-
mate optimization algorithm (QAOA) [10], variational quantum algorithms have been designed and analyzed
for numerous applications including combinatorial optimization [11–13], machine learning [14–16], quantum
chemistry [17–20], finance [21,22], partial differential equations [23,24] and Hamiltonian simulation [25,26].

The variational optimization of a PQC, however, is hard [27]. One of the difficulties that can be encountered
during the optimization is related to the barren plateau phenomenon [28] which manifests itself by a parameter
landscape of the cost function that, in simple terms, is flat everywhere except for narrow gorges surrounding
local minima. These flat landscapes pose a problem for the optimization of a PQC as they imply that one
needs to run the quantum computer and collect samples many times to accurately determine the gradients of
the cost function with respect to the variational parameters. The large sampling cost can rule out any quantum
advantage one is aiming at with variational quantum algorithms. The severity of the barren plateau problem
depends on the cost function [29] and the PQC architecture [28, 30, 31]. A plethora of proposals exist to avoid
barren plateaus in certain cases [29,31–41].

In this article we study the trainability of quantum tensor networks using the approach [31] (see also [42])
which is based on the ZX-calculus [43,44]. Tensor networks have proven to be a powerful variational ansatz for
the simulation of quantum many-body systems on classical computers [45–51]. Quantum tensor networks have
become popular recently since they can be realized on current NISQ devices [52–59] and have advantages over
their classical counterparts [60–63]. We focus on PQC architectures inspired by matrix product states [64–67]
(qMPS), tree tensor networks [60,68–70] (qTTN) and the multiscale entanglement renormalization ansatz [71,72]
(qMERA). An important concept in these tensor networks is the canonical centre which is the first quantum
gate of the circuit. We show that the barren plateau phenomenon is fundamentally connected to the distance
between the observable of interest and the canonical centre. Figure 1 summarizes our results.

Our analysis is inspired by [31] and extends their results. For the qMPS ansatz considered in [31] we study
the barren plateau problem in more detail. In [31] a discriminative qTTN is analyzed and here we explore
the corresponding generative variant [60], which represents the quantum counterpart to standard classical
TTN [60, 68–70]. Additionally we investigate a qMERA ansatz not considered in [31]. It is worth noting
that [31] studies the quantum convolutional neural network (qCNN) ansatz of [73] which can be viewed as the
discriminative variant of the qMERA. In [31] it is shown that the discriminative qTTN and qCNN avoid barren
plateaus, but their results are fundamentally different from the ones presented here: This is because in the
discriminative variants the distance between the observable and the canonical distance is always equal to the
number of qubits, whereas in the generative variants this is not the case in general. We also emphasize that the
purpose of this work is not to relate to generative quantum machine learning but to address the application of
classical tensor network techniques in quantum machine learning.

This article is structured as follows. In Sec. 2 we present the necessary background. Section 3 contains the
results. Technical details including the proofs are provided in appendices.

2 Background
We collect background information on VQE in Sec. 2.1, the barren plateau phenomenon in Sec. 2.2 and the
ZX-calculus in Sec. 2.3

2.1 Variational quantum eigensolver
Originally introduced in [9] the variational quantum eigensolver (VQE) consists of a training loop that iterates
between a quantum and a classical computer and makes use of the variational principle to solve the minimization
problem 〈H〉θ∗ = min

θ
〈H〉θ where

〈H〉θ = 〈ψ(θ)|H |ψ(θ)〉 , (1)

for some Hermitian observable H, e.g. a Hamiltonian. During each training iteration the quantum computer
prepares the variational wavefunction |ψ(θ)〉 = U(θ) |0〉 via a PQC of the form

U(θ) =
M∏
j=1

Uj(θj), (2)

where Uj(θj) = exp(−iθjVj/2)Wj , θj ∈ [−π, π], V 2
j = I and Wj is an unparameterized unitary. The quantum

computer is also used to compute cost function gradients via the parameter-shift rule

∂θj 〈H〉θ ≡ ∂j〈H〉θ = 1
2
(
〈H〉θ+π

2 ej − 〈H〉θ−π2 ej

)
(3)
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where ej is the j-th unit vector [74, 75]. The classical computer subsequently updates the parameters θ and
then feeds them back to the quantum machine for the next training iteration. The parameters are updated e.g.
using the gradient descent procedure:

θ → θ − η∇θ〈H〉θ, (4)

where η is the learning rate and ∇θ〈H〉θ denotes the gradient vector. An alternative gradient-based method
that has become popular in the context of variational quantum algorithms is the Adam optimizer [76]. A
comprehensive review article on VQE is [8].

In this article we focus on k-local Hamiltonians, i.e. sums of observables which act on at most k qubits. One
example of a 2-local Hamiltonian is the transverse-field quantum Ising chain:

HIsing = −J
∑
〈i,j〉

ZiZj − h
∑
i

Xi, (5)

where J and h are Hamiltonian parameters, 〈i, j〉 represents adjacent qubits and X (Z) is the Pauli X (Z)
matrix. Another example is the Heisenberg model:

HHeis = 1
4
∑
〈i,j〉

XiXj + YiYj + ZiZj . (6)

2.2 Barren plateaus
The barren plateau phenomenon in the variational optimization of quantum circuits was first discussed in [28]
and characterized in the following way:

Theorem 1. Let Eq. (1) be a cost function with an associated parameterized ansatz Eq. (2) acting on N qubits.
For some 1 ≤ k ≤M define

U = ULUkUR (7)

for UL =
∏
j<k Uj(θj) and UR =

∏
j>k Uj(θj). Then

• E [∂k〈H〉θ] = 0 if UL and UR form random unitary 1-designs,

• Var [∂k〈H〉θ] ∈ O(c−N ) for c > 1 if either UL, UR or both form random unitary 2-designs

where E [·] denotes the average value and Var [·] the variance over randomly chosen parameters.

In simple terms Theorem 1 tells us that the unitary 2-design condition establishes a cost landscape which is
nearly flat everywhere (barren plateaus) except for exponentially small regions around minima (narrow gorges).
Using Chebyshev’s inequality we see that for randomly chosen parameters the probability of obtaining a gradient
of magnitude |∂k〈H〉θ| > κ vanishes exponentially with qubit count1:

Pr
[∣∣∂k〈H〉θ − E [∂k〈H〉θ]

∣∣ ≥ κ] ≤ Var [∂k〈H〉θ]
κ2 ∈ O

(c−N
κ2

)
. (8)

The barren plateau phenomenon is a problem for the trainability of PQCs since the computation of exponentially
small gradients using standard techniques, such as the parameter-shift rule, requires exponentially many
measurements on a quantum computer. Because the computational cost of performing these calculations on a
classical computer also scales exponentially with qubit count, a classical approach might be more efficient than
a quantum one in which case there is no quantum advantage.

While in [28] it is shown that the onset of the unitary 2-design property is caused by large circuit depth,
in [29] the authors show that also the form of the cost function affects the depth at which barren plateaus
emerge. More specifically they show that PQC optimization with local cost functions is efficient for depths
that scale logarithmically with qubit count and transitions into the barren plateau regime when depths scale
as O(poly(log(N))). PQC training based on global cost functions, however, is shown to always be subject to
barren plateaus, even for shallow O(1) depth circuits.

Focusing on local observables the analysis in [29] suggests that the onset of barren plateaus is related to
the entanglement in the causal cone of the observable2. This is analysed in detail in [36] where the authors

1We use the following notation: f(N) ∈ O(g(N)) if f(N) is asymptotically bounded above by c · g(N) for some c > 0,
f(N) ∈ Ω(g(N)) if f(N) is asymptotically bounded below by c ·g(N) for some c > 0, and f(N) ∈ Θ(g(N)) if f(N) is asymptotically
bounded below by c1 · g(N) and above by c2 · g(N) for some c1, c2 > 0.

2The causal cone of an observable Xi acting on qubit register i is the sub-circuit composed of only the qubits and gates in the
PQC which affect the measurement outcome at site i. If a variational parameter is in the causal cone of an observable then we
refer to them as causally connected.
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show that sufficiently large amounts of entanglement in the quantum circuit are necessary for the emergence
of unitary 2-designs and claim that entanglement-induced barren plateaus [33, 34, 77] and barren plateaus for
local cost functions are equivalent.

Due to its importance for the field of variational quantum algorithms, the barren plateau problem has been
studied in many articles. Some articles have identified PQC architectures that avoid barren plateaus [31, 78]
and others propose ways to mitigate the barren plateau problem, e.g. in [32] the authors propose to initialize
the circuit with shallow identity gates formed by unitaries and their adjoints, in [35] they advertise a layer-wise
learning strategy, in [37, 41] they propose to initialize the PQC using previously trained PQCs, in [38] they
propose to use a previously trained qMPS for the PQC initialization, and in [40] the authors claim that the
barren plateau problem is solved by choosing the initial parameters from a particular Gaussian distribution.

2.3 ZX-calculus for barren plateau analysis
In [31] Chen Zhao and Xiao-Shan Gao pioneer the use of the ZX-calculus [43,44] to analyse the barren plateau
phenomenon. They use the following assumption:

Assumption 1. The parameterized quantum ansatz in Eq. (2) is such that

1. each gate Uj in U is from {RX = exp(−iθjX/2), RZ = exp(−iθjZ/2), H,CNOT} where H is the
Hadamard gate and CNOT the controlled-X gate,

2. each parameter θj is uniformly sampled from [−π, π].

They show:

Theorem 2. Let Eq. (1) be a cost function with associated parameterized ansatz (2) for N qubits and un-
der Assumption 1:

• E [∂j〈H〉θ] = 0,

• Var [∂j〈H〉θ] = |c|2
4N
∑
ak∈{T1,T2,T3},k 6=j V

a1,...,aj−1,T2,aj+1,...,aM
U , where c is a constant, V a1,...,aM

U is a ZX-
diagram and a1, . . . , aM , T1, T2 and T3 are labels defining the ZX-diagram [31].

While Theorem 2 does not immediately tell us whether a specific choice of PQC and cost function leads to
barren plateaus, it provides us with a constructive procedure to compute the variance of gradients by evaluating
ZX-diagrams. This calculation can be further simplified by turning the ZX-diagram into tensor networks whose
contraction directly produces the sought-after variance value. In App. A we explain the ZX-calculus formalism
that is relevant for this article and also give a simple example that illustrates step-by-step how one can use this
formalism to obtain the tensor network for the gradient variance starting from a PQC and using ZX-diagrams.

3 Results
We present the results on qMPS in Sec. 3.1, qTTN in Sec. 3.2 and qMERA in Sec. 3.3. In Sec. 3.4 we compare
the quantum and classical computational cost of calculating gradients.

3.1 Quantum matrix product states
We consider the qMPS ansatz

UqMPS :=
1∏

j=N−1
UqMPS
j (9)

composed of two-qubit blocks of the form

UqMPS
j

= RX

RX

RZ

RZ

RX RZ

(10)

acting on qubits j and j + 1 for j < N − 1 and

UqMPS
j

= RX

RX

RZ

RZ

RX RZ

RX RZ (11)

acting on qubits N − 1 and N , cf. App. B for a full circuit diagram. Here UqMPS
1 is the canonical centre of the

qMPS.
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Theorem 3. Let 〈Xi〉qMPS be the cost function associated with the observable Xi and consider the qMPS ansatz
for N qubits defined in Eq. (9), then:

Var [∂j,1〈XN 〉qMPS] =
{

1
4 ·
( 3

8
)N−1 if j < N,

1
4

(
1 +

( 3
8
)N−1

)
if j = N,

(12)

Var [∂j,1〈Xi〉 qMPS] =


11 ·

( 1
8
)2( 3

8
)i−1 if j < i or j = i = 1,

3 ·
( 1

8
)2
(

1 + 11
8 ·
( 3

8
)i−2

)
if j = i,

3 ·
( 1

8
)2
(

1 +
( 3

8
)i−1

)
if j = i+ 1,

(13)

where ∂j,1〈Xi〉 qMPS refers to the gradient w.r.t. the 1-st parameter in the j-th qubit register.

Proof. See App. B, Theorem 7 and Theorem 8.

Theorem 3 tells us that the gradient variance with respect to parameter (j, 1) for j < i is independent of j
and depends only on i, i.e. the distance between the observable at site i and the canonical centre. We also learn
from Theorem 3 that for j = i, i+ 1 the gradient variance has a constant contribution. Note that for j > i+ 1
we have Var [∂j,k〈Xi〉 qMPS] = 0 since the variational parameter indexed by (j, k) is outside the causal cone of
the observable Xi, see e.g. Fig. 4 in App. B. We show in App. B that Var [∂j,k〈Xi〉 qMPS] ≥ Var [∂1,1〈Xi〉 qMPS]
for all j, k for which Var [∂j,k〈Xi〉 qMPS] 6= 0. In other words the variance w.r.t. the top-left parameter is a lower
bound to all other non-zero variances in the qMPS ansatz.

Note that Theorem 3 implies that the qMPS ansatz avoids the barren plateau problem for a Hamiltonian
that is a sum of local terms acting on all qubits, e.g. the Hamiltonian H =

∑N
i=1 Xi, Ising and Heisenberg

models. Focusing on the Hamiltonian H =
∑N
i=1 Xi, this is because Theorem 3 shows that each term Xi in H

leads to non-vanishing gradient variances for parameters in registers i and i+ 1. Hence, every parameter in the
qMPS will have a contribution to the gradient variance which is non-vanishing. However, this is not the case
for arbitrary Hamiltonians. If we consider a Hamiltonian acting on a single site, for example H = XN , then
Theorem 3 shows that the gradient variances for all parameters in registers i < N vanish exponentially.

Additionally we show:

Theorem 4. Let 〈XiXi+1〉qMPS be the cost function associated with the observable XiXi+1 and consider the
qMPS ansatz of Eq. (9), then:

Var [∂1,1〈XiXi−1〉qMPS] = ci

(3
8

)i
, (14)

where

ci =


1
4 ·
(( 3

8
)2 + 13

16

)
if i = 1,

1
4 ·
(

37
2·82 + 3

16 )
)

if 1 < i < N,

37
3·82 if i = N − 1,

(15)

where ∂1,1〈Xi〉 qMPS refers to the gradient w.r.t. the 1-st parameter in the 1-st qubit register.

Proof. See App. B, Theorem 9.

We generalize the results to k-local observables and propose:

Conjecture 1. If k � N then the k-local operators XI acting on qubits I = {i1, . . . , ik} with i1 < . . . < ik
satisfy Var [∂1,1〈XI〉qMPS] ∈ Ω(c−ik) for c > 1.

The cases k = 1 and k = 2 are already shown in Theorem 3 and Theorem 4 and we discuss k > 2 in App. B.

3.2 Quantum tree tensor networks
We consider a qTTN ansatz for N = 2n qubits of the following form for n = 1:

UqTTN
21

= RX

RX

RZ

RZ

RX RZ

RX RZ

|0〉

|0〉

|0〉

|0〉 (16)
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and for n > 1:

=

RX

RX

RZ

RZ

|0〉⊗2n−1

|0〉⊗2n−1 UqTTN
2n

UqTTN
2n−1

UqTTN
2n−1

|0〉⊗2n−1−1

|0〉⊗2n−1−1

|0〉

|0〉

(17)

Appendix C contains an example of a full circuit diagram. The top recursion level in Eq. (17) is the canonical
centre of the network.

Each qubit in the qTTN ansatz is causally connected to n = logN qubits, which allows us to show:

Theorem 5. Let 〈Xi〉qTTN be the cost function associated with the observable Xi and consider the qTTN ansatz
defined in Eq. (17), then:

1. Var [∂1,1〈X1〉qTTN] ≥ Var [∂1,1〈Xi〉 qTTN] ≥ Var [∂1,1〈XN 〉qTTN] for all i = 1, . . . , N ,

2. Var [∂1,1〈XN 〉qTTN] = 1
4 ·
( 3

8
)n,

3. Var [∂1,1〈X1〉qTTN] ∈ Ω
((

λ2
4
)n) where λ2 ≈ 2.3187.

Proof. See App. C, Theorem 10 and Lemma 2.

In summary Theorem 5 tells us that Var [∂1,1〈Xi〉 ] ∈ Θ(c− logN ) for all i and for some c > 1. We show
in App. C that Var [∂j,k〈XN 〉qTTN] ≥ Var [∂1,1〈XN 〉qTTN] for all pairs of indices (j, k) provided the former
variance is not 0. The variance is 0 in the qTTN ansatz when the variational paramater indexed by (j, k) is
outside the causal cone of the observable. In contrast to the qMPS ansatz, for qTTN the variance decreases
polynomially and independently of the site i being considered since the distance between the qubit that the
observable acts on and the canonical centre is always logN . We conclude that the qTTN ansatz avoids the
barren plateau problem.

We extend the results to k-local observables for k � N . In this case the observable is causally connected
to O(k logN) qubits. We propose:

Conjecture 2. If k � N then the k-local operators XI acting on qubits I = {i1, . . . , ik} satisfy Var [∂1,1〈XI〉qTTN] ∈
Ω(c−k logN ).

The case k = 1 is covered by Theorem 5 and we discuss the general case in App. C.

3.3 Quantum multiscale entanglement renormalization ansatz
We define the qMERA ansatz for N = 2n qubits as a product of n layers each of which is composed of a
disentangling (Dis) and a coarse-graining (CG) layer:

U
|0〉

|0〉

U

U
|0〉

U

U

|0〉
U

|0〉
U

U

|0〉

|0〉

U

U

U

U

|0〉
U

|0〉
U

|0〉
U

|0〉
U

U
|0〉

|0〉

U

U

|0〉

|0〉

U

U

U

U

U

U

U

U

U

U

|0〉

CG CG CGDis Dis CG Dis (18)
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where the two qubit gates are given by

U
= RX

RX

RZ

RZ (19)

and in the last layer, prior to the measurements, there is an additional RXRZ operation on each qubit register.
The canonical centre of the qMERA is in the first CG layer. Each qubit is connected to at most 2 logN qubits
via the CG and Dis layers. This quantum tensor network is motivated by the MERA in [72].

Theorem 6. Let 〈Xi〉qMERA be the cost function associated with the observable Xi and consider the qMERA
ansatz defined in Eq. (18), then:

1. Var [∂1,1〈Xi〉 qMERA] ≥ Var [∂1,1〈XN 〉qMERA],

2. Var [∂1,1〈XN 〉qMERA] ≥ 1
4 ·
( 3

8
)2n.

Proof. See App. D.

Theorem 6 tells us that the qMERA avoids barren plateaus for 1-local observables. In contrast to qMPS
and qTTN, here the lower bound is not tight. In App. D we present a numerical method to calculate the exact
variances. Numerically we find that the upper bound scales as O(N−1.2) and the lower bound as Ω(N−2.7).

We extend these results to k-local observables. In this case the observable is causally connected toO(2k logN)
qubits.

Conjecture 3. If k � N then the k-local operators XI acting on qubits I = {i1, . . . , ik} satisfy Var [∂1,1〈XI〉qMERA] ∈
Ω(c−2k logN ).

3.4 Quantum versus classical computational cost of computing gradients
On a quantum computer we assume that gradients are computed via sampling which has an error scaling as
O(1/

√
M) in terms of the sample count M [7]. Therefore, to resolve gradients decreasing exponentially with

the distance from the canonical centre, M needs to scale exponentially with that distance.
On a classical computer the computational cost of basic arithmetic operations (addition, subtraction,

multiplication and division) scales polynomially with log(1/ε) for error ε [79]. In other words, in classical
computing it is efficient to exponentially decrease the error of basic arithmetic operations. For the quantum
tensor networks and local observables considered here, gradients can be evaluated on a classical computer via
tensor network contraction techniques (see [48] for MPS, [68] for TTN and [72] for MERA). Their computational
cost, i.e. the total number of arithmetic operations, scales polynomially with the distance of the observable from
the canonical centre and, therefore, the total classical computational cost scales polynomially with that distance.

4 Discussion
In the context of randomly initialized quantum tensor networks we have shown that qMPS suffer from expo-
nentially vanishing gradients whilst qTTN and qMERA avoid this barren plateau problem. Therefore qTTN
and qMERA are recommended over qMPS.

Interestingly any MPS of bond dimension χ can be equivalently represented by a TTN of bond dimension
χ2 [46, 48–51]. Figure 2 illustrates a constructive procedure for transforming a MPS into a TTN (a) and for
transforming a qMPS into a qTTN (b) for N = 8. The same procedure can be used for larger values of N
and, for the qMPS considered in this article, leads to a qTTN composed of four-qubit quantum gates. Since
the qTTN circuit depth is logarithmic in the number of qubits the resulting qTTN avoids the barren plateau
problem [29].

From the perspective of the barren plateau phenomenon, therefore, generalized versions of qTTN and
qMERA with larger unitary gates are recommended over qMPS because they can contain qMPS and their depth
scales logarithmically with qubit count. We conjecture, however, that the classical computation of gradients for
these quantum tensor networks can still be more efficient than their quantum computation, cf. Sec. 3.4. Our
results show that exhausting the possibilities of classical optimization in the context of variational quantum
algorithms can have significant advantages, similar to what was also found in other contexts of quantum
computation, e.g. Hamiltonian simulation [80,81].
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Figure 2: (a) We transform a MPS into a TTN by iterating two steps: 1. We multiply pairs of adjacent tensors, in (1) →
(2), (3) → (4), (5) → (6). 2. We perform tensor factorizations, e.g. based on the polar decomposition, in (2) → (3), (4) →
(5). (b) We transform a qMPS into a qTTN in several steps. (1) → (2): Tensor factorizations transform the quantum circuit
into a tensor network. (2) → (3): We multiply adjacent tensors to obtain the MPS. (3) → (4): The MPS is turned into a
TTN using the procedure in (a). (4) → (5): We construct the qTTN from the TTN.
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A ZX-calculus
For the sake of completeness, here we summarise the techniques of [31] that are relevant for our work.

Let U(θ) be a PQC satisfying the constraints of Assumption 1 with θ ∈ [−π, π]M . Then U(θ) = c ·GU (θ)
where GU (θ) is a graph-like ZX-diagram3 representing the circuit U(θ) and c is the constant obtained in the
process of turning U(θ) into GU (θ).

For example the graph-like ZX-diagram for the 3-qubit qMPS in Eq. (9) is
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where the intermediate step ĜU (θ) corresponds to the usual ZX-diagram with the parameters of the Z and X
spiders given implicitly and the blue dashed lines in the last step are Hadamard edges.

Thus for a general PQC and GU (θ) the quantity 〈H〉θ := 〈0|U†(θ)HU(θ) |0〉 is given by the ZX-diagram
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(20)

where the prefactor 1
2N comes from the identity

√
2 |0〉 = .

If we initialise the parameters in the quantum circuit uniformly at random [−π, π]M ← θ, then the variance
of the gradient with respect to parameter j is

Var [∂j〈H〉θ] = 1
(2π)M

∫
θ1

· · ·
∫
θM

∣∣∂j〈H〉∣∣2dθ1 . . . dθM (21)

where the integrand is given by
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(22)

It is shown in [31] that the variance integral becomes

Var [∂j〈H〉θ] = |c|
2

4n
∑

ak∈{T1,T2,T3},k 6=j

V
a1,...,aj−1,T2,aj+1,...,aM
U (23)

3A graph-like ZX-diagram is composed entirely of so-called Z spiders connected via non-parallel Hadamard edges, without
self-loops, in which every input or output is connected to a Z spider and in which every Z spider is connected to at most one input
or output (see [31] for a nice introduction to the ZX-calculus).
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where

π πT1 = T2 = T3 =

(24)

and for ai ∈ {T1, T2, T3}:
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Analytically computing the sum of 3M−1 terms in Eq. (23) is inefficient and does not clarify whether the
parameterised circuit U(θ) suffers from barren plateaus. Thus the authors in [31] devise a way to simplify the
expression (23) directly from GU (θ). Given a graph-like PQC

GU (θ) =

θ1

θ3

θ2

θ6

θ5

θ4

θj θM

θM−2

θM−1

· · ·

· · · · · ·

···

···

(26)

it is shown in [31] that

Var [∂j〈H〉θ] = |c|
2

4n
∑

V a1,...,ak,b1,...,bl,...,T2,...,c1,...,cM
U (27)

=

2

2

2
2

P2· · ·

· ·
·

· · ·

··
·

· · ·

· · ·

···

···

Ĩa1,...,aj H̃c1,...,cj

(28)

where the parameters θk 6=j in the graph-like PQC in (26) are replaced by the copy tensor

.

.

.
.
.
.in out

=
2∑
i=0
|i〉⊗in 〈i|⊗out

, (29)

the parameter θj is replaced by the projection onto the second dimension

.

.

.
.
.
.in outP2

=
2∑
i=0
|i〉⊗in 〈1|⊗out (30)
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and each Hadamard edge is replaced by the 3× 3 matrix

= 1
4

1 1 1
1 1 −1
1 −1 1

 =: M. (31)

The tensors Ĩa1,...,aj and H̃c1,...,cM are related to the initial state and the observable H, respectively. In this
article the initial state is |0〉⊗N and so Ĩ is

N

1
4

1
4

1
4

.

.

.

2

2

2

(32)

If H = σ1 ⊗ · · · ⊗ σN where σi = ki,0I + ki,1X + ki,2Y + ki,3Z is a sum of Pauli terms acting on qubit i, it is
proven in [31] that H̃ = u1 ⊗ · · · ⊗ uN , where

ui = 2k2
i,0v13 + 2(k2

i,1 + k2
i,3)v2 + 2k2

i,2v−13 (33)

and

v13 =

1
0
1

 , v2 =

0
1
0

 , v−13 =

 1
0
−1

 . (34)

Continuing the example for the 3-qubit qMPS from the beginning of this Appendix, the variance of the
gradient of the first (top left) parameter for the observable H = X3 can be found by evaluating

RX RZ

RX RZ

RX RZ

RX RZ

RX RZ

RX RZ

RX RZ

U(θ) = ĜU (θ) =

√
2

√
2

GU (θ) =

√
2

√
2

...

... ...

......

... ...

... ...

......

.........

...

... ...

......

... ...

... ...

......

.........

P2 u11
4

1
4

1
4

2

22

2 2

2

2

2
4

4

2

Var[∂1,1〈XN 〉MPS ] =

u2

u3

2

2

P2 v131
4

1
4

1
4

2

22

2 2

2

2

2
4

4

2

Var[∂1,1〈XN 〉MPS ] =

v13

v2

2

2 2

2

2

(35)
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B Quantum matrix product states
The qMPS ansatz of Eq. (9) for N qubits has the form

RX|0〉 RZ

RX|0〉 RZ

RX RZ

RX RZ

RX RZ

RX

|0〉

|0〉

|0〉

RX RZRX RZ RX RZ

RXRX RZ RZ

RZ

· · ·

···

RX RZ RX RZ

RX RZ

Figure 3: The qMPS circuit considered in this article.

We index parameters using the index pair (j, k) which refers to the k-th parameter in qubit register j = 1, . . . , N .
Theorem 2 and App. A imply that

P2

···

···

u1

uN

1
4

1
4

1
4

1
4

1
4

2

2 2

2 2

2

2

2

22

2 2

2

2

2
4

4

4

4

2

Var[∂1,1〈H〉MPS ] =

2

u2

u3

uN−1

2

2

2

2

(36)

where the gradient is calculated for the first parameter on the first qubit register and the vectors ui are related
to the observables via Eq. (33). To consider general parameters (j, k) we simply move the projection P2 to the
copy tensor at position (j, k). Using the identities

2Mv13 = v13, 2Mv2 = 1
2(v2 + v−13), 2Mv−13 = v2, (37)

and
2

2

4

v13

v2

= 1
2

{
v2 v

−
13

v2

+
,

2

2

4

v13

v
−
13

=

{
v2

v13

,

2

2

4

v13

v13

=

{
v13

v13

(38)

for M as in Eq. (31) and v13,v2,v−13 as in Eq. (34) we show that the contributions of Xi, Yi, Zi to the variance
are the same up to a constant factor:

Lemma 1. Let σi = I⊗i−1 ⊗ σ ⊗ I⊗n−i where σ ∈ {X,Y, Z} is a Pauli matrix. Then

Var [∂1,1〈Xi〉] = Var [∂1,1〈Zi〉] = cVar [∂1,1〈Yi〉] (39)

for some constant c.

Proof. For the first equality, note that by Eq. (33) both observables Xi and Zi yield ui = 2v2 and ui′ 6=i = 2v13
so that the contraction in Eq. (36) is the same in both cases. For the second equality, observable Yi yields
ui = 2v−13 and ui′ 6=i = 2v13 and Eqs. (37), (38) imply

2

2

4

v13

{ c13v13 c2v2+ c
−
13v
−
13

+ }
=

{
c13v13

v13
{

c
−
13v2

v13
1
2

{
c2v2 c2v

−
13

v2

+
+ +

(i− 1)-th register

i-th register after contraction
of registers i′ > i (40)

where the vector c13v13 + c2v2 + c−13v−13 for non-negative constants c13, c
−
13, c2 in the i-th register comes from

contracting all registers i′ > i in the tensor network in (36). In particular, note that the right-hand side above
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no longer carries a v−13 term on the (i − 1)-th register. Additionally the two terms on the right side leading
with a v13 on the top register do not contribute to the variance as they will eventually be discarded by the
projection. Hence the tensor network is fully determined by the third term on the right-hand side and therefore
equivalent to the one corresponding to the observables Xi and Zi, up to the constant factor c2 accrued from
contracting the registers i′ > i4.

This Lemma implies that it suffices to consider the 1-local observable Xi to probe the behaviour of the
variance for general 1-local operators. Also, this Lemma trivially generalises to the qTTN and qMERA circuits
and, therefore, henceforth we focus solely on observables Xi.

Theorem 7. Let 〈Xi〉qMPS be the cost function associated with the observable Xi and consider the qMPS ansatz
for N qubits defined in Eq. (9), then:

Var [∂1,1〈Xi〉 qMPS] =


1
4 ·
( 3

8
)N−1 if i = N,

11 ·
( 1

8
)2 ·

( 3
8
)i−1 if 1 < i < N,

11
82 if i = 1,

(41)

where ∂1,1〈Xi〉 qMPS refers to the gradient w.r.t. the 1-st parameter in the 1-st qubit register.

Proof. Var [∂1,1〈Xi〉 ] can be found for the three separate cases by contracting the tensor network in Eq. (36)
with ui = v2 and ui′ 6=i = v13. Given Eqs. (37), (38) this is a straightforward calculation from which we also
derive the useful identity

2

2

4

v13

{ c13v13 c2v2+ c
−
13v
−
13

+ }
=

{
v13

{
v2

+
1
4

2 2
c13 +

c
−
13
4

3c2
8

(42)

which repeats on every register in Eq. (36), for non-negative constants c13, c
−
13, c2.

Computing the gradient variance for a general parameter indexed by (j, k) can be done analogously by
moving the projection P2 in Eq. (36) to the copy tensor at position (j, k). The calculation can be simplified by,
first, identifying the cases in which the triple index (i, j, k) gives Var [∂j,k〈Xi〉 qMPS] = 0. Figure 4 illustrates
the causal cone corresponding to observable Xi in a qMPS circuit. We observe that in the qMPS the triple
index (i, j, k) for which Var [∂j,k〈Xi〉 qMPS] = 0 satisfies

Var [∂j,k〈Xi〉 qMPS] = 0 if


j > i+ 1 ∀k,
j = i+ 1 and k > 2,
j < i and k > 4 (k > 2 for j = 1).

(43)

RX|0〉 RZ

RX|0〉 RZ

RX RZ

RX RZ

RX RZ

RX

|0〉

|0〉

|0〉

RX RZRX RZ RX RZ

RXRX RZ RZ

RZ

· · ·

···

RX RZ

|0〉

|0〉

RX RZRX RZ RX RZ

RXRX RZ RZ

· · ·

···

RX RZ

RX RZ

Figure 4: Causal cone for a 1-local observable.

The definition for the causal cone of a PQC can be extended analogously to apply to the variance tensor
networks of the form of Eq. (27) —for example Eq. (36).

4In fact the registers i′ > i which have a v13 at the end and are not directly (nearest-neighbour) connected to a v2 or v−13
contract to the identity.
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Theorem 8. Let 〈Xi〉qMPS be the cost function associated with the observable Xi and consider the qMPS ansatz
defined in Eq. (9), then:

Var [∂j,1〈XN 〉qMPS] =
{

1
4 ·
( 3

8
)N−1 if j < N,

1
4

(
1 +

( 3
8
)N−1

)
if j = N,

(44)

Var [∂j,1〈Xi〉 qMPS] =


11 ·

( 1
8
)2( 3

8
)i−1 if j < i,

3 ·
( 1

8
)2
(

1 + 11
8 ·
( 3

8
)i−2

)
if j = i,

3 ·
( 1

8
)2
(

1 +
( 3

8
)i−1

)
if j = i+ 1,

(45)

where ∂j,1〈Xi〉 qMPS refers to the gradient w.r.t. the 1-st parameter in the j-th qubit register.

Proof. This is a straightforward contraction of the tensor network in Eq. (36) but with the projection P2
replacing the copy tensor indexed by (j, k) and using Eqs. (37), (38), (42).

Remark 1. It is clear from this Theorem that Var [∂j,1〈Xi〉 qMPS] ≥ Var [∂1,1〈Xi〉 qMPS] for all i = 1, . . . , N
and all j = 1, . . . , i + 1 but, in fact, this result also generalises to all (j, k) for which Var [∂j,k〈Xi〉 qMPS] 6= 0.
Indeed, each step in the contraction of the tensor network in Eq. (36) increases the coefficients of the vectors
v13,v2 and v−13 monotonically and, therefore, the earlier the projection P2 is placed, the larger these coefficients
become after the contributions of v13 and v−13 are removed by P2. This argument applies analogously to qTTN
and qMERA.

Now we consider k-local operators of the form XI := Xi1 ⊗ · · · ⊗Xik for I = {i1, . . . , ik} (w.l.o.g. i1 < i2 <
. . . < ik) and use techniques and results from this Appendix to justify Conjecture 1. The proof of Theorem 7
and the causal cone structure in Fig. 4 suggest that Var [∂1,1〈XI〉qMPS] vanishes exponentially with ik. Our
intuition is that barren plateaus appear when the causal cone of an observable includes a large number of qubits
(≈ N) and we know that the causal cone relating to XI contains at most ik + 1 qubits for the qMPS ansatz in
Fig. 3.

Theorem 9. Let 〈XiXi+1〉qMPS be the cost function associated with the observable XiXi+1 and consider the
qMPS ansatz of Eq. (9), then:

Var [∂1,1〈XiXi−1〉qMPS] = ci

(3
8

)i
, (46)

where

ci =


1
4 ·
(( 3

8
)2 + 13

16

)
if i = 1,

1
4 ·
(

37
2·82 + 3

16 )
)

if 1 < i < N,

37
3·82 if i = N − 1,

(47)

where ∂1,1〈Xi〉 qMPS refers to the gradient w.r.t. the 1-st parameter in the 1-st qubit register.

Proof. Var [∂1,1〈XiXi+1〉qMPS] can be found for the three separate cases by contracting the tensor network in
Eq. (36) with ui = ui+1 = v2 and ui′ 6=i,i+1 = v13 using Eqs. (37), (38), (42) in addition to:

2

2

4

v2

v2

= 1
4

 v2 v
−
13

+

v2 v
−
13

+

,

2

2

4

v
−
13

v2

= 1
2

 v2 v
−
13

v2

+

,

2

2

4

v
−
13

v
−
13

=

 v2

v2

(48)

With the techniques from this Appendix, we are ready to discuss the following proposition:

Conjecture 4. Provided k � N the k-local operators of the form XI acting on qubits I = {i1, . . . , ik} with
i1 < . . . < ik satisfy Var [∂1,1〈XI〉qMPS] ∈ Ω(c−ik) for some c > 1.

The cases k = 1, 2 are covered in Theorem 3 and Theorem 4. For k > 2 we argue as follows: Given a k-local
operator acting on qubits I = {i1, . . . , ik} with i1 < . . . < ik, then Var [∂1,1〈XI〉qMPS] corresponds to a tensor
network as in Eq. (36) but where all registers below the (ik + 1)-th qubit do not contribute to the variance.
Hence when contracting the network we accrue contributions from at most (ik + 1) registers.
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C Quantum tree tensor networks
For N = 2n qubits the qTTN ansatz of Eq. (17) is

RX|0〉 RZ RX RZ RX RZ RX RZ

RX RZ RX RZ

RX|0〉 RZ RX RZ

RX RZ|0〉

|0〉

RX RZ RX RZ

RX RZ RX RZ|0〉

RX RZ RX RZ

RX RZ RX RZ|0〉

RX RZ|0〉 RX RZ RX RZ

RX RZ RX RZ|0〉

· · ·

· · ·

· · ·

· · ·

···
···

···

Figure 5: qTTN circuit considered in this article.

Theorem 2 and Appendix A imply that

P2
1
4

1
4

2 2

2

2

22 2
Var[∂1,1〈H〉T TN ] =

1
4

2 2

2

1
4

2 2

2

2
4

2

4

2

1
4

2 2

2

2
4

2

· · ·

· · ·

···
···

1
4

2 2

2

2
4

2 2

1
4

2 2

2

4

2

· · ·

· · ·

···

2

2

2

2

4

2

1
4

2 2

2

4

u1

u2

uN−1

uN

···

(49)

In particular note that the causal cone of any observable in the circuit of Fig. 5 —equivalently, any vector ui
in Eq. (49)— contains exactly 1 + log(N) = 1 + n registers. We deduce:

Theorem 10. Let 〈Xi〉qTTN be the cost function associated with the observable Xi and consider the qTTN
ansatz defined in Eq. (17), then:

1. Var [∂1,1〈XN 〉qTTN] = 1
4 ·
( 3

8
)n,

2. Var [∂1,1〈X1〉qTTN] ∈ Ω
((

λ2
4
)n) where λ2 ≈ 2.3187.

Proof. We consider Var [∂1,1〈XN 〉qTTN] first: The parameters not causally connected to XN in Eq. (49) contract
to the identity, reducing the variance to:

P2

···

···

v13

v2

1
4

1
4

1
4

1
4

1
4

2

2 2

2 2

2

2

2

2

22

2 2

2

2

2
4

4

4

4

2

Var[∂1,1〈XN 〉TTN ] =

2

v13

v13

v13

(50)

where there are a total of 1 +n registers. The contraction here is identical to the one in the proof of Theorem 7
but with an extra register, which gives Var [∂1,1〈XN 〉qTTN] = 1

4 ·
( 3

8
)n. For the second statement, contracting
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all the registers not causally connected to X1 yields

P2 v21
4

1
4

2 2

2

2

4

2

Var[∂1,1〈X1〉TTN ] =
v13

22

4
1
4

2 2

2

22

 


v13
×(n− 1)

P2
1
4

1
4

2 2

2

2

4

2

=

v13

22

4
1
4

2 2

2

 


v13

×(n− 1)

3
4 v2 + 1

4 v
−
13

(51)

which we simplify by noting that
22

42 2

2
v13

v2

= 1
4(3v2 + v−13),

22

42 2

2
v13

v
−
13

= 2(v2 + v−13). (52)

If we denote the resulting vector after the k-th application of the term within the square brackets in Eq. (51)
by vk = 1

4 (αkv2 + βkv−13) with v0 = 1
4 (3v2 + v−13), then by using the identities in Eq. (52) we find that any

subsequent term is given by vk+1 = 1
4 (αk+1v2 + βk+1v−13) for

αk+1 = 1
4(3αk + 8βk) and βk+1 = 1

4(αk + 8βk). (53)

Let uk := 1
4 [αk, βk]T be the coefficient vector associated with vk, then the transformation vk → vk+1 is

determined by the linear map:

M : uk 7→ uk+1, M = 1
4

[
3 8
1 8

]
. (54)

M has eigenvalues λ1 ≈ 0.4313 and λ2 ≈ 2.3187 and respective eigenvectors w1,w2 so that the spectral theorem
implies that after the application of the (n− 1) terms in the square brackets we obtain

un−1 =
[
αn−1
βn−1

]
= Mn−1u0 = [w1,w2]

[
λn−1

1 0
0 λn−1

2

]
[w1,w2]−1u0. (55)

Contracting the rest of the tensor network then gives

P2
1

4n+1

2 2

2

2

4

2

Var[∂1,1〈X1〉TTN ] =
v13

αn−1v2 + βn−1v
−
13

P2
1

4n+1

2 2

2

=

v2

v2 + v
−
13

v13

v2

+
αn−1

2

{
+βn−1

{
(56)

= 1
4n+1 (αn−1 + 8βn−1). (57)

We approximate the above by noticing that for n large enough, λn−1
2 � λn−1

1 ≈ 0 and so αn, βn ∈ O(λn−1
2 ) so

that

Var [∂1,1〈X1〉qTTN] = 1
4n+1 (αn−1 + 8βn−1) ∈ Ω

((λ2

4
)n)

. (58)

In general we obtain the gradient variance corresponding to any observable of the form Xi analytically by
contracting the tensor network in Eq. (49) using the identities in Eqs. (37), (38), (42) as was demonstrated in
the proof of Theorem 10. When performing this contraction, we encounter two types of operations:

2

2

4

v13

{ c13v13 c2v2+ c
−
13v
−
13

+ }
=

{
v13

{
v2

+
1
4

2 2
c13 +

c
−
13
4

3c2
8

(59)
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which occurs when the contribution to the variance originating from the observable travels ‘upwards’ in the
tensor network in Eq. (49) and

2

4
1
4

2 2

2

v13

=

{
v13

{
v2

+
c13 c2

8 + c
−
13

{
v
−
13

+
c2
8

{ c13v13 c2v2+ c
−
13v
−
13

+ }

(60)

which occurs when the contributions travels ‘downwards’ in the network in (49). We refer to these as ‘up’
and ‘down’ operations, respectively. The constants c13, c2, c

−
13 ≥ 0. Indeed, for arbitrary i the tensor network

contraction corresponding to Var [∂1,1〈Xi〉 qTTN] contains a mixture of the ‘up’ operations (59) and the ‘down’
operations (60). In the limit where all operations are ‘up’ (‘down’) we obtain Var [∂1,1〈XN 〉qTTN] as in Eq. (50)
(Var [∂1,1〈X1〉qTTN] as in Eq. (51)). We emphasize that Var [∂1,1〈Xi〉 qTTN] ∈ Θ(c− logN ) for arbitrary i, since
the observable Xi is causally connected to 1 + logN qubits and as such, when contracting the resulting tensor
network in Eq. (49), it can only pick up contributions from that many registers.

We show this explicitly in the following Lemma where we prove that Var [∂1,1〈XN 〉qTTN] is a lower-bound to
Var [∂1,1〈Xi〉 qTTN] for general i. Hence it is not necessary to compute Var [∂1,1〈Xi〉 qTTN] for all i to conclude
that the qTTN ansatz does not have exponentially vanishing gradients. Together with Theorem 10 this implies
that our qTTN ansatz completely avoids barren plateaus as the gradients only vanish polynomially in N , as
claimed in Theorem 5 in the main text.

Lemma 2. Let 〈Xi〉qTTN be the cost function associated with the observable Xi and consider the qTTN ansatz
defined in Eq. (17), then:

Var [∂1,1〈XN 〉qTTN] ≤ Var [∂1,1〈Xi〉qTTN] ≤ Var [∂1,1〈X1〉qTTN] (61)

for all i = 1, . . . , N .

Proof. After identifying the 1+logN qubits causally connected with the observable Xi, the variance in Eq. (49)
reduces to a tensor network containing a mixture of ‘up’ operations (59) and ‘down’ operations (60). The
transformation of the coefficients c13, c2, c

−
13 is determined by

MUp :

c13
c2
c−13

 7→
c13 + c−13/4

3c2/8
0

 ⇒ MUp =

1 0 1/4
0 3/8 0
0 0 0

 , (62)

MDown :

c13
c2
c−13

 7→
 c13
c2/8 + c−13
c2/8

 ⇒ MDown =

1 0 0
0 1/8 1
0 1/8 0

 . (63)

It suffices to show that the ‘up’ operation (59) leads to a smaller contribution to the variance than the ‘down’
operation (60). This is true because to find Var [∂1,1〈XN 〉qTTN] by contraction of the tensor network in Eq. (50)
we need to perform operation (59) n times, whereas to find Var [∂1,1〈Xi〉qTTN] for general i by contraction of
the tensor network in Eq. (49) we need to perform a mixture of n ‘up’ and ‘down’ operations. Note that we are
ultimately interested in the size of the coefficient c2 as the other two coefficients will be disregarded by the P2 at
the top left parameter. If prior to the ‘down’ operation (60) we have an arbitrary vector c13v13 +c2v2 +c−13v−13,
then looking at Eqs. (62), (63) we find that MUp : c2 7→ 3c2

8 and MDown : c2 7→ c2
8 + c−13 and so we want to

prove:

3c2

8 ≤ c2

8 + c−13 or equivalently c2 ≤ 4c−13. (64)

Referencing the diagram in Eq. (49) we show that this is always satisfied: Notice that a ‘down’ operation is
always preceded by a 2 on the top wire, i.e.

2

4
1
4

2 2

2

v13

=
{ c13v13 c2v2+ c

−
13v
−
13

+ }
2

4
1
4

2 2

2

v13

{ c′13v13 c′2v2+ c
′−
13 v
−
13

+ }
2

(65)

for some constants c′13, c
′
2, c
−′
13 . Contracting the 2 on the right hand side gives

{ c′13v13 c′2v2+ c
−′
13 v
−
13

+ }
2

= c′13v13 +
(c′2

2 + c−′13

)
v2 + c′2

2 v−13, (66)
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which reduces requirement (64) to(c′2
2 + c−′13

)
≤ 4 ·

(c′2
2

)
or equivalently 2c−′13 ≤ 3c′2. (67)

To analyse these we check the operation preceding the right hand side of Eq. (65) leading to the constants
c′13, c

′
2, c
−′
13 , which is either the ‘up’ operation (59), the ‘down’ operation (60) or the observable ui itself:

• If ‘up’, then Eq. (62) implies c−′13 = 0 which trivially satisfies requirement (67).

• If ‘down’, then we consider the vector c′′13v13 + c′′2v2 + c−′′13 v−13 which precedes it:

c′13v13 + c′2v2 + c−′13v−13 =

2

4
1
4

2 2

2

v13

{ c′′13v13 c′′2 v2+ c
−′′
13 v

−
13

+ }

(68)

Equation (63) implies:

c′13 = c′′13, c′2 = c′′2
8 + c−′′13 , c−′13 = c′′2

8 , (69)

in which case 2c−′13 = 2c′′2
8 and 3c′2 = 3c′′2

8 + 3c−′′13 , so that requirement (67) is satisfied.

• Lastly, if the original ‘down’ is connected to the observable, we have

1
4

2 2

2

4

2 22
v2

v13

=

2

4
1
4

2 2

2

v13

{ c′13v13 c′2v2+ c‘−13v
−
13

+ }
2

. (70)

The identities in (37) imply that c−′13 = c′2 = 1
2 and so requirement (67) is satisfied.

This concludes the proof.

Note that the inequality in the Lemma is just a consequence of the order of the qubits in the construction
of the ansatz in Fig. 5. We expect that the variance of any pair of observables Xi1 , Xi2 in the qTTN ansatz
vanishes identically modulo a different base, i.e. Var [∂1,1〈Xi〉qTTN] vanishes as clogN

i for each i and some
ci > 0. Indeed, we could achieve any other register ordering through SWAP gates without affecting the overall
trainability of the ansatz.

Using the tools of the proof of Lemma 2 we now discuss Conjecture 2. We have established that observable
Xi is causally connected to (1 + logN) qubits and so it follows that a k-local observable XI acting on qubits
I = {i1, . . . , ik} is causally connected to at most k(1+logN) qubits. This bound is usually not tight since there
can be some overlap between the qubits causally connected to pairs Xij1

, Xij2
for ij1 , ij2 ∈ I. Since Lemma 2

implies that contributions to the variance Var [∂1,1〈Xi〉 ] are smallest when the observable is XN (i.e. when
Eq. (49) contracts to only ‘up’ operations (59)), we argue that

Var [∂1,1〈XI〉qTTN] ≥ Var [∂1,1〈XN̂ 〉qTTN] = 1
4 ·
(3

8

)k logN
, (71)

where N̂ = 2k logN . Rather than having ‘up’ and ‘down’ operations from Xij for each ij ∈ I (cf. Eq. (49) but
with v2 in registers I = {i1, . . . , ik} and v13 elsewhere), the contributions to the variance are smallest when
contracting a network as in Eq. (50) that has k logN registers instead where there are only ‘up’ operations
from the observable XN̂ . Note that in the regime k ≈ N the number of qubits causally connected to XI is N
and we obtain exponentially vanishing gradients.
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D Quantum multiscale entanglement renormalization ansatz
For 8 = 23 qubits the qMERA ansatz in Eq. (18) can also be represented as

RX|0〉 RZ RX RZ

RX|0〉 RZ RX RZ

RX RZ|0〉

RX RZ|0〉

RX RZ

RX RZ

RX RZ

RX RZ

RX RZ

RX RZ|0〉

RX RZ

RX RZ

RX RZ

RX RZ|0〉

RX RZ

RX RZ

RX RZ

RX RZ|0〉

RX RZ

RX RZ

RX RZ

RX RZ|0〉

RX RZ

RX RZ

RX RZ

RX RZ

RX RZ

RX RZ

RX RZ

RX RZ

RX RZ

RX RZ

CG CG CGDis Dis

Figure 6: qMERA circuit considered in this article for 8 = 23 qubits and 3 layers. For arbitrary N = 2n qubits and n layers,
the l-th course-graining layer (CG in the figure) is as in the qTTN ansatz whilst the l-th disentangling layer is a composition
of the (l−1)-th disentangling layer with additional R

(j1,j2)
X R

(j1,j2)
Z CNOT acting on adjacent pairs of the newly added qubits

(j1, j2) within that layer (e.g. in the last disentangling operation above the last CNOT gates act on qubits (2, 4) and (6, 8)
which were added on the last layer of the qMERA).

Note that this circuit is equivalent to the one presented in Eq. (18) up to a reordering of the qubits. The qubits
in Fig. 6 are arranged so that the coarse-graining operations are equivalent to the ones in the qTTN PQC in
Fig. 5. To that end we redefine the qMERA circuit as a product of course-graining and disentangling layers as

UqMERA :=
1∏
l=n

UDIS
l · UCG

l . (72)

For all l ≥ 1 the coarse-graining layers are

=

RX

RX

RZ

RZ

UCG
l

2n
2n−l − 1

2n−l − 1

repeat

(73)

where the four registers are composed 2l−1 times in parallel (vertically). The disentangling layers are as follows:
For l = 1 UDIS1 = I and for l ≥ 2

=
RX

RX

RZ

RZ

2n
2n−l+1 − 1

2n−l+1 − 1

repeat
UDIS
l

2n−l

UDIS
l

(74)

where the rotations and CNOT operation in the last 4 registers are repeatedly composed in parallel until N = 2n
qubits are reached.

Back to the form in Eq. (72), Theorem 2 and App. A imply that Var [∂1,1〈H〉qMERA] for the 16 qubit
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qMERA PQC in Eq. (72) is given by the tensor network
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2

1
2
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2

2

2

2

2
u1

u2

u13

u14

u7

u8

u16

u15

u4

u3

u9

u10

u5

u5

u11

u12

(75)

where the vectors (and registers) are numbered according to the order in which they are added to the qMERA
and where the matrix Ũ is

2

2

4

2

=Ũ

2

(76)

To calculate the variance for 1-local operators of the form Xi we replace ui = v2 and ui′ 6=i = v13 and
contract the resulting tensor network analytically. In general, this is an inefficient calculation.

We provide an alternative numerical method that exploits the structure of the qMERA and the causal cone of
the observable Xi. In MERA the causal cone of a local observable has bounded width [72]. To lower-bound the
variance of an observable Xi we want to choose the site i that leads to the widest causal cone. To upper-bound
the variance we want to choose i leading to the narrowest causal cone. This is done to maximize (minimize) the
number of qubit registers in the causal cone of Xi. Depending on the chosen site, the tensor network in Eq. (75)
can have a causal cone of width 2 or 3 as illustrated in Fig. 7 for sites 2 and 11 respectively. In general, one
finds that the wider causal cones are found by choosing the registers that were added in the last course-graining
layer of the qMERA (qubits 9 to 16 in the figure).
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Ũ

Ũ
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Ũ

Ũ
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Figure 7: Causal cones for observables X2 and X11, respectively. The width of a causal cone is determined by the largest
number of 2-qubit operations at any depth of the ansatz, e.g. the third course-graining layer of the causal cone on the right
has three 2-qubit operations whereas the causal cone on the left never has more than two 2-qubit operations.

Using the arguments of Lemma 2 we choose observables XN (X1) for the ansatz in Fig. 6 to lower-bound
(upper-bound) the gradient variance for one-local observables in qMERA. The respective variances are calcu-
lated by contracting the tensor network in Eq. (75) numerically for 2, 4, 8, 16 qubits, taking care of choosing
the correct sites i = 1, N as the ordering of qubits in the networks in Fig. 6 and Eq. (75) differ. For the lower
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bound, Var [∂1,1〈X16〉] is given by

v13
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Ũ

Ũ
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2 P2
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v13

v13
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(77)

where the vector w = 1
2 (v2 + v−13). In the cases of 8, 4, 2 qubits we have

w
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v13

v13
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2
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2

Ũ
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Ũ
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Ũ
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Ũ

Ũ

Ũ

Ũ

Ũ

Ũ

Ũ

1
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w
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(78)

For the upper bound, Var [∂1,1〈X1〉qMERA] for 16 qubits is given by
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and for 8, 4, 2 qubits by
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Ũ

1
2 P2u1

1
2

1
2

1
2

1
2

1
2

Ũ
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By contracting these networks, we find:

Claim 1. Let 〈XN 〉qMERA be the cost function associated with the observable XN and consider the qMERA
circuit defined in Eq. (72), then:

Var [∂1,1〈XN 〉qMERA] ≈


0.09375 for N = 2
0.02477 for N = 4
0.004109 for N = 8
0.000622 for N = 16

, Var [∂1,1〈X1〉qMERA] ≈


0.1719 for N = 2
0.05242 for N = 4
0.02304 for N = 8
0.00882 for N = 16

(81)

Looking at these results in a log-log plot we find that the data for N = 4, 8 and 16 lie on straight lines that
give us the upper bound scaling like O(N−1.2) and the lower bound scaling like Ω(N−2.7). The numerical results
showcase a general brute-force approach to calculating the variances for the proposed qMERA for arbitrary
1-local observables.

To make a statement for general N = 2n qubits we argue as in Eq. (71) using the tools from Lemma 2.
Theorem 6 states that

Var [∂1,1〈XN 〉qMERA] ≥ Var [∂1,1〈XN̂ 〉qTTN] = 1
4 ·
(3

8

)2 logN
(82)

where N̂ = 22 logN . Indeed the 1-local observable Xi in the qMERA circuit is causally connected to at most
2 logN qubits. Lemma 2 suggests that, in the form of Fig. 6, the contributions are smallest when carried by the
‘up’ operation (59). Hence Var [∂1,1〈Xi〉qMERA] is lower-bounded by a circuit analogous to the one in Eq. (50)
but with 2 logN qubits instead.

We use the same arguments for k-local observables of the form XI acting on qubits I = {i1, . . . , ik} for
k � N as in Conjecture 3. The observable XI is causally connected to an upper bound of 2k logN qubits and
so:

Var [∂1,1〈XI〉qMERA] ≥ Var [∂1,1〈XN̂ 〉qTTN] = 1
4 ·
(3

8

)2k logN
(83)

where N̂ = 22k logN by similar arguments as used at the end of App. C. These bounds are not tight, but as
long as k � N they still suggest that the qMERA avoids the barren plateau problem for k-local Hamiltonians.
In the limit k ≈ N we obtain exponentially vanishing gradients as all qubits are in the causal cone of the
observable.
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