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We determine the conditions for the equivalence between the multi-time expectation values of a

general finite-dimensional open quantum system when interacting with, respectively, an environment

undergoing a free unitary evolution or a discrete environment under a free evolution fixed by a proper

Gorini-Kossakowski-Lindblad-Sudarshan generator. We prove that the equivalence holds if both

environments are bosonic and Gaussian and if the one- and two-time correlation functions of the

corresponding interaction operators are the same at all times. This result leads to a non-perturbative

evaluation of the multi-time expectation values of operators and maps of open quantum systems

interacting with a continuous set of bosonic modes by means of a limited number of damped modes,

thus setting the ground for the investigation of open-system multi-time quantities in fully general

regimes.

I. INTRODUCTION

The complete statistical description of an open quantum system calls for the characterization of multi-

time expectation values [1, 2]. As significant examples, mean values of operators at different times, i.e.,

multi-time correlation functions, yield optical spectra that are of central interest in many physical applica-

tions [3], while multi-time expectation values of completely positive trace non-increasing maps define the

joint probability distributions associated with sequential measurements at different times [4].

The quantum regression theorem [5–7] fixes the dynamical equations for multi-time expectation val-

ues from those of single-time expectation values, that is, of the quantum state itself. On the other hand,

the validity of the quantum regression theorem can be proven only under quite restrictive conditions [8],

which essentially imply that the system-environment correlations created by the interaction do not impact

the multi-time statistics [9], or for rather specific forms of the system-environment coupling [10–12]. Treat-

ments of multi-time expectation values of open quantum systems beyond the quantum regression theorem

mainly include the use of perturbative techniques [13–19] or the analysis of specific models [10–12, 20, 21],

but no general approach able to deal with generic dynamical regimes and physical systems is currently avail-

ar
X

iv
:2

20
9.

00
29

3v
2 

 [
qu

an
t-

ph
] 

 1
5 

M
ar

 2
02

3



2

FIG. 1. The two configurations we are considering. (a) A system S interacts with a continuum (or countably infinite

number) of bosonic modes E undergoing a unitary free evolution. (b) The same system S interacts with a finite

number of modes B whose free evolution is determined by a master equation of GKSL type.

able.

Here, we establish a systematic non-perturbative method to evaluate open-system multi-time expectation

values by proving the equivalence between two different system-environment configurations, see Fig.1.

In the first one, the system and the (in general, continuous) environment are evolved by a joint unitary

dynamics, while in the second one the same system interacts with an environment consisting of a set of

discrete modes and undergoing an evolution fixed by a Gorini-Kossakowski-Lindblad-Sudarshan (GKLS)

generator [22, 23]. Explicitly, we prove that the multi-time expectation values of any sequence of open-

system operators are identical in the two configurations, provided that the environments are bosonic and

Gaussian, and that the one- and two-time correlation functions of the environmental interaction operators

coincide under the corresponding free evolutions. As a result, under the conditions set out above, an open

quantum system interacting with a continuous set of bosonic modes may be represented equivalently by

a discrete set of auxiliary bosonic modes which undergo a GKLS dynamics. The specific features of the

set of auxiliary damped modes, i.e., their frequencies and couplings, can be determined via the procedure

developed in [24], which relies on a fit of the two-time correlation functions of the continuous bath with

a finite number of exponentials, weighted by possibly complex coefficients. Starting from the equivalence

theorem proved here, it is thus possible to evaluate in a non-perturbative way multi-time expectation values

in generic parameter regimes. This extends the approach put forward in [25] and further developed in
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[24], which concerned the reduced dynamics of the unitary and GKLS configurations and thus ensured the

identity between single-time expectation values only; an analogous approach for fermionic baths, addressing

both single- and multi-time expectation values has been introduced in [26]. Very recently [27], building

upon the equivalence theorem proved here, 2D electronic spectra for a dimeric complex have been evaluated

for a realistic parameter regime.

II. UNITARY AND GKLS ENVIRONMENTS AND THEIR MULTI-TIME EXPECTATION VALUES

We start by introducing the two open-system configurations characterized by, respectively, a unitary

and a non-unitary (GKLS) free-evolving environment, along with the definitions of the relevant quantities,

which will be the object of the equivalence theorem presented in the next section.

Consider first any finite dimensional open quantum system S with dimension dS interacting with the

bosonic environment E according to the global Hamiltonian

ĤSE(t) = ĤS(t) + ĤE +
κ∑
j=1

ÂS,j ⊗ ĜE,j , (1)

where κ ≤ d2S , and we allow for a possible time dependence in the free system-Hamiltonian ĤS(t), so

that general time dependent controls are included in our treatment; ĤE is instead the Hamiltonian of the

bosonic environment on which we do not make, for the time being, any particular assumptions. Moreover,

we assume an initial factorized state,

%SE(0) = %S(0)⊗ %E(0), (2)

so that the dynamics on S is completely positive [1]. Our main focus is the general (time-ordered) n-time

expectation value

〈On(tn) . . . O1(t1);O
′
1(t1) . . . O

′
n(tn)〉U = (3)

TrSE

{
U†SE(tn)

[
Ôn

]
. . .U†SE(t1)

[
Ô1

]
%SE(0)U†SE(t1)

[
Ô′1

]
. . .U†SE(tn)

[
Ô′n

]}
,

with tn ≥ . . . ≥ t1 ≥ 0, where Ôk is a short-hand notation for Ôk ⊗ 1E , Ô1, . . . ,Ôn and Ô′1, . . . ,Ô
′
n are

generic open-system operators and U†SE(t) defines the S − E unitary evolution in the Heisenberg picture

U†SE(t)[Ô] = Û †SE(t)ÔÛSE(t), ÛSE(t) = T←e
−i

∫ t
0 dsĤSE(s), (4)

with T← the chronological time-ordering operator. Note that Eq.(3) defines the most general multi-time

expectation values appearing in the description of the evolution of open quantum systems [8, 28, 29]; for

Ô′1 = . . . = Ô′n = 1S and self-adjoint Ô1 . . . Ôn we recover the multi-time correlation functions of the
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observables associated with the latter operators [1], while for Ô′1 = Ô†1, . . . ,Ô
′
n = Ô†n we obtain the multi-

time probabilities associated with a generic sequence of measurements [4, 30]; finally, identity operators

appearing alternatively among the left and the right operators lead us to the definition of signals in multi-

dimensional spectroscopy [27]. Introducing the unitary propagators in the Schrödinger picture

USE(t, t′)[%SE ] = ÛSE(t, t′)%SEÛ
†
SE(t, t′), ÛSE(t, t′) = ÛSE(t)Û †SE(t′) = T←e

−i
∫ t
t′ dsĤSE(s), (5)

the definition in Eq.(3) can be expressed equivalently as

〈On(tn) . . . O1(t1);O
′
1(t1) . . . O

′
n(tn)〉U = (6)

TrSE

{
ÔnUSE(tn, tn−1)

[
. . .USE(t2, t1)

[
Ô1USE(t1) [%SE(0)] Ô′1

]
. . .
]
Ô′n

}
.

In addition, we consider the single-time expectation values of the environmental interaction terms,

GUE,j(t) = TrE

{
eiĤEtĜE,je

−iĤEt%E(0)
}
, (7)

as well as the two-time correlation functions

CUjj′(t+ s, s) = TrE

{
eiĤE(t+s)ĜE,je

−iĤE(t+s)eiĤEsĜE,j′e
−iĤEs%E(0)

}
. (8)

Crucially, the definitions of GUE,j(t) and CUjj′(t + s, s) correspond to the general definitions in Eq.(3) but

with respect to the free evolution of the environment, as fixed by ĤE ; thus, their explicit evaluation does

not involve the solution of the full dynamics.

The second configuration we take into account consists of the same quantum system S interacting with

a bosonic environment B, such that the global evolution is fixed by the GKLS generator

LSB(t)[%SB] = −i
[
ĤSB(t), %SB

]
+DB[%SB] =

−i
[
ĤSB(t), %SB

]
+
∑̀
j=1

γj

(
L̂B,j%SBL̂

†
B,j −

1

2

{
L̂†B,jL̂B,j , %SB

})
, (9)

where the Hamiltonian term can be decomposed as

ĤSB(t) = ĤS(t) + ĤB +
κ∑
j=1

ÂS,j ⊗ F̂B,j , (10)

with ĤB the (yet unspecified) free-environment Hamiltonian, and γj ≥ 0, ensuring the complete positivity

of the evolution on S + B [1, 22, 23]; note that ` is related with the number of degrees of freedom of B,

and hence with the complexity of the non-unitary configuration. We stress that the dissipative term acts on

B only. Moreover, the free Hamiltonian of the open system ĤS(t), as well as the operators ÂS,j acting on
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the open system side in the interaction part of the Hamiltonian ĤSB(t), are the same as those in ĤSE(t)

(compare Eq. (1) and Eq. (10)): in this sense, the open system is the same in the two configurations. We

further assume a factorized initial state

%SB(0) = %S(0)⊗ %B(0), (11)

which guarantees the complete positivity of the evolution on S. The general n-time expectation values

under the GKLS evolution are defined as

〈On(tn) . . . O1(t1);O
′
1(t1) . . . O

′
n(tn)〉L = (12)

TrSB

{
ÔnΛSB(tn, tn−1)

[
. . .ΛSB(t2, t1)

[
Ô1ΛSB(t1) [%SB(0)] Ô′1

]
. . .
]
Ô′n

}
,

with the propagators

ΛSB(t, t′) = T←e
∫ t
t′ LSB(s) (13)

with ΛSB(t) = ΛSB(t, 0); Ôk is now a short-hand notation for Ôk ⊗ 1B . As before, we also consider the

one- and two-time correlation functions of the environmental interaction operators with respect to the “free”

evolution of the environment (i.e., without taking into account the presence of the system S), which is now

fixed by the GKLS generator on B

LB[%B] = −i
[
ĤB, %B

]
+DB[%B], (14)

so that we have

FLB,j(t) = TrB

{
F̂B,je

LBt [%B(0)]
}
, (15)

as well as the two-time correlation functions

CLjj′(t+ s, s) = TrB

{
F̂B,je

LBt
[
F̂B,j′e

LBs [%B(0)]
]}

. (16)

As stated earlier, we will restrict our attention to the case where both the environments E and B are

Gaussian. In particular, we assume that

i) both the initial environmental states %E(0) and %B(0) are Gaussian states,

ii) the environmental free Hamiltonians ĤE and ĤB are at most quadratic in the corresponding creation

and annihilation operators,

iii) the environmental coupling operators ĜE,j and F̂B,j , as well as the Lindblad operators L̂B,j are

linear in the creation and annihilation operators.
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Crucially, these assumptions imply that the n-time correlation functions of the environmental interaction

operators under the free evolution of the environment (generalizing the definitions in, respectively, Eq.(8)

and Eq.(16)) can be expressed in terms of the corresponding one- and two-time correlation functions; in

other terms, the environmental interaction operators are Gaussian operators with respect to the free dynam-

ics [31]. In fact, assumptions ii) and iii) guarantee that the environmental interaction operators evolved via

the free environmental evolution at a generic time are linear in the creation and annihilation operators, so

that, using also assumption i), one can apply the Wick’s theorem and then express any environmental n-time

correlation function in terms of one- and two-time correlation functions [32].

III. EQUIVALENCE THEOREM

We can now formulate the equivalence theorem, which equates the open-system multi-time expectation

values of the unitary configuration and those of the GKLS configuration, provided that the one- and two-

time environmental correlation functions coincide.

Theorem Consider the same open system S in the two configurations characterized by, respectively,

Eqs. (1)-(8) and Eqs. (9)-(16), and with the same initial state %S(0). If the bosonic environments E and B

satisfy the assumptions i)-iii) above, and if

FLB,j(t) = GUE,j(t) ∀j and t ≥ 0 (17)

and

CLjj′(t+ s, s) = CUjj′(t+ s, s) ∀j, j′ and ∀t, s ≥ 0, (18)

then

〈On(tn) . . . O1(t1);O
′
1(t1) . . . O

′
n(tn)〉L = 〈On(tn) . . . O1(t1);O

′
1(t1) . . . O

′
n(tn)〉U

∀O1, . . . On, ;O
′
1 . . . O

′
n and ∀tn ≥ . . . ≥ t1 ≥ 0. (19)

Proof. The proof essentially follows the same steps of the proof for the one-time expectation values derived

in [25], generalizing it to the multi-time case by means of induction, analogously to what is done in [26] for

the fermionic case.

The key point is the introduction of a third configuration, which represents the unitary dilation [7] of the

non-unitary configuration. Hence, consider the tripartite system S − B − Ẽ given by the S − B system

introduced above and a continuous distribution of bosonic modes labelled by Ẽ. The tripartite system
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evolves unitarily by means of the Hamiltonian [33]

ĤSBẼ(t) = ĤSB(t) + ĤẼ + V̂BẼ ,

ĤẼ =
∑̀
j=1

∫ ∞
−∞

dω ω b̂†
Ẽ

(ω, j)̂bẼ(ω, j), (20)

V̂BẼ =
∑̀
j=1

√
− γj

2π

∫ ∞
−∞
dωL̂B,j b̂

†
Ẽ

(ω, j)− L̂†B,j b̂Ẽ(ω, j),

where b̂Ẽ(ω, j) and b̂†
Ẽ

(ω, j) are bosonic annihilation and creation operators of a Fock spaceHẼ,j ,[
b̂Ẽ(ω, j), b̂†

Ẽ
(ω′, j′)

]
= δjj′δ(ω − ω′); (21)

the initial state is

%SBẼ(0) = %SB(0)⊗ | 0Ẽ 〉〈 0Ẽ |, (22)

with %SB(0) as in Eq. (11) and |0Ẽ〉 = ⊗`j=1 |0j〉 the vacuum state of the global Fock space associated with

Ẽ,HẼ = ⊗`j=1HẼ,j . The n-time expectation values of such a unitary evolution can be defined as (compare

with Eq.(6))

〈On(tn) . . . O1(t1);O
′
1(t1) . . . O

′
n(tn)〉X = (23)

TrSBẼ

{
ÔnŨ(tn, tn−1)

[
. . . Ũ(t2, t1)

[
Ô1Ũ(t1)

[
%SBẼ(0)

]
Ô′1

]
. . .
]
Ô′n

}
,

where Ôk is now a short-hand notation for Ôk ⊗ 1BẼ , and the subscript X indicates that the expectation is

taken over the extended SBẼ space. Here Ũ(t, t′) is the propagator of the unitary dynamics on S −B − Ẽ

which reads

Ũ(t, t′)
[
%SBẼ

]
= ÛSBẼ(t, t′)%SBẼÛ

†
SBẼ

(t, t′), ÛSBẼ(t, t′) = T←e
−i

∫ t
t′ dsĤSBẼ(s); (24)

finally, the one- and two-time correlation functions of the environmental interaction operators (that are still

the F̂B,j , as the interaction with S is still given by ĤSB(t)) with respect to the free unitary dynamics on

B − Ẽ fixed by the Hamiltonian

ĤBẼ = ĤB + ĤẼ + V̂BẼ (25)

are

FXB,j(t) = TrBẼ

{
eiĤBẼtF̂B,j ⊗ 1Ẽe

−iĤBẼt%BẼ(0)
}

(26)

and

CXjj′(t+ s, s) = TrBẼ

{
eiĤBẼ(t+s)F̂B,j ⊗ 1Ẽe

−iĤBẼ(t+s)eiĤBẼsF̂B,j′ ⊗ 1Ẽe
−iĤBẼs%BẼ(0)

}
.
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To prove the theorem, the first observation is that the multi-time expectation values of two unitary

configurations with the same open system S and initial state %S(0) coincide if the corresponding n-time

correlation functions of the environmental interaction operators under the respective free dynamics are the

same; this can be shown, for example, via the Dyson expansion [25]. But then, since we are dealing with

Gaussian environments [34] – so that the n-time correlation functions are uniquely determined by the one-

and two-time correlation functions – we immediately have the following implication

FXB,j(t) = GUE,j(t)

CXjj′(t+ s, s) = CUjj′(t+ s, s)

 ∀j, j′ ∀t, s ≥ 0

=⇒ 〈On(tn) . . . O1(t1);O
′
1(t1) . . . O

′
n(tn)〉X = 〈On(tn) . . . O1(t1);O

′
1(t1) . . . O

′
n(tn)〉U

∀O1, . . . On, ;O
′
1 . . . O

′
n and ∀tn ≥ . . . ≥ t1 ≥ 0. (27)

Now, we can directly use Lemma 1 and Lemma 2 of [25], which trace back to the validity of the quantum

regression theorem for the reduced dynamics on B obtained via the partial trace over the unitary dynamics

on B − Ẽ. As to ease the reading, we report these two lemmas, adapted to the current notation.

Lemma 1. Consider a tripartite system S − B − Ẽ undergoing the unitary evolution fixed by Eq. (20)

with initial state %SRẼ(0) set as in Eq. (22). Denoting as %XSB(t) the reduced S −B state at time t, i.e.,

%XSB(t) = TrẼ

{
e−iĤSBẼt

(
%SB(0)⊗ | 0Ẽ 〉〈 0Ẽ |

)
eiĤSBẼt

}
, (28)

then (recalling that %SB(t) is the state whose evolution is fixed by the GKLS generator defined in Eq.(9))

%XSB(t) = %SB(t). (29)

Lemma 2. Given the unitary dynamics on B − Ẽ fixed by the Hamiltonian of Eq. (25), its correlation

functions satisfy

CXjj′(t+ s, s) = CLjj′(t+ s, s) ∀t, s ≥ 0. (30)

In fact, Lemma 2 tells us that the two-time correlation functions of operators on B with respect to

the unitary dynamics on B − Ẽ coincide with those obtained by means of the GKLS dynamics on B,

i.e., CXjj′(t + s, s) = CLjj′(t + s, s), while the analogous correspondence between the expectation values,

FXB,j(t) = FLB,j(t), is implied directly by Lemma 1 [35]. Replacing these identities in Eq. (27), we thus

have

FLB,j(t) = GUE,j(t)

CLjj′(t+ s, s) = CUjj′(t+ s, s)

 ∀j, j′ ∀t, s ≥ 0

=⇒ 〈On(tn) . . . O1(t1);O
′
1(t1) . . . O

′
n(tn)〉X = 〈On(tn) . . . O1(t1);O

′
1(t1) . . . O

′
n(tn)〉U

∀O1, . . . On, ;O
′
1 . . . O

′
n and ∀tn ≥ . . . ≥ t1 ≥ 0, (31)
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so that to prove the theorem, we only need to show the identity

〈On(tn) . . . O1(t1);O
′
1(t1) . . . O

′
n(tn)〉X = 〈On(tn) . . . O1(t1);O

′
1(t1) . . . O

′
n(tn)〉L

∀O1, . . . On, ;O
′
1 . . . O

′
n and ∀tn ≥ . . . ≥ t1 ≥ 0, (32)

which directly follows from the next Lemma.

Lemma 3 Given the two configurations characterized by, respectively, Eqs. (9), (10), (12)-(14) and

Eqs. (20)-(25), with the same S − B system and generic initial state %SB(0), for any set of opera-

tors D̂1, . . . D̂n, D̂
′
1, . . . D̂

′
n on HSB , the Hilbert space associated with the system S − B, and times

tn ≥ . . . ≥ t1 ≥ 0 we have

〈Dn(tn) . . . D1(t1);D
′
1(t1) . . . D

′
n(tn)〉X = 〈Dn(tn) . . . D1(t1);D

′
1(t1) . . . D

′
n(tn)〉L. (33)

Indeed, Eq. (32) follows from this Lemma by setting %SB(0) as in Eq. (11) and D̂1 = Ô1⊗1B, . . . D̂′n =

Ô′n ⊗ 1B , (compare Eq. (33) with Eqs.(12) and (23)), which concludes the proof of the Theorem.

Proof of Lemma 3. Essentially, we generalize the proof of Lemma 1 in [25] by means of induction.

For n = 1, Eq. (33) is equivalent to Lemma 1. Let us then assume that Eq. (33) holds for n = k − 1

and show that this implies its validity for n = k. Actually, the validity of Eq. (33) for n = k is equivalent

to the validity of the differential equation, recalling the definitions in Eqs.(12) and (23) and introducing

τ = tk − tk−1,

d

dτ
TrSBẼ

{
D̂kŨ(τ + tk−1, tk−1)

[
D̂k−1Ũ(tk−1, tk−2)

[
. . . D̂1Ũ(t1)

[
%SBẼ(0)

]
D̂′1 . . .

]
D̂′k−1

]
D̂′k

}
=

d

dτ
TrSB

{
D̂kΛSB(τ + tk−1, tk−1)

[
D̂k−1ΛSB(tk−1, tk−2)

[
. . . D̂1ΛSB(t1) [%SB(0)] D̂′1 . . .

]
D̂′k−1

]
D̂′k

}
(34)

for any D̂1, . . . , D̂k, D̂
′
1, . . . , D̂

′
k and tk−1 ≥ . . . ≥ t1 ≥ 0, τ ≥ 0 along with the initial conditions for

τ = 0 (and for any tk−1 ≥ . . . ≥ t1 ≥ 0 and operators D̂1, . . . , D̂k, D̂
′
1, . . . , D̂

′
k)

TrSBẼ

{
D̂kD̂k−1Ũ(tk−1, tk−2)

[
. . . D̂1Ũ(t1)

[
%SBẼ(0)

]
D̂′1 . . .

]
D̂′k−1D̂

′
k

}
= TrSB

{
D̂kD̂k−1ΛSB(tk−1, tk−2)

[
. . . D̂1ΛSB(t1) [%SB(0)] D̂′1 . . .

]
D̂′k−1D̂

′
k

}
; (35)

in both the previous equations, we implied the tensor product of the operators D̂ and D̂′ with the identities,

namely with 1BẼ at the left hand side and 1B at the right hand side. The initial conditions hold by the

induction hypothesis for the S − B operators D̂1, . . . ,D̂k−1D̂k, D̂′1, . . . , D̂
′
k−1D̂

′
k, and thus we only have

to prove the validity of Eq. (34).



10

Introducing the S−B− Ẽ unitary evolution operator in the Heisenberg picture (compare with Eq.(24))

Ũ†(t)
[
%SBẼ

]
= Û †

SBẼ
%SBẼÛSBẼ ÛSBẼ(t) = T←e

−i
∫ t
0 dsĤSBẼ (s), (36)

we can rewrite the left hand side of Eq. (34) as (compare with Eq.(3))

d

dτ
TrSBẼ

{
D̂kŨ(τ + tk−1, tk−1)

[
D̂k−1Ũ(tk−1, tk−2)

[
. . . D̂1Ũ(t1)

[
%SBẼ(0)

]
D̂′1 . . .

]
D̂′k−1

]
D̂′k

}
=
d

dτ
TrSBẼ

{
Ũ†(τ + tk−1)

[
D̂′kD̂k

]
Ũ†(tk−1)

[
D̂k−1

]
. . . Ũ†(t1)

[
D̂1

]
%SBẼ(0)Ũ†(t1)

[
D̂′1

]
. . . Ũ†(tk−1)

[
D̂′k−1

]}
.

The Hamiltonian defined in Eq. (20) implies that the derivative with respect to τ takes the form [7]

d

dτ
TrSBẼ

{
Ũ†(τ + tk−1)

[
D̂′kD̂k

]
Ũ†(tk−1)

[
D̂k−1

]
. . . Ũ†(t1)

[
D̂1

]
%SBẼ(0)Ũ†(t1)

[
D̂′1

]
. . . Ũ†(tk−1)

[
D̂′k−1

]}
= TrSBẼ

{(
i

[ ̂̃
HSB(τ + tk−1),

̂̃
D
′
k(τ + tk−1)

̂̃
Dk(τ + tk−1)

]

−
∑̀
j=1

[ ̂̃
D
′
k(τ + tk−1)

̂̃
Dk(τ + tk−1),

̂̃
L
†
B,j(τ + tk−1)

](
γj
2
̂̃
LB,j(τ + tk−1) +

√
γj b̂in(τ + tk−1, j)

)

+
∑̀
j=1

(
γj
2
̂̃
L
†
B,j(τ + tk−1) +

√
γj b̂
†
in(τ + tk−1, j)

)[ ̂̃
D
′
k(τ + tk−1)

̂̃
Dk(τ + tk−1),

̂̃
LB,j(τ + tk−1)

])

× ̂̃Dk−1(tk−1) . . .
̂̃
D1(t1)%SBẼ(0)

̂̃
D
′
1(t1) . . .

̂̃
D
′
k−1(tk−1)

}
, (37)

where

̂̃
O(t) = Ũ†(t)

[
Ô(t)

]
, (38)

for every possibly time-dependent operator Ô(t) onHSBẼ in the Schrödinger picture; in addition, crucially,

we introduced the input field [7]

b̂in(t, j) =
1√
2π

∫ ∞
−∞

dωe−iωtb̂Ẽ(ω, j) (39)

that is defined onHẼ , satisfies the commutation relations

[
b̂in(t, j), b̂†in(s, j′)

]
= δjj′δ(t− s),[

b̂in(t, j), b̂in(s, j′)
]

= 0 ∀t, s ≥ 0 (40)

and acts as an annihilation operator on the vacuum,

b̂in(t, j) |0Ẽ〉 = 0. (41)
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Moreover, since any ̂̃D(t) depends on bin(s, j) only for times s ≤ t (as can be seen from the Heisenberg

equation of ̂̃D(t) [25]), Eq. (40) implies[
b̂in(t+ s, j),

̂̃
D(t)(s)

]
= 0 ∀j, s, t > 0. (42)

Thus, at the right-hand side of Eq. (37), for any τ > 0, we can exchange the input field b̂in(τ + tk−1, j)

and the product of operators ̂̃Dk−1(tk−1) . . .
̂̃
D1(t1), so that because of Eqs. (22) and (41) the term with

b̂in(τ + tk−1, j) is equal to zero. Analogously, using the cyclicity of the trace we can see that the term with

b̂†in(t + tk−1, j) vanishes as well, since the latter commutes with the product ̂̃D′1(t1) . . . ̂̃D′k−1(tk−1) and

〈0|Ẽ b̂
†
in(t, j) = 0. All in all, using once again Eq. (38) we are left with

d

dτ
TrSBẼ

{
D̂kŨ(τ + tk−1, tk−1)

[
D̂k−1Ũ(tk−1, tk−2)

[
. . . D̂1Ũ(t1)

[
%SBẼ(0)

]
D̂′1 . . .

]
D̂′k−1

]
D̂′k

}
= TrSBẼ

{
Ũ†(τ + tk−1)

[
L†SB(τ + tk−1)

[
D̂′kD̂k

]] ̂̃
Dk−1(tk−1) . . .

̂̃
D1(t1)%SBẼ(0)

̂̃
D
′
1(t1) . . .

̂̃
D
′
k−1(tk−1)

}
,

(43)

where we introduced the dual of the GKLS generator [1] in Eq.(9):

L†SB(t)[D̂] = i
[
ĤSB(t), D̂

]
+
∑̀
j=1

γj

(
L̂†B,jD̂L̂B,j −

1

2

{
L̂†B,jL̂B,j , D̂

})
;

note that the derivative of the expectation value in Eq. (43) is defined by continuity at τ = 0.

We can now proceed analogously to the final part of the proof of Lemma 2 in [25]. Consider the basis of

operators onHSB given by
{
M̂ab,SB = | ϕa 〉〈 ϕb |

}
a,b

, where {|ϕa〉}a is a basis of the Hilbert spaceHSB ,

so that one has [6]

L†SB(t)
[
M̂ab,SB

]
=
∑
cd

W cd
ab (t)M̂cd,SB (44)

with

W cd
ab (t) = 〈ϕc| L†SB(t) [| ϕa 〉〈 ϕb |] |ϕd〉 . (45)

Looking at the corresponding n-time expectation values, Eqs. (43) and (44) for D̂′kD̂k = M̂ab,SB imply

d

dτ
TrSBẼ

{
M̂ab,SBŨ(τ + tk−1, tk−1)

[
D̂k−1Ũ(tk−1, tk−2)

[
. . . D̂1Ũ(t1)

[
%SBẼ(0)

]
D̂′1 . . .

]
D̂′k−1

]}
=
∑
cd

W cd
ab (τ + tk+1) (46)

×TrSBẼ

{
M̂cd,SBŨ(τ + tk−1, tk−1)

[
D̂k−1Ũ(tk−1, tk−2)

[
. . . D̂1Ũ(t1)

[
%SBẼ(0)

]
D̂′1 . . .

]
D̂′k−1

]}
.
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Using the dual in Eq. (44), one can readily show that the right-hand side of Eq. (34), evaluated for D̂′kD̂k =

M̂ab,SB , is

d

dτ
TrSB

{
M̂ab,SBΛSB(τ + tk−1, tk−1)

[
D̂k−1ΛSB(tk−1, tk−2)

[
. . . D̂1ΛSB(t1) [%SB(0)] D̂′1 . . .

]
D̂′k−1

]}
=
∑
cd

W cd
ab (τ + tk−1) (47)

× TrSB

{
M̂cd,SBΛSB(τ + tk−1, tk−1)

[
D̂k−1ΛSB(tk−1, tk−2)

[
. . . D̂1ΛSB(t1)%SB(0)

]]}
.

Comparing Eq.(46) and Eq.(47), we see that the k-time expectation values involving the operator-basis

elements
{
M̂ab,SB

}
a,b

(and all the other operators D̂1, . . . , D̂k−1, D̂
′
1, . . . , D̂

′
k−1 and times are fixed)

satisfy the same system of differential equations in the two configurations, implying the validity of

Eq. (34) for a generic product D̂′kD̂k, and hence for any couple of operators D̂k and D̂′k (and any

D̂1, . . . , D̂k−1, D̂
′
1, . . . , D̂

′
k−1, tk−1 ≥ . . . ≥ t1 ≥ 0 and t ≥ 0); this concludes our proof.

IV. DISCUSSION AND CONCLUSIONS

We have proven that general multi-time expectation values of an open quantum system interacting with

a unitary Gaussian bosonic environment are identical to those of the same open quantum system interacting

with a GKLS Gaussian bosonic environment, provided that the one- and two-time correlation functions of

the bath interaction operators under the respective free dynamics are the same. While such an equivalence

between two unitary Gaussian environments directly follows from the very notion of Gaussiantiy, which

allows one to express all the bath multi-time correlation functions in terms of one- and two-time correla-

tion functions, when comparing a unitary and a GKLS environment two further steps are needed. Firstly,

one introduces a unitary dilation, which involves a continuous set of bosonic modes with a flat (i.e., not

frequency-dependent) distribution of the couplings, see Eqs.(20) and (21), and which yields exactly the

GKLS dynamics when the continuous bosonic modes are traced out, see Lemma 1. Secondly, one shows

the equivalence between the multi-time expectation values of the configuration with a GKLS bath and those

of the corresponding dilation, see Lemma 3. Let us stress that, in fact, this means that the unitary dilation

guarantees the exact validity of the quantum regression theorem for the multi-time expectation values of

the GKLS configuration, that is, they can be equivalently evaluated with the unitary dilated dynamics or

with the reduced dynamical maps that are obtained after tracing out the continuous flat bosonic bath, see in

particular Eq.(34).

For any finite-dimensional open quantum system, the equivalence theorem proved here, along with the

one in [26], concludes the proof of the equivalence between a unitary and a GKLS environment, when
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they are Gaussian and either bosonic or fermionic. These results thus set the ground for a non-perturbative

evaluation of multi-time quantities, when combined with the strategy put forward in [24] to derive explicitly

the parameters fixing an auxiliary configuration consisting of a small number of damped modes. In the case

of structured baths, with both fermionic and bosonic components, the equivalence can still be guaranteed,

as long as the two configurations are structured in the same way with respect to the corresponding fermionic

and bosonic partitions. The investigation of infinite dimensional open quantum systems looks indeed much

more demanding, and a natural starting point could be provided by the evolutions preserving the Gaussianity

of the global state [36, 37]. Other two scenarios that go beyond the range of applicability of the equivalence

theorems proved here are represented by the presence of initial system-environment correlations and by out-

of-time-order correlators (OTOCs). In the former case, it is generally not possible to describe the evolution

of the open system via a single (time-dependent) reduced dynamical map defined on the whole set of open-

system states [38–46], and thus the possible extension of the equivalence theorems to the case with initial

correlations would likely call for a definition of positivity domains or multiple maps that is consistent in

both the unitary- and GKLS-bath configurations. OTOCs represent multi-time expectation values where

times are not ordered, and it is a priori not-clear that a GKLS configuration can be properly defined in this

case; however, we note that a proper extension of the quantum regression theorem can be indeed formulated

for OTOCs [47].

As last remark, we point out that, as mentioned in [25], the approach that led us to prove the equivalence

theorem might be useful even in the presence of non-Gaussian baths [32, 48]. Here a general, not model-

dependent, equivalence between the unitary and GKLS configurations would call for the equality of the

n-time correlation functions of the two baths for an arbitrary n, thus being unrealistic to verify in practical

situations. On the other hand, relying on perturbative techniques in which the n-time correlation functions

appear only starting from the n-th order of the expansion [1], by controlling the equality of the first n-time

correlation functions one can ensure that the unitary and GKLS configurations give the same predictions up

to the truncation error of the perturbative expansion at order n + 1, which can be estimated with standard

techniques [1].
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[40] P. Štelmachovič and V. Bužek, Dynamics of open quantum systems initially entangled with environment: Be-

yond the Kraus representation, Phys. Rev. A 64, 062106 (2001).

[41] T. F. Jordan, A. Shaji, and E. C. G. Sudarshan, Mapping the Schrödinger picture of open quantum dynamics,

Phys. Rev. A 73, 012106 (2006).

[42] A. Brodutch, A. Datta, K. Modi, A. Rivas, and C. A. Rodrı́guez-Rosario, Vanishing quantum discord is not

necessary for completely positive maps, Phys. Rev. A 87, 042301 (2013).

[43] F. Buscemi, Complete positivity, Markovianity, and the quantum data-processing inequality, in the presence of

initial system-environment correlations, Phys. Rev. Lett. 113, 140502 (2014).

[44] B. Vacchini and G. Amato, Reduced dynamical maps in the presence of initial correlations, Scientific Reports

6, 37328 (2016).

[45] G. A. Paz-Silva, M. J. W. Hall, and H. M. Wiseman, Dynamics of initially correlated open quantum systems:

Theory and applications, Phys. Rev. A 100, 042120 (2019).

[46] A. Trevisan, A. Smirne, N. Megier, and B. Vacchini, Adapted projection operator technique for the treatment of

initial correlations, Phys. Rev. A 104, 052215 (2021).

[47] P. D. Blocher and K. Mølmer, Quantum regression theorem for out-of-time-ordered correlation functions, Phys.

Rev. A 99, 033816 (2019).

[48] Y. Sung, F. Beaudoin, L. M. Norris, F. Yan, D. K. Kim, J. Y. Qiu, U. von Lüpke, J. L. Yoder, T. P. Orlando,
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