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Abstract

The existence of quantum tricriticality and exotic phases are found
in a Dicke triangle (TDT) where three cavities, each one containing
an ensemble of three-level atoms, are connected to each other through
the action of an artificial magnetic field. The conventional superradi-
ant phase (SR) is connected to the normal phase through first- and
second-order boundaries, with tricritical points located at the intersec-
tion of such boundaries. Apart from the SR phase, a chiral superradiant
(CSR) phase is found by tuning the artificial magnetic field. This
phase is characterized by a nonzero photon current and its bound-
ary presents chiral tricritical points (CTCPs). Through the study of
different critical exponents, we are able to differentiate the universal-
ity class of the CTCP and TCP from that of second-order critical
points, as well as find distinctive critical behavior among the two dif-
ferent superradiant phases. The TDT can be implemented in various
systems, including atoms in optical cavities as well as the circuit QED
system, allowing the exploration of a great variety of critical manifolds.
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1 Introduction

Recent efforts have been devoted to exploring many-body quantum phases
emerging in light-matter coupling systems using different platforms such as
cavity and circuit QED [1–4], and cold atoms in optical lattices [5–7]. The rapid
development of such platforms offers high control and tunability, allowing for
the exploration of richer phase diagrams with more complex critical behaviors,
for example, the study of tricritical points (TCPs) and higher-order critical
points (multicritical points). TCPs were originally found in He3-He4 mixtures
and a simple description of their mean-field characteristics can be done using
the Landau theory of phase transitions [8]. These special points are located in
the intersection of a second-order boundary and a first-order boundary, with
both of them separating the same two phases [8–13]. Although well understood
from a theoretical perspective, quantum tricriticality is not abundant in real
materials but can be found, for example, in certain metallic magnets [14–17].

Recently, light-matter interacting systems have been proposed to realize
TCPs in experiments, specifically in generalizations of the Dicke model [12, 18].
The Dicke model has served historically as the cornerstone model in the de-
scription of the interaction of light with an ensemble of identical two-level
atoms [19–22]. When the light-matter coupling strength is tuned above a crit-
ical threshold value, this system undergoes a superradiant phase transition,
which has been realized in various experimental settings [23, 24].

Apart from interesting critical boundaries, atom-light interacting systems
can be used to engineer exotic phases of matter when external fields are incor-
porated. Artificial magnetic fields have been used to explore chiral ground-state
currents of interacting photons in a three-qubit loop [25], chiral phases in a
quantum Rabi triangle [26], and fractional quantum Hall physics in the Jaynes-
Cummings Hubbard lattice [27–29]. Advances in synthesizing such artificial
magnetic fields have been reported in neutral ultracold atoms [30–32] and
photonic systems [25, 33–36].

Here we propose a tricritical Dicke triangle (TDT) system as a building
block for exploring all these features. The system is composed of three cavities
each one containing an ensemble of three-level atoms allowing the realization
of the tricritical Dicke Hamiltonian in each cavity. As a result, not only a
second-order phase transition occurs, but also a first-order transition from the
normal phase (NP) to the superradiant (SR) phase can be observed. The two
types of phase boundaries meet at a conventional TCP. Interestingly, as photon
hopping between neighboring cavities is permitted, new chiral superradiant
phase (CSR) and chiral tricritical points (CTCP) can be found by tuning
the artificial magnetic field, which breaks the Z2 and C3 symmetries, causing
a chiral current of photons in the ground state. Computation of the scaling
exponents shows a plethora of critical behaviors, in particular, the CTCP and
conventional TCPs are found to belong to different universality classes.
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2 Single cavity tricritical Dicke model

Let us first consider a single cavity containing N identical three-level atoms
coupled uniformly to the cavity mode. The Hamiltonian of this system is a
generalization of the conventional Dicke model and reads

HD = ωa†a+

√
2g√
N

(a† + a)

N∑

k=1

d(k) +Ω

N∑

k=1

h(k), (1)

where a (a†) is the photon annihilation (creation) operator of the single-mode
cavity with frequency ω, g the atom-cavity coupling strength. The dipole op-
erator d(k) of the k-th atom and the single-atom Hamiltonian h(k) are defined
as

d(k) =




0 1 0
1 0 γ
0 γ 0


 , h(k) =




1 0 0
0 0 0
0 0 −1


 (2)

where we have chosen the eigenstates of h(k) to be the basis states. These states
are labelled as |1〉, |0〉 and |−1〉 as shown schematically in Fig. 1(a). The cavity
field couples |1〉 and |0〉 as well as |0〉 and | − 1〉, with the coupling strengths
given by g and γg, respectively. The tunable dimensionless parameter γ serves
as a control parameter.

Figure 1 (a) Schematic showing the atomic levels of the tricritical Dicke model. Light with
frequency ω couples the states |1〉 and |0〉 with interaction strength g, and the states |0〉 and
| − 1〉 with interaction strength gγ. (b) Phase diagram of the tricritical Dicke model in the
λ-γ plane, using α = 〈a〉/

√
N as order parameter. The white solid line, yellow dashed line

and red dot indicate the second-order boundary, first-order boundary, and tricritical point,
respectively.

The phase diagram can be described in terms of the scaled dimensionless
coupling strength λ = g/

√
Ωω and the transition strength ratio γ as shown

in Fig. 1 (b). For simplicity, we set ω = Ω = 1. In the thermodynamic limit
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N → ∞ the normal phase with 〈a〉 = 0 and the superradiant phase with
macroscopic photon population (〈a〉 ∝

√
N), are separated by first and second-

order boundaries, indicated by the yellow dashed and the white solid lines in
Fig. 1(b), respectively. These two types of boundaries meet at the tricritical
point. A Landau theory approach can be followed to explore the expressions
for the second- and first-order phase transitions, as well as for the TCP. Here,
the order parameter is given by α = 〈a〉/

√
N . In terms of this order-parameter,

the mean-field energy is given by:

EMF

ΩN
=

1

8λ2
α2 + αd+ h (3)

where h and d are just the single atom operators given in Eq. 2, and the

order parameter α has been rescaled by α → 2
√
2g

Ω α. Due to the Z2 symmetry
of the Hamiltonian, the mean-field ground-state energy can be expanded as
a Taylor series in terms of α2: EMF =

∑∞
k=0 ckα

2k. The coefficients ck are
obtained through perturbation theory, which is performed by treating h as the
unperturbed Hamiltonian and d as the perturbation as shown in Appendix
A and in Ref. [18]. Keeping the expansion up to order α6 and discarding the
constant term, the mean-field energy is approximated by

EMF

ΩN
= c1α

2 + c2α
4 + c3α

6, (4)

where c1 = 1/8λ2 − γ2, c2 = γ2(γ2 − 1
2 ), and c3 = −γ2(1 − 7γ2 + 8γ4)/4 (see

Appendix A). An ordinary 2nd-order critical point is obtained when c1 = 0
and c2 > 0, leading to the second-order boundary expression

λ2cγ2c =
1√
8
. (5)

The tricritical point is defined by the condition c1 = c2 = 0 and c3 >
0 [8, 18, 37]. For the single cavity case, the tricritical point is located at γTCP =
1/

√
2 and λTCP = 1/2. When γ ≥ γTCP, one has c1 < 0, and EMF goes from having

a single global minimum at α = 0 for λ < λ2c to having two global minima

at α± = ±
√
(−c2 +

√
c22 − 3c1c3)/3c3 for λ > λ2c, this behavior indicates the

second-order character of the phase transition. In the case γ < γTCP, EMF has
three local minima at α± and α = 0, the global minimum switches from α = 0
to α = α± as the phase transition is crossed, the discontinuous jump on the
global minimum location characterizes the first-order boundary. The change in
the order of the transition can be clearly observed in Fig. 2 where the ground-
state energy ESR as a function of α is presented for different values of γ and
λ.
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Figure 2 Ground-state energy EMF/(ΩN) as a function of the order parameter α in the
superradiant phase for γ < γTCP (black solid line), and γ > γTCP (red dashed line), and in the
normal phase (blue dotted line), respectively.

Figure 3 Schematic of the TDT. Each cavity contains a three-level atom interacting with
light as described in Fig.1 (a). Photons can hop between neighboring cavities with hopping
strength Je±iθ.

3 Tricritical Dicke triangle

We now consider three such cavity systems linked by photon hopping, as
schematically shown in Fig. 3, forming the tricritical Dicke triangle (TDT).
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The TDT Hamiltonian is given by

H =

3∑

n=1

HD,n +

3∑

n=1

J(eiθa†nan+1 + e−iθa†n+1an). (6)

Here HD,n is the single-cavity Hamiltonian as given by Eq. (1), where we
use the sub-index n to denote the nth cavity; J is the hopping amplitude
between nearest-neighbor cavities with a phase θ. The complex photon hopping
amplitude means that the photons are subjected to an artificial vector potential
A(r) such that θ =

∫ rm
rn

A(r)dr where rn and rm denote the position of the
two neighboring cavities. Such an artificial vector potential or magnetic field
can be achieved through temporal modulation of the photon-hopping strength
on each cavity [25, 26].

In analogy to the Dicke model, there exists a parity symmetry operator
P = Π3

i=1 exp{iπ[a+i ai +
∑N

k=1(h
(k) + 1)]}, which satisfies [H,P ] = 0 with

eigenvalues ±1. Besides such Z2 symmetry, the Hamiltonian is real when θ =
mπ (m ∈ Z), and, consequently, it preserves time-reversal symmetry (TRS).
When this condition is not met, the breaking of the TRS can have important
implications on the behavior of photons as will be shown later.

4 Normal Phase of TDT

Let us first explore the normal phase (NP) of the TDT. This phase features
no photon excitation just as in the single cavity case. We employ a Schrieffer-
Wolff transformation Un = exp(

√
2g/

√
NSn) with an anti-Hermitian operator

Sn given by

Sn = (a†n + an)/Ω

N∑

k=1




0 −1 0
1 0 −γ
0 γ 0


 , (7)

which makes the off-diagonal terms of the single-cavity Hamiltonian HD,n

vanish. Neglecting higher-order terms in the thermodynamic limit N → ∞,
the transformed TDT Hamiltonian becomes

HNP = Π3
i=1U

†
i HΠ3

j=1Uj

=

3∑

n=1

(
ωa†nan +Ω

N∑

k=1

h(k)

)
+

3∑

n=1

J(eiθa†nan+1 +H.c.)

+

3∑

n=1

2g2

NΩ
(a†n + an)

2
N∑

k=1




1 0 0
0 −1 + γ2 0
0 0 −γ2


 . (8)

The above Hamiltonian is diagonal in the atomic degrees of freedom, and an
effective low-energy Hamiltonian can be found by projecting into the lowest
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energy state of the three-level atom,

H↓
NP =

3∑

n=1

(ω − 4g2γ2

Ω
)a†nan − 2g2γ2

Ω
(a†2n + a2n)

+

3∑

n=1

J(eiθa†nan+1 + e−iθa†n+1an) + E0, (9)

where the energy constant is E0 = −6g2γ2/Ω− 3NΩ.
Using the discrete Fourier transformation a†n =

∑
q aq e

inq with the quasi-

momentum q = 0,±2π/3, we can rewrite the projected Hamiltonian H↓
NP in

momentum space as

H↓
NP =

∑

q

ωqa
†
qaq −

2g2γ2

Ω
(a†qa

†
−q + aqa−q) + E0, (10)

where ωq = ω − 4g2γ2/Ω + 2J cos(θ − q). By introducing a unitary transfor-

mation Sq = exp[βq(a
†
qa

†
−q − aqa−q)] with a variational squeezing parameter

βq = − 1
8 ln

ωq+ω−q−8g2γ2/Ω
ωq+ω−q+8g2γ2/Ω , H↓

NP can be diagonalized and takes the form

H↓
NP =

∑
q εqa

†
qaq + Eg, where

Eg = E0 +
1

2

∑

q

(εq − ωq) (11)

is the ground-state energy, and the excitation energies are given by

εq =
1

2
[ωq − ω−q +

√
(ωq + ω−q)2 − 64g4γ4/Ω2]. (12)

A second-order phase transition occurs when the gap between the first
excited state and the ground state vanishes, then, the condition εq = 0 can
be used to determine the location of these boundaries, leading to the critical
values

λ2cγ2c =

√
1 + 4J/ω cos q cos θ + 4J2/ω2 cos(θ − q) cos(θ + q)

8(1 + 2J/ω cos θ cos q)
. (13)

Note that if θ and J/ω are fixed, the expression above signals a γ-λ second-
order line, but since θ will be taken as an additional control parameter that
can vary, Eq. (13) refers, in general, to a second-order surface in the three
dimensional parameter space spanned by γ, λ and θ, as shown in Fig. 4. More-
over, Eq. (13) describes two different second-order boundaries, one for q = 0
and the other for q = ±2π/3, as discussed in the following sections, each of
these q-values is associated with a different superradiant phase. Additionally,
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Figure 4 The phase diagram of the tricritical Dicke triangle system, in which γ is plotted
as a function of the dimensionless coupling strength λ and the hopping phase θ. The color
bar represents the order parameter A3 = Re(〈a3〉). The red solid line is a second-order
critical line while the blue dashed line is a first-order critical line. The tricritical points are
marked by red circles, in which γTCP = 1/

√
2. The phase boundary between the SR and CSR

is denoted by solid black line, determined by |θ| = θc. Here, we set J/ω = 0.1.

note that Eq. (13) reduces to Eq. (5) for the single cavity case if we take the
limit of no hopping between cavities J = 0, which is expected.

5 Superradiant phases of TDT

As the coupling strength increases to λ > λ2c, the number of photons in each
cavity becomes proportional to N . To capture the superradiant physics, the
bosonic operators are shifted as an → an+

√
Nαn, a

†
n → a†n+

√
Nα∗

n with the
complex displacement parameter αn = An+ iBn. Note that in the NP αn = 0.
The transformed Hamiltonian becomes

HSR =

3∑

n=1

ωã†nãn +

N∑

k=1

√
2

N
g(ã†n + ãn)d

(k) +Ω

N∑

k=1

h(k)

+

3∑

n=1

Jã†n(e
iθãn+1 + e−iθãn−1) +Hl + ESR, (14)

where the linear term is Hl =
∑3

n=1 ω
√
N(ã†nαn+ ãnα

∗
n)+

√
NJ [ã†n(e

iθαn+1+
e−iθαn−1) + h.c]. The ground-state energy is expressed as

ESR

N
=

3∑

n=1

2
√
2gAnd+Ωh+ ω(A2

n +B2
n)
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+ JAn[cos θ(An+1 +An−1)− sin θ(Bn+1 −Bn−1)]

+ JBn[cos θ(Bn+1 +Bn−1) + sin θ(An+1 −An−1)].

(15)

with d and h being the three-level operators in Eq. (2). The mean-field values
An and Bn used to characterize the different phases are found by minimizing
the energy given in Eq. (15), where two types of superradiant phases can be
identified depending on whether |θ| is greater or lower than θc (see below).
The complete phase diagram of the TDT is presented in Fig. 4. Note that al-
though there are six order parameters, namely, An and Bn with n = 1, 2, 3, the
value A3 has been chosen to describe the phase diagram. Nonetheless, relations
between all six-order parameters are provided in the following sections.

5.1 Conventional superradiant phase (SR)

In the SR phase αn = An is real and non-zero, and is the same for all three
cavities, αn = αn±1. Then, each cavity behaves as an independent tricritical
Dicke model. For a given value of θ, the boundary between the SR and NP
phases is split into a second-order line (the red solid line) and a first-order
critical line (the blue dashed line) as shown in Fig. 4. The two lines merge
together in the TCP (represented with the red dots). In the three dimensional
parameter space shown in Fig. 4, the TCPs form a line. The second-order
phase boundary is consistent with the analytical expression γ2c-λ2c in Eq. (13)
with the momentum q = 0.

Figure 5 (a)(b) shows the order parameter αn for the NP-SR phase transi-
tion as a function of λ. For a small value of the atomic transition ratio γ = 0.1,
αn is zero in the NP, and increases with an abrupt jump in the SR phase in
Fig. 5 (a), indicating a first-order phase transition. Since the transition be-
tween the middle and the upper state of the three-level atom dominates for a
small γ, 〈hn〉 > 0 increases abruptly as well across the first-order transition
(see Appendix). However, for γ = 1.5 in Fig. 5 (b), 〈an〉 changes smoothly from
the NP to SR phase, exhibiting a second-order phase transition. Note that, in
the SR, the ground state is two-fold degenerate as the configurations break the
Z2 symmetry. In Figs. 4 and 5, one of the degenerate configurations is chosen,
the other one is simply obtained by changing the sign of the order parameter.

A perturbation theory analysis can be done in a similar fashion as for
the single cavity case. Similarly, the mean-field energy for the SR can be
approximated by

ESR

3ΩN
= c1α

2 + c2α
4 + c3α

6, (16)

with c1 = ω′Ω
8g2 , where ω′ = ω + 2J cos θ. c2 and c3 have the same form as in

the single cavity case. Consequently, the second order boundary expression for
the SR is given by

λSR2cγ
SR
2c =

1

2
√
2

√
1 + 2J/ω cos θ, (17)
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Figure 5 The order parameter 〈an〉 = αn as a function of the dimensionless coupling
strength λ across the NP-SR phase transition of (a) first-order γ = 0.1, and (b) second-
order γ = 1.5. θ is kept fixed at 2π/3 > θc. The real part of 〈an〉 across the NP-CSR phase
transition of (c) first-order γ = 0.1, and (d) second-order γ = 1.5. θ is kept fixed at π/3 < θc.
The inset corresponds to the imaginary part Bn = Im(〈an〉) of the order parameter.

which is consistent with Eq. (13) for q = 0. The tricritical point is located at
γTCP = 1/

√
2 and λTCP =

√
1 + 2J/ω cos θ/2. Note that, as expected, both of

these results reduce to the single cavity case if the limit J = 0 is taken.

5.2 Chiral superradiant phase (CSR)

In the CSR phase, αn is complex and depends on n. Minimization of the
mean-field energy in Eq. (15) yields

An 6= An+1 = An−1, Bn = 0, Bn+1 = Bn−1. (18)

Since the solutions above break both the Z2 and C3 symmetries, the ground
state in the CSR is six-fold degenerate. For a clear presentation of results we
choose the particular solution A3 6= A1 = A2, B3 = 0, B2 = −B1.

In Fig. 5 (c)(d) the order parameter αn is shown for the CSR phase tran-
sition. As observed in both panels, the order parameter is site-dependent,
contrary to the SR case. However, there is still a change in the order of the
transition depending on the γ value. Consequently, just as in the SR phase,
there are chiral tricritical points (CTCPs) in the CSR phase as observed in
Fig. 4.

To investigate the phase boundaries in the CSR phase, we start with a
particular solution A3 = A, A1 = A2 = Ã and B3 = 0. Similar to the SR case,
the mean-field ground-state energy can be written as a Taylor series in terms
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of A2 and Ã2

ECSR

ΩN
= 2(ωCSR + J ′ − γ2)Ã2 + (ωCSR − γ2)A2

+4J ′AÃ+ c2(A
4 + 2Ã4), (19)

where ωCSR = [ω−2J2 sin2 θ/(ω−J cos θ)]Ω/8g2, J ′ = Ω/8g2(J cos θ+ J2 sin2 θ
ω−J cos θ )

and the coefficient c2 = γ2(γ2− 1
2 ). By minimizing the energy using ∂E/∂A = 0

and ∂E/∂Ã = 0, the expression for the second-order boundary in the CSR can
be found to be

λCSR2c γCSR2c =
1

2
√
2

√
1− 2J/ω cos θ + J2/ω2(cos2 θ − 3 sin2 θ)

1− J/ω cos θ
, (20)

which is consistent with Eq. (13) when choosing q = ±2π/3. As expected,
the critical line γ-λ of the second-order NP-CSR transition in Fig. 4 fits well
with the analytical solutions λCSR2c . The CTCP is located at γCTCP = 1/

√
2 as a

consequence of setting c2 = 0 in Eq.(19). By substituting γCTCP into Eq. (20),
λCTCP can be determined.

If γ and λ are fixed inside the SR phase, and θ is varied until entering the
CSR the order parameter changes discontinuously. Thus, the phase transition
between the two superradiant phases is of first-order and indicated by the solid
black line in Fig. 4. Right at the boundary between the SR and CSR phases,
conditions Bn = 0 and An−1 = An+1 = ±An need to be satisfied. From Eq.
(15), this implies J cos θ+J2 sin2 θ/(ω−J cos θ) = 0, which leads to the critical
hopping phase that separates the SR and CSR

θc = cos−1

(
− 2J√

8J2 + ω2 + ω

)
. (21)

The entire superradiance region is split into the CSR phase regime for |θ| ≤ θc
and the SR phase regime for |θ| > θc.

To characterize further the chirality in the CSR phase, we analyze the
ground-state current of photons in the closed loop of three cavities. Similar to
the continuity equation in classical systems, the photon current operator can
be explicitly defined as

Iph = i
[
(a†1a2 + a†2a3 + a†3a1)− h.c.

]
(22)

Fig. 6 shows the photon current in the ground state for λ > λ2c in the SR and
CSR phases. By varying the effective magnetic flux θ, a discontinuous jump of
Iph is observed at the critical hopping phase ±θc. Iph goes from zero in the SR
phase, to a non-zero value in the CSR phase and changes its sign depending on
the phase θ. Then, varying θ changes the orientation of the photons circulating
in the loop from clockwise to anticlockwise, a signature of the chiral phase. The
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Figure 6 Chiral photon current Iph as a function of the hopping phase θ for γ = 0.1, γTCP,
and 1.2, respectively. Schematic of the mean photon population in the three cavities in the
CSR region, two cavities with the blue color have the same excitation of photons and are
different from the third cavity denoted in red. Here λ = 1 and J/ω = 0.1.

ground-state current of photons is associated with the nonuniform excitation
of photons in three cavities, which is induced by the magnetic flux.

6 Critical behavior

Second-order phase transitions are characterized by their scaling exponents
in the vicinity of the transition. Here, we explore the critical behavior of the
total photon number Nph =

∑3
n=1〈a†nan〉 near three important regions: the

second-order critical boundary, the TCP and the CTCP, in order to classify
the universality of each of these critical manifolds.

First, we consider a point (γ, λ) in the SR region and close to the second-
order critical line for fixed θ = 2π/3. A line through this point is perpendicular
to the critical line and intercepts the critical line at a second-order critical
point (γSR2c , λ

SR
2c) [12]. Around the critical point, the photon number scales like

Nph ∝ Lβ, where L ≡
√

(λ− λSR2c)
2 + (γ − γSR2c)

2 is the distance between the
point and the second-order critical point. Fig. 7 (a) displays Nph at (γ, λ) as a
function of L. The critical exponent for this transition is β = 1, consequently,
N 2nd

ph ∝ L. However, if the perpendicular line through (γ, λ) intercepts the
critical line at the TCP (γTCP, λTCP), one has a different scaling

N TCP
ph ∝ L1/2 (23)

which gives a critical exponent 1/2 for the TCP. This illustrates that the
TCP belongs to a different universality class in comparison to the conventional
second-order critical points.
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Figure 7 Mean photons in three cavities Nph as a function of the distance L between
a point inside the corresponding superradiant phase and a critical point located in the
boundary with the normal phase for the CSR phase (a), the SR phase (b), and a triple point
(c). Conventional second-order critical points (γ = 0.9) are represented by open squares,
while TCP’s and CTCP’s are represented with open circles. The corresponding fitting lines
are listed.

Fig. 7 (b) show the scaling behaviors for the CSR phase at θ = π/3. The
mean photon number in one of the sites is different from that in the other two
cavities due to the break of the C3 symmetry. However, we found that the
photon number in each cavity has the same scaling behavior. Similar to the
SR phase, the critical exponent for the 2nd-order critical point (γCSR2c , λCSR2c ) is
obtained to be 1. The scaling function at the CTCP (γCTCP, λCTCP) is found to
be

N CTCP
ph ∝ L1/2. (24)

This indicates that all tricritical points, regardless whether they are TCP or
CTCP, have the same scaling exponent for photon numbers.

Finally, Fig. 7 (c) shows the scaling exponents at θ = θc at the critical
line. This line is special since it represents the line of triple points at which
three phases (SR, CSR, and NP) coexist. The scaling along this line shows the
same behavior, which is expected, as both SR and CSR have the same scaling
exponents.

The exponent of Nph (β )is useful to distinguish between ordinary critical
points and tricritical ones, nonetheless, it does not signal any differences be-
tween the SR and CSR phase transitions, which is unexpected as both phases
have very distinct features, the scaling behavior of other quantities could be
useful for further characterization of the critical behavior. To this end, let us
examine other critical exponents such as the scaling of the excitation energy.
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(a) �=�/3 (b) �=2�/3 (c) �=�c

Figure 8 Excitation energies εi as a function of the distance L between a point in the
normal phase and critical point located in the boundary with the CSR phase (a), the SR
phase (b), or a triple point (c). ε1 denotes the lowest excitation energy, and ε2 is the second-
lowest. Both conventional second-order critical points (γ = 0.9) and tricritical points (TCP’s
and CTCP’s) with γ = γTCP are explored. The fitting lines are shown on each panel. Here,
J/ω = 0.01.

The effective low-energy Hamiltonian on Eq. (9) has a quadratic form in the
an operators, consequently, a Bogoliubov transformation can be performed to
diagonalize the Hamiltonian in the form

H↓
NP =

∑

q

εqa
†
qaq + Eg, (25)

with q = 0,±2π/3,Eg being the ground state energy given in Eq. (11), εq being
the excitation energies given in Eq. (12), and aq(a

†
q) being a new set of annihi-

lation (creation) operators obtained through the Bogoliubov transformation.
Precisely at the critical points, the lowest of the set of excitation energies {εq}
vanishes, and we denote the lowest excitation energy by ε1. consequently, we
expect that around the critical point this quantity behaves as ε1 ∝ Lη.

Since Eq. (25) is only valid in the normal phase, L in this case is the
distance between a point in the normal phase and the critical point. In Fig. 8,
the scaling of ε1 as a function of L is shown for both the SR and CSR phases.
In the SR we find that ε1 = εq=0, while in the CSR ε1 = εq=±2π/3. The
exponent η is found to be 1 for the CSR while it has a value of 1/2 for the SR.
This means that the excitation behavior on the onset of the phase boundaries
is different between such phases. However, this exponent does not seem to be
responsive to the order of the critical point as tricritical points follow the same
behavior as conventional critical points.
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Moreover, we note that at a triple point (θ = θc) two excitation energies
vanish (denoted by ε1 and ε2) instead of just one, as a sign of the coexistence
of both superradiant phases at this point This behavior is illustrated in Fig. 8
(c). Consistently, the two η exponents are found to be 1/2 and 1 representing
the SR and CSR phase transitions, respectively.

A study of ε1 for points inside the superradiant region could retrieve some
interesting behavior as described in Refs. [38, 39]. However, an effective Hamil-
tonian of the form of Eq. (9) is not easily obtainable for the TDT in the
superradiant regions. Nonetheless, it seems that the complementary use of η
and β exponents already allow us to characterize the critical behavior of the
different points and boundaries in the system, illustrating the great variety of
features that can be explored using the TDT.

7 Conclusion

A different transition ratio between atomic levels and the incorporation of an
artificial magnetic field make the tricritical Dicke triangle an ideal platform for
studying the interplay between higher-order critical points and chiral phases of
matter. Two different superradiant phases can be found by tuning the phase θ
of the photon hopping amplitude, and both of them can be accessed from the
normal phase through first- and second-order transitions, as well as tricritical
points. The scaling behavior of the excitation energy indicates that the NP-
SR and the NP-CSR transitions belong to different universality classes; while
the scaling behavior of the photon mean-field population elucidates a different
universality between tricritical and ordinary critical points, making evident the
richness of critical manifolds in the system. Our study opens intriguing avenues
for exploring quantum tricriticality and rich phases in a single light-matter
interacting platform.
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Appendix A Coefficients ck’s by perturbation
theory

We apply perturbation theory to obtain the coefficients ck’s in Eq. (16). The
mean-field Hamiltonian in the SR phase is given by

ESR

3NΩ
=

ω + 2Jcosθ

Ω
α2 +Ha, (A1)

Ha = D + h. (A2)
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with α′ = 2
√
2gα/Ω and D = α′d. h is treated as the unperturbed Hamilto-

nian, which gives the eigenstates |εi〉 (i = 1, 2, 3) with the eigenvalues ε1 = −1,
ε2 = 0 and ε3 = 1. And d is the perturbation term, the coefficients ck are ob-
tained by the perturbation expansion up to (2k) order. The ground-state wave
function can be expanded as

|ϕ〉 = |ε1〉+
∑

m 6=1

|m〉〈m|
E − εm

D|ϕ〉

= |ε1〉+G(E)D|ϕ〉, (A3)

where G(E) =
∑
m 6=1

|m〉〈m|/(E − εm) and Ha|ϕ〉 = E|ϕ〉. This means that the

wave function can be found through iteration as:

|ϕ〉 = |ε1〉+G(E)D|n〉 +G(E)DG(E)D|n〉
+G(E)DG(E)DG(E)D|n〉 + ... (A4)

From D|ϕ〉 = (E − ε1)|ϕ〉, we obtain the ground-state energy

E − ε1 = 〈ε1|D|ϕ〉. (A5)

By substituting the wave function into the equation above, the ground-state
energy is given by

E = ε1 + 〈ε1|D|ε1〉+ 〈ε1|DG(E)D|ε1〉
+〈ε1|DG(E)DG(E)D|ε1〉+ ... (A6)

Clearly, the zero-th energy correction is E(0) = ε1. Since 〈ε1|D|ε1〉 is zero
due to the symmetry of the Hamiltonian, the first non-zero correction is the
second-order one

E(2) = ε1 + 〈ε1|DG(E)D|ε1〉

= ε1 +
|D12|2

E(0) − ε2
= −1− α′2γ2. (A7)

The fourth-order correction of the ground-state energy is

E(4) = ε1 + 〈ε1|DG(E)D|ε1〉+ 〈ε1|DG(E)DG(E)DG(E)D|ε1〉

= ε1 + α′2 |d12|2
E(2) − ε2

+ α′4
∑

m 6=1

∑

n6=1

∑

k 6=1

〈ε1|d
|m〉〈m|

E(0) − εm
d

|n〉〈n|
E(0) − εn

d
|k〉〈k|

E(0) − εk
d|ε1〉

= −1 +
α′2γ2

−1− α′2γ2
− 1

2
α′4γ2. (A8)
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Since α is small around the critical point, the above energy can be
approximated by

E(4) = −1− α′2γ2 + γ2(γ2 − 1

2
)α′4. (A9)

The sixth-order correction of the energy is given by

E(6) = ε1 + 〈ε1|DG(E)D|ε1〉+ 〈ε1|DG(E)DG(E)DG(E)D|ε1〉
+〈ε1|DG(E)DG(E)DG(E)DG(E)DG(E)D|ε1〉

= ε1 + α′2 |d12|2
E(4) − ε2

+ α′4
∑

m 6=1

∑

n6=1

∑

k 6=1

〈ε1|d
|m〉〈m|

E(2) − εm
d

|n〉〈n|
E(2) − εn

d
|k〉〈k|

E(2) − εk
d|ε1〉

+α′6
∑

m 6=1

∑

n6=1

∑

k 6=1

∑

i6=1

∑

j 6=1

〈ε1|m〉dmn

E(0) − εm

dnk
E(0) − εn

dki
E(0) − εk

dij
E(0) − εi

〈j|ε1〉
E(0) − εj

= ε1 +
α′2γ2

E(4) − ε2
+ α′4 |d12|2

(E(2) − ε2)2
|d23|2

E(2) − ε3
+ α′6 |d12|3

(E(0) − ε2)3
|d23|3

(E(0) − ε3)2
.

(A10)

Then, the ground-state energy up to the sixth-order in perturbation can be
approximately given as a power series in terms of α2

E(6) = −1− α′2γ2 + γ2(γ2 − 1

2
)α′4

−1

4
γ2(8γ4 − 7γ2 + 1)α′6. (A11)

The expected value of 〈hn〉 for a single atom in the n-th cavity is calculated
by minimizing the energy in Eq. (A1). Fig. A1 shows 〈hn〉 in the three cavities
for the first- and second-order phase transitions from the NP to SR and CSR
phases. In the NP phase, the atom stays in the down state with 〈hn〉 = −1. For
the first-order phase transition (panels (a) and (c)), 〈hn〉 exhibits an abrupt
jump from −1 to 〈hn〉 > 0. In contrast, 〈hn〉 increases smoothly from −1 across
the second-order phase transition with γ = 1.5 as show in panels (b) and (d).
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