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Phase estimation of Mach-Zehnder interferometer via Laguerre excitation squeezed state
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Quantum metrology has an important role in the fields of quantum optics and quantum information
processing. Here we introduce a kind of non-Gaussian state, Laguerre excitation squeezed state as
input of traditional Mach-Zehnder interferometer to examine phase estimation in realistic case. We
consider the effects of both internal and external losses on phase estimation by using quantum Fisher
information and parity detection. It is shown that the external loss presents a bigger effect than the
internal one. The phase sensitivity and the quantum Fisher information can be improved by increasing
the photon number and even surpass the ideal phase sensitivity by two-mode squeezed vacuum in a
certain region of phase shift for realistic case.

PACS: 03.67.-a, 05.30.-d, 42.50,Dv, 03.65.Wj

I. INTRODUCTION

Optical quantum metrology is one of the most impor-
tant branches in the field of quantum science, which
plays a key role for the advanced development of science
and technology application. It is characteristics of us-
ing quantum systems or quantum mechanical properties,
such as entanglement, squeezing or nonclassical prop-
erty, to achieve high precision measurements of physi-
cal parameters, by minimizing the measurement uncer-
tainty. It is shown that the precision of measurement can
break through the standard quantum limit (SQL) due to
the quantum effects. Based on this interesting point, the
researchers focus their attention on the improvement of
measurement precision by using quantum properties.

To realize this purpose above, the Mach-Zehnder inter-
ferometer (MZI) is widely used in various tasks of quan-
tum measurement [1–4]. Generally, the measurement
process can be divided into three parts, i.e., the prepa-
ration of input states, the interaction between the input
state and the considered system, and the detection on
the output state [5, 6]. Thus, it is natural to examine
these three parts separately or collectively for enhanc-
ing the measurement precision. For instance, when in-
jecting separately the coherent state and the squeezed
state into two input ports of MZI [7], the phase preci-

sion can beat the SQL of 1/
√
N , with N being the aver-

age photon-number of the input state. After that, many
different quantum states have been proposed as the in-
put states of MZI to achieve better performance. Among
them, the NOON state [8], twin Fock state [9], and the
two-mode squeezed vacuum state (TMSV) [10] et al. can
achieve or even exceed the Heisenberg limit (HL) 1/N
[11–13], which have been verified by many experiments
[14, 15]. However, on one hand, it is difficult to prepare
a high average photon-number of quantum states of light
[16]. On the other hand, the precision will be quickly
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destroyed due to the inevitable interaction between the
systems and the environments [16–21]. For example,
for the TMSV, the experimentally available squeezing pa-
rameter is approximately 1.15 corresponding to a small
average photon-number about 2 sinh2 r ≈ 4 [16]. In ad-
dition, the phase sensitivity is unstable relative to the
phase shift. That is to say, the phase sensitivity will de-
teriorate rapidly when deviating from the optimal phase
shift [22]. Thus, it is still a challenging task how to fur-
ther improve the measurement precision and the ability
against the decoherence.

Actually, the high nonclassical property including en-
tanglement play an important role in various quantum
information tasks, including quantum key distribution
[23], quantum teleportation [24], and quantum metrol-
ogy [7–10, 25–36]. Thus, preparing a kind of high non-
classical property state as inputs is an effective method to
improve the measurement precision. For example, mix-
ing photon-added/subtracted squeezed vacuum and co-
herent state as inputs, it is found that the phase sen-
sitivity can be improved [25, 32–34]. Using photon-
added/subtracted TMSV input the MZI can improve the
precision of phase estimation [26, 27]. Recently, by em-
ploying multi-photon catalysis (MC) operating on the
TMSV (MC-TMSV) as inputs of MZI [35], Zhang et al.
studied the phase measurement including the case of
photon losses. It is shown that the influences of photon
losses before parity detection (external dissipation) on
phase measurement accuracy is more serious than that
after phase shifter (internal dissipation), but these effects
can be suppressed by increasing the number of catalytic
photons. In addition, the photon-number conversing op-
eration is also used to improve phase estimation [36].

These above research works indicate that non-
Gaussian operation is an effective way to improve the
measurement precision. Inspired by this, we introduce
a kind of non-Gaussian operation, i.e., Laguerre polyno-
mial excitation operating on the TMSV as inputs of MZI,
to improve the phase sensitivity. In fact, Laguerre poly-
nomial excitation can achieve high nonclassicality and
be theoretically realized [37, 38]. We shall investigate
the phase sensitivity with parity detection and the quan-
tum Fisher information (QFI) in both ideal and realistic
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cases, by deriving an equivalent operator with the aid
of the Weyl ordering invariance under similarity trans-
formations. It is found that the phase sensitivity and the
QFI can be improved whose effects become more obvious
as the excited order.

This paper is organized as follows. In Sec. II, we first
introduce the Laguerre polynomial excitation squeezed
state. Then, we examine the QFI and the phase sensi-
tivity with parity measurement in ideal case, when con-
sidering Laguerre polynomial excitation squeezed state
as inputs. In Sec. III, we further consider the effects of
photon losses on the phase sensitivity including external
and internal dissipations. In Sec. IV, we investigate the
influence of photon losses on the QFI. The main results
are summarized in the last section.

II. PHASE ESTIMATION WHEN THE LAGUERRE
POLYNOMIAL EXCITATION SQUEEZED STATE AS INPUTS

OF MZI IN IDEAL CASE

A. Laguerre polynomial excitation squeezed state as
Two-mode squeezed twin-Fock state

Actually, the Laguerre polynomial excitation squeezed
state |Lagu〉 can be generated by applying two-mode
squeezing operator on twin-Fock state |n, n〉, i.e.,

|Lagu〉 = S (r) |n, n〉 , (1)

where S (r) = exp
{
r(a†b† − ab)

}
is the two-mode

squeezing operator and |n, n〉 = |n〉a ⊗ |n〉b is twin-Fock
state. Using the coherent state representation of Fock
state, i.e.,

|n〉a =
∂n√
n!∂τn

‖τ〉
∣∣∣∣
τ=0

, ‖τ〉 = eτa
† |0〉a , (2)

and the transform relations

S (r) aS† (r) = a cosh r − b† sinh r,

S (r) bS† (r) = b cosh r − a† sinh r, (3)

Eq. (1) can be rewritten as the following form

|Lagu〉 = (− tanh r)
n
Ln

(
ua†b†

)
S |00〉 , (4)

where we have used u = 2/ sinh 2r,
S |00〉 =sechr exp

{
a†b† tanh r

}
|00〉 and the for-

mula eA+B = eAeBe−1/2[A,B], which is valid
for [A, [A,B]] = [B, [A,B]] = 0, as well as
eλaa†e−λa = a† + λ, and

Ln (xy) =
(−1)

n

n!

∂2n

∂τn∂tn
e−τt+τx+ty|τ=t=0, (5)

with Ln (xy) being Laguerre polynomials. From Eq. (4)
it is clear that Laguerre polynomial excitation squeezed
state is just the two-mode squeezed Fock state [39]. It is
interesting that the twin-Fock states with 6 photons can

be achieved experimentally [14, 40]. Thus, the Laguerre
polynomial excitation squeezed state can be successfully
realized.

Using Eq. (1) and Eq. (3) it is ready to have the total
average photon number, i.e.,

N̄ = 〈Lagu|
(
a†a+ b†b

)
|Lagu〉

= 2n cosh2r + 2 sinh2 r. (6)

It is clear that the total average photon number of input
state increases with r and n.

B. Laguerre polynomial excitation squeezed state as
input of MZI and parity detection

In order to establish the basis of studying the phase
estimation via Laguerre polynomial excitation squeezed
state in the non-ideal case, here we consider the Laguerre
polynomial excitation squeezed state as input of MZI for
discussing the effect of this non-Gaussian state on the
precision of measurement in the ideal case. As shown
in Fig. 1, the traditional MZI consist of two symmetrical
beam splitters (BSs) (denoted as BS1 and BS2), two in-
put ports (mode a and b) and two completely reflecting
mirrors as well as two-phase shifters. Here we should
note that the two BSs are conjugated to each other.

For this ideal MZI in Fig. 1, according to Ref. [41], the
effect is equivalent to a BS operator, i.e.,

UMZI = eiπJ1/2e−iϕJ3e−iπJ1/2 = e−iϕJ2 , (7)

where J1, J2, J3 are Bosonic operators, defined as

J1 =
1

2

(
a†b+ ab†

)
,

J2 =
1

2i

(
a†b− ab†

)
,

J3 =
1

2

(
a†a− b†b

)
. (8)
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FIG. 1: Schematic diagram of a balanced MZI for the par-
ity detection of the phase shift when the Laguerre excitation
squeezed state is injected into the first beam splitter.

1. The quantum Fisher information

Here we examine the QFI when inputting |Lagu〉 into
the MZI in ideal case. For the model shown in Fig. 1,
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the QFI FQ describes the amount of information con-
taining phase parameters carried by light after it passes
through the phase shifter. The quantum Cramér-Rao
bound (QCRB) gives the highest theoretical measure-
ment accuracy of phase shifts, which is expressed by the
QFI [6], i.e.,

∆ϕQCRB =
1√
FQ

. (9)

For the pure state as the input state |in〉 of MZI, the QFI
FQ can be calculated by

FQ = 4
[
〈ψ′ (ϕ) |ψ′ (ϕ)〉 − |〈ψ′ (ϕ) |ψ (ϕ)〉|2

]
, (10)

where |ψ (ϕ)〉 = e−iϕJ3e−iπJ1/2 |in〉 is the quantum state
after the evolution of the first BS and phase shifter,
|ψ′ (ϕ)〉 = ∂ |ψ′ (ϕ)〉 /∂ϕ. Therefore, it can be known
that in the case of |Lagu〉 as the input state of MZI, the
expression of the QFI can be derived as

FQ =
[
2 + 3 sinh2 (2r)

]
n (n+ 1) + sinh2 (2r) . (11)

2. The phase sensitivity with parity detection

Through this paper, we shall take parity detection as
measurement method. Here, we consider the parity de-
tection at output mode b. Actually, the photon-number
parity operator is given by

Πb = (−1)b
†b = eiπb

†b, (12)

whose normal ordering form is

Πb =: exp
{
−2b†b

}
: , (13)

where : · : is the symbol of the normal ordering. Thus

using the formula converting operator Ô from normal
ordering to its Weyl ordering form, i.e.,

Ô = 2
:
:

∫
d2α

π
〈−α| Ô |α〉 e2(α∗b−b†α+b†b) :

:
, (14)

where |α〉 is the coherent state, the Weyl ordering form
of parity operator Πb can be derived as

Πb =
π

2

:
:
δ (b) δ

(
b†
) :

:
, (15)

where
:
:
· · · :

:
is the symbol of the Weyl ordering and

δ (·) is the delta function [42, 43].
Noticing the Weyl ordering invariance under similarity

transformations [44, 45], i.e.,

U †
MZI

:
:
· · · :

:
UMZI =

:
:
U †
MZI · · ·UMZI

:
:
, (16)

and the transformation relations

eiϕJ2ae−iϕJ2 = a cos
ϕ

2
− b sin

ϕ

2
,

eiϕJ2be−iϕJ2 = b cos
ϕ

2
+ a sin

ϕ

2
, (17)

then the parity operator under the unitary transforma-
tion is changed to be

Πb → ΠMZI ≡ U †
MZIΠbUMZI

=
π

2

:
:
δ
(
b cos

ϕ

2
+ a sin

ϕ

2

)

×δ
(
b† cos

ϕ

2
+ a† sin

ϕ

2

)
:
:
, (18)

which is just the Weyl ordering form of the parity opera-
tor Πb under the unitary transformation UMZI .

For a Weyl ordering operator, say
:
:
f
(
a, a†, b, b†

) :
:

,

its classical correspondence can be obtained by replacing
a, a†, b, b† with complex parameters α, α∗, β, β∗, respec-

tively, i.e.,
:
:
f
(
a, a†, b, b†

) :
:
→ f (α, α∗, β, β∗). Further

using the relation between classical correspondence and
Wigner operator [45], i.e.,

:
:
f
(
a, a†, b, b†

) :
:

= 4

∫
d2αd2βf (α, α∗, β, β∗)∆a (α)∆b (β) , (19)

where ∆a/b (α/β) is the Wigner operators whose normal
ordering form is given by [46, 47]

∆a (α) =
1

π
: exp

[
−2 (a− α)

(
a† − α∗)] : ,

∆b (β) =
1

π
: exp

[
−2 (b − β)

(
b† − β∗)] : , (20)

and using the integration within an ordered product
(IWOP) technique [47, 48] as well as the following in-
tegral formula [49]

∫
d2z

π
eζ|z|

2+ξz+ηz∗+fz2+gz∗2

=
e

−ζξη+ξ2g+η2f

ζ2−4fg

√
ζ2 − 4fg

, (21)

the normal ordering of ΠMZI can be obtained, i.e.,

ΠMZI = : exp
[
(− sinϕ− 1)a†a+ (sinϕ− 1) b†b

]

× exp
[
−
(
b†a+ a†b

)
cosϕ

]
: . (22)

According to Ref. [10], we has made a shift trans-
formation ϕ −→ ϕ + π/2 in Eq. (22). When
the state |Lagu〉 as input of MZI, the expectation
value of parity operator in the output state can be

expressed as 〈Π0〉 = 〈Lagu|U †
MZIΠbUMZI |Lagu〉 =

〈Lagu|ΠMZI |Lagu〉, where ΠMZI = U †
MZIΠbUMZI
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whose normal ordering form is given in Eq. (22). In-
serting the completeness relation of coherent state and
using Eq. (21), 〈Π0〉 can be calculated as

〈Π0〉 = A0D̂n{exp
[
(x2 + t2 − y2 − τ2)A1

]

× exp [(xy + tτ)A2]

× exp [(yτ − xt)A3]

× exp [(xτ + yt)A4]}, (23)

where D̂n {·} = ∂4n

(n!)2∂xn∂yn∂tn∂τn {·} |x=y=t=τ=0, and

A0 =
sech

2r√
ω0

,

A1 =
sin (2ϕ) tanh r

2ω0 cosh
2 r

,

A2 =
(cos (2ϕ)− 1)

(
tanh r + tanh3 r

)

ω0
,

A3 =
sinϕ cosh (2r) sech

4r

ω0
,

A4 =
− cosϕsech

4r

ω0
, (24)

as well as ω0 = 1 − 2 tanh2 r cos (2ϕ) + tanh4 r. Thus,
using Eq. (23) we can get the phase sensitivity △ϕ0 via
error propagation formula, i.e.,

△ϕ0 =
△Π0

|∂ 〈Π0〉 /∂ϕ|
, (25)

where △Π0 =

√
1− 〈Π0〉2. From the value of △ϕ0, in

principle, we can know the phase measurement accuracy
of Lagurre polynomial excitation squeezed state as input
of MZI.

In particular, when n = 0 corresponding to the TMSV
as input of MZI, the phase sensitivity with parity detec-
tion is given by

△ϕTMSV =
ω0 cosh

2 r

2 tanh r cosϕ
, (26)

as expected [10].

III. EFFECTS OF PHOTON LOSSES ON PHASE
SENSITIVITY

In the process of quantum precision measurement,
photon losses is inevitable. It is of great practical signif-
icance to study the influence of photon losses on phase
sensitivity. In this section, we consider the phase sensi-
tivity with Laguerre polynomial excitation squeezed state
as input of MZI in photon losses case. Here, we only ex-
amine that the photon losses occurs either before parity
detection in MZI (outside the interferometer) or between
the phase shift and the second BS (inside the interferom-
eter), shown in Fig. 2.
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FIG. 2: Schematic diagram of the parity detection in the pres-
ence of photon losses. (a) External dissipation: photon losses
occur between the parity detection and the BS2. (b) Internal
dissipation: photon losses occur between the phase shifter and
the BS2.

A. Effects of photon losses before parity detection
(external dissipation)

First, we focus on the case with photon losses before
parity detection as shown in Fig. 2 (a) and investigate
the effects of photon losses on the phase sensitivity. It
will be convenient to redefine an equivalent parity oper-
ator including photon losses, which is different from the

ideal case where parity operator is Πb = (−1)b
†b

. For
this purpose, we use an optical BS BT1

to simulate the
photon losses at the probe end, shown in Fig. 2(a). The
corresponding transform relation by BT1

is given by

B†
T1

(
b
f1

)
BT1

=

( √
T1

√
1− T1

−
√
1− T1

√
T1

)(
b
f1

)
,

(27)
where f1 (f †

1) are photon annihilation (creation) opera-
tors corresponding to the dissipative mode f1 of BT1

and
T1 is the transmissivity of BT1

. T1 is related to external
dissipation. The larger T1 is, the smaller external photon
losses is.

Using Eqs. (15) and (27), and the Weyl ordering in-
variance under similarity transformations, the equivalent
parity operator including photon losses Πloss

b can be cal-
culated as

Πloss
b =

π

2
f1 〈0|

:
:
B†

T1
δ (b) δ

(
b†
)
BT1

:
:
|0〉f1

=
π

2
f1 〈0|

:
:
δ(
√
T1b+

√
1− T1f1)

×δ
(√

T1b
† +

√
1− T1f

†
1

)
:
:
|0〉f1 , (28)

where |0〉f1 is vacuum noise inputting BS BT1
. In a sim-

ilar way to deriving Eq. (22), using Eqs. (19)-(21), the
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normal ordering form of Πloss
b is derived as

Πloss
b =: exp

(
−2T1b

†b
)
: . (29)

It is clear that for the case of T1 = 1 corre-
sponding to the photon lossless, Πloss

b just reduces to
Πb =: exp

(
−2b†b

)
: , as expected. Thus, the expectation

value of parity detection in the case of photon loss can
be transformed to be

〈
Πloss

b

〉
= 〈out|Πloss

b |out〉, where
|out〉 is the output state after the second BS of MZI and
before the photon loss.

In our scheme, using the completeness relation of co-
herent states, and combining the unitary transformations

UMZIa
†U †

MZI = a† cos ϕ
2 + b† sin ϕ

2 , UMZIb
†U †

MZI =

b† cos ϕ
2 − a† sin ϕ

2 as well as the relation UMZI |0, 0〉 =
|0, 0〉, the output state can be shown as

|out〉 =
sechr

n!

∂2n

∂xn∂yn

∫
d2αd2β

π2

× exp[− |α|2 − |β|2 + α∗β∗ tanh r

−xy tanh r + α∗xsechr + β∗ysechr]

× exp[(α cos
ϕ

2
− β sin

ϕ

2
)a†

+(α sin
ϕ

2
+ β cos

ϕ

2
)b†] |00〉 |x=y=0. (30)

Thus, by further inserting the completeness relation of
coherent states and using Eq. (21), the parity measure-
ment in realistic case is calculated as

〈
Πloss

b

〉
= C1D̂n exp [C2 + C3 + C4 + C5] , (31)

where

C1 =
sech

2r√
ω1

,

C2 =
µ1κ1

ω1

[
1−

(
ǫ21 + ǫ2ǫ3

)
tanh2 r

]
,

C3 =
µ2
1ǫ1ǫ2
ω1

tanh r,

C4 =
κ
2
1ǫ1ǫ3
ω1

tanh3 r,

C5 = (ǫ1x+ ǫ3y) τsech
2r

+ǫ1ǫ3 (τsechr)
2
tanh r

− (tτ + xy) tanh r, (32)

and

ω1 =
((
ǫ21 + ǫ2ǫ3

)
tanh2 r − 1

)2

−4ǫ21ǫ2ǫ3 tanh
4 r,

µ1 = (ǫ1x+ ǫ3y) sechr tanh r

+
(
2ǫ1ǫ3τ tanh

2 r + t
)

sechr,

κ1 =
(
ǫ21 + ǫ2ǫ3

)
τsechr tanh r

+(ǫ2x+ ǫ1y) sechr,

ǫ1 = −T1 cosϕ,
ǫ2 = 1− T1 (1 + sinϕ) ,

ǫ3 = 1− T1 (1− sinϕ) , (33)

where ϕ −→ ϕ + π/2 is used again. In particular, when
T1 = 1, i.e., the ideal case, Eq. (31) can be simplified
to be Eq. (23). Furthermore, when n = 0, Eq. (31) be-

comes
〈
Πloss

b

〉
= sech2r√

ω0
, as expected. Using the expecta-

tion value
〈
Πloss

b

〉
of parity operator under external pho-

ton losses in Eq. (31), we can further obtain the phase
sensitivity ∆ϕ by using

△ϕ =
△Πloss

b∣∣∂
〈
Πloss

b

〉
/∂ϕ

∣∣ , (34)

which is similar to deriving Eq. (23).
According to Eq. (34), we can further investigate the

phase sensitivity when the Laguerre polynomial excita-
tion squeezed state as input of MZI. As shown in Fig. 3,
for both ideal and realistic cases, the phase sensitivity
∆ϕ is plotted as the function of the squeezing parameter
r and the transmissivity T1 of BT1

for some given param-
eters. From Fig. 3, it is clear that the phase sensitivity
∆ϕ in the case of external dissipation is worse than that
in the ideal case (T1 = 1). However, ∆ϕ can be still im-
proved with the increase of the excited photon number n
for any r. In addition, it is found from Fig. 3(b) that ∆ϕ
can be improved with the increase of T1.

Fig. 4 presents the relation between the phase sensitiv-
ity ∆ϕ and the phase shift ϕ for different excited photon-
number n and T1 as well as given parameter r = 0.7.
From Fig. 4(a), it is shown that (i) in the ideal case
(T1 = 1), the optimal phase sensitivity is at the point
with ϕ = 0, and it becomes better as n increases. Com-
pared with the TMSV as inputs, however, the improved
region of ∆ϕ becomes smaller with the increase of n. (ii)
For the realistic case (say T1 = 0.95), the optimal point
of the phase sensitivity will deviate from ϕ = 0, and the
∆ϕ value corresponding to optimal point decreases with
the the increase of n. It is interesting to notice that, even
in the realistic case, the phase sensitivity still surpass that
by the TMSV in the ideal case, but the improved region of
ϕ becomes smaller with the increase of n which is similar
to the ideal case.

On the other hand, the energy is an important index
to measure the phase sensitivity, here we further con-
sider the phase estimation when fixing the total initial
energy. Fig. 4(b) shows the phase sensitivity ∆ϕ as the
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FIG. 3: For the photon number n = 0, 1, 2, 3, (a) the phase
sensitivity ∆ϕ as a function of the squeezing parameters r, for
the phase shift ϕ = 0.001, the transmissivity of BT1

T1 = 1 and
T1 = 0.95, (b) for r = 0.7 and ϕ = 0.05, ∆ϕ as a function of
T1.

function of ϕ for different n and T1 as well as given total
average photon number N̄ = 8. It is found that (i) in the
ideal case (T1 = 1), the optimal phase sensitivity is at the
point with ϕ = 0, but it becomes worse as n increases,
which is the opposite to the above situation. However,
it is interesting that the improved region of ∆ϕ becomes
bigger with the increase of n, i.e., the phase sensitivity is
more stable with respect to the phase shift. This implies
that, when fixing the total initial energy, although the
optimal phase sensitivity becomes worse, the improved
region will become broader and more stable. (ii) In the
realistic case (say T1 = 0.95), it is clearly seen that exter-
nal dissipation causes the optimal phase to deviate from
ϕ = 0 and the optimal value of ∆ϕ decreases with the
increase of n, i.e., the phase sensitivity becomes higher
as n increases which is similar to the case in Fig. 4(a).
In addition, the improved region becomes bigger as n in-
creases, which is different from the case in Fig. 4(a). In a
word, the phase sensitivity in the realistic case increases
with the excited photon number, whether the initial en-
ergy is fixed or not.
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FIG. 4: The phase sensitivity ∆ϕ as a function of the phase
shift ϕ, for the photon number n = 0, 1, 2, 3, the transmissivity
of BT1

T1 = 1 and T1 = 0.95 (a) Squeezing parameter r = 0.7,
(b) the total average photon number N = 8.

B. Effects of photon losses between phase shifter and
BS2 (internal dissipation)

In this subsection, we examine the effects of photon
losses between phase shifter and BS2 on the phase sensi-
tivity. We name the photon losses between them as inter-
nal dissipation, as shown in Fig. 2(b). In a similar way,
we adopt an optical BS BT2

with a factor T2 to simulate
the internal photon-losses process, whose transform re-
lation is

B†
T2

(
b
f2

)
BT2

=

( √
T2

√
1− T2

−
√
1− T2

√
T2

)(
b
f2

)
,

(35)
where f2 (f †

2) are photon annihilation (creation) oper-
ators corresponding to the dissipative mode f2 of BT2

and T2 is the transmissivity of BT2
. In this case, the

average value of parity detection can be calculated as〈
Π̃loss

b

〉
= 〈in| Π̃loss

b |in〉, where |in〉 is the input state of

MZI, and Π̃loss
b is the equivalent operator of the entire

lossy interferometer, including parity detection, given by

Π̃loss
b = f2 〈0|B†

1U
† (ϕ)B†

T2
B†

2e
iπb†bB2BT2

U (ϕ)B1 |0〉f2 ,
(36)

where B1 (−π/2) = e−iπ
2
J1 and B2 (π/2) = ei

π
2
J1 are

BS1 and BS2 operators, respectively, and satisfy the fol-
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lowing transform relation:

B†
1

(
a

b

)
B1 =

√
2

2

(
1 −i
−i 1

)(
a

b

)
,

B†
2

(
a

b

)
B2 =

√
2

2

(
1 i
i 1

)(
a

b

)
, (37)

and U (ϕ) = e−iϕJ3 is the phase shifter.

In a similar way to deriving Eq. (28), by using Eqs.
(35)-(37) and (15), one can obtain the normal ordering

of Π̃loss
b , i.e.,

Π̃loss
b =: eX1a

†a−X2b
†a−X∗

2 a
†b+X3b

†b : , (38)

where

X1 = −2
√
T2 sinϕ+ 1 + T2

2
,

X2 =
(T2 + 1)

2 − 4T2 sin
2 ϕ

2
(
iT2 − i+ 2

√
T2 cosϕ

) ,

X3 =
2
√
T2 sinϕ− 1− T2

2
, (39)

where ϕ −→ ϕ + π/2. In particular, when T2 =
1 corresponding to the ideal case, we have X1 →
− sinϕ − 1, X2 = cosϕ,X3 = sinϕ − 1. Then

Π̃loss
b → : e(− sinϕ−1)a†a−cosϕ(b†a+a†b)+(sinϕ−1)b†b : , as

expected (reduces to Eq. (22)).

In our scheme, the input state is given by Eq. (4).
Thus, by using Eqs. (4), (21) and (38), and inserting
completeness relation of coherent states, we can get the

expectation value of Π̃loss
b under the input state, which is

given by

〈
Π̃loss

b

〉
= D1D̂n {exp [D2 +D3 +D4 +D5]} , (40)

where

D1 =
sech

2r√
ω2

,

D2 =
µ2κ2

(
1− E tanh2 r

)

ω2
,

D3 =
−µ2

2X2 (X3 + 1)

ω2
tanh r,

D4 =
κ
2
2 (−X1X

∗
2 −X∗

2 )

ω2
tanh3 r,

D5 = (−X∗
2y +X1x+ x) tsech

2r

+(−X1X
∗
2 −X∗

2 ) t
2sech

2r tanh r

−xy tanh r − tτ tanh r, (41)

and

ω2 =
(
1− E tanh2 r

)2

−4 |X2|2 (X1 + 1) (X3 + 1) tanh4 r,

µ2 = (−X∗
2y +X1x+ x)sechr tanh r

−2 (X1 + 1)X∗
2 t tanh

2 rsechr + τsechr,

κ2 = Etsechr tanh r

+(X3 + 1) ysechr −X2xsechr,

E = |X2|2 +X1X3 +X3 +X1 + 1. (42)

For the ideal case of T2 = 1, Eq. (40) reduces to Eq. (23),
as expected. In addition, when n = 0, Eq. (40) becomes〈
Π̃loss

b

〉
= sech2r√

ω0
. Eq. (40) is just the parity signal in the

presence of internal dissipation, and it is ready to obtain
the phase sensitivity combining Eqs. (34) and (40).
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FIG. 5: For the photon number n = 0, 1, 2, 3, (a) the phase
sensitivity ∆ϕ as a function of the squeezing parameters r, for
the phase shift ϕ = 0.001, the transmissivity of BT2

T2 = 1 and
T2 = 0.95, (b) for r = 0.7 and ϕ = 0.05, ∆ϕ as a function of
T2.

Similar to Figs. 3 and 4, Figs. 5 and 6 present ∆ϕ as
a function of squeezing parameter, dissipative factor and
phase shift for other given values. Some similar results
can be obtained. Briefly, the phase sensitivity ∆ϕ can
be enhanced by increasing excited photon number, and
even surpass the ideal phase sensitivity by the TMSV in a
certain region of ϕ.
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FIG. 6: The phase sensitivity ∆ϕ as a function of the phase
shift ϕ, for the photon number n = 0, 1, 2, 3, the transmissivity
of BT2

T2 = 1 and T2 = 0.95, (a) for the squeezing parameter
r = 0.7, (b) for the total average photon number N = 8.

In addition, comparing Figs. 3 and 4 with Figs. 5 and
6, it is ready to see the difference between internal dis-
sipation and external one on the phase sensitivity. It is
found that the external dissipation has a greater impact
on the phase measurement accuracy than the internal
dissipation. To clearly see this point, at fixed ϕ = 0.05,
r = 0.7, we give the phase sensitivity ∆ϕ as a function
of T1 (T2) for several different n = 0, 1, 2, 3 as shown in
Fig. 7. This result implies that, to get a better precision
of phase measurement, special attention should be paid
to the control of external photon losses.

In order to further clearly see the difference between
internal and external dissipations, we plot the phase sen-
sitivity ∆ϕ as a function of the squeezing parameter r for
different excited photon number n = 0, 1, 2, 3 (optimized
over the parameter ϕ) in Fig. 8. Here the SQL and the
HL are also plotted for comparison. From Fig. 8, it is
shown that (i) ∆ϕ can break the SQL and the HL for
n = 0 [see Fig. 8(a)]. (ii) ∆ϕ can break through the
SQL in a certain range of r. In particular, ∆ϕ with the in-
ternal dissipation can break through the SQL in a larger
squeezing region than that with the external dissipation.
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FIG. 7: Comparing the influence of two dissipation ways on the
phase sensitivity ∆ϕ for the photon number n = 0, 1, 2, 3.

IV. EFFECTS OF PHOTON LOSSES ON THE QFI

The QFI theoretically gives the optimal accuracy of
phase estimation independent of special measures, but
this optimal accuracy is also affected by the photon losses
in the realistic environment. In this section, we mainly
consider the influences of photon losses along the path
of photon interferometer on the QFI. As shown in Fig. 9,
for simplicity, we assume that photon losses exist in the
optical path of mode b, and the sources of photon losses
is mainly located before and after the phase shift, which
are respectively simulated by two optical BSs of Bη1

and
Bη2

, where η1 = η2 = η are transmissivities of Bη1
and

Bη2
, related to the dissipation factor of photon losses.

According to the research on the bounds for error esti-
mation in noisy systems of Escher et al. [50], in this case,
the QFI FQ can be calculated by the following equation:

FQ ≤ CQ = 4

[
〈ψ| Ĥ1 |ψ〉 −

∣∣∣〈ψ| Ĥ2 |ψ〉
∣∣∣
2
]
, (43)

where the state |ψ〉 = e−iπ
2
J1 |Lagu〉 is the correlated

probe state after the input state |Lagu〉 is injected into
the first optical BS (BS1) of MZI, and Hermitian opera-

tors Ĥ1,2 are defined by

Ĥ1 =
∑

l

dΠ̂†
l (ϕ)

dϕ

dΠ̂l (ϕ)

dϕ
,

Ĥ2 = i
∑

l

dΠ̂†
l (ϕ)

dϕ
Π̂l (ϕ) , (44)

where Π̂l (ϕ) are Kraus operators, i.e.,

Π̂l (ϕ) =

√
(1− η)

l

l!
e
−iϕ

(

a†a−b†b
2

+γl
2

)

η
b†b
2 bl. (45)

where γ = 0 and γ = −1 represent the photon losses be-
fore and after the phase shifter, respectively. η is related
to the dissipation factor with η = 1 and η = 0 being the
cases of complete lossless and absorption, respectively.
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FIG. 8: The phase sensitivity ∆ϕ as a function of the squeezing parameters r in the case of photon losses comparing with the SQL
and the HL (a) for ϕ = 0.2, n = 0 and T1 or T2 = 0.96. (b) for ϕ = 0.15, n = 1 and T1 or T2 = 0.95. (c) for ϕ = 0.12, n = 2 and
T1 or T2 = 0.95. (d) for ϕ = 0.1, n = 3 and T1 or T2 = 0.95.
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FIG. 9: Schematic diagram of a lossy interferometer. The losses
of mode b in the interferometer are modeled by adding the
fictitious beam splitters before and after the phase shift.

By combining Eqs. (43)-(45) for further calculation,
we can get

CQ =
〈
∆2n̂a

〉
+ (η + γη − γ)

2 〈
∆2n̂b

〉

−2 (η + γη − γ)Cov [n̂a, n̂b]

+ (1 + γ)
2
η (1− η) 〈n̂b〉 , (46)

where n̂a = a†a, n̂b = b†b,
〈
∆2n̂i

〉
=

〈
n̂2
i

〉
− 〈n̂i〉2

(i = a, b), and Cov [n̂a, n̂b] = 〈n̂an̂b〉 − 〈n̂a〉 〈n̂b〉 (〈·〉 =
〈ψ| · |ψ〉). Minimizing over the parameter γ in Eq. (46)
will lead to the minimum value of CQ in the presence
of photon losses, where the optimal value of γ can be
obtained

γopt =
η
〈
∆2n̂b

〉
− Cov [n̂a, n̂b]− η 〈n̂b〉

(1− η) 〈∆2n̂b〉+ η 〈n̂b〉
. (47)

Thus substituting Eq. (47) into Eq. (46), the minimum
value of CQ can be ready to obtian.

Using Eqs. (1) and (3) and the transform relations

ei
π
2
J1ae−iπ

2
J1 =

√
2

2
(a− ib) ,

ei
π
2
J1be−iπ

2
J1 =

√
2

2
(b− ia) , (48)

one can obtain

〈n̂a〉 = 〈n̂b〉 = n cosh2 r + (n+ 1) sinh2 r,

〈
n̂2
a

〉
=

〈
n̂2
b

〉
=

(
3n2 + n

) cosh4 r
2

+
(
3n2 + 5n+ 2

) sinh4 r
2

+
(
3n2 + 3n+ 1

) sinh2 (2r)
2

, (49)
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and

〈n̂an̂b〉 =
(
n2 − n

) cosh4 r
2

+
(
n2 + 3n+ 2

) sinh4 r
2

+
(
n2 + n

) sinh2 (2r)
2

. (50)

By combining Eq. (46) with Eq. (47) and further us-
ing Eq. (49) and Eq. (50), we can get the value of γopt
and the minimum value of CQ, i.e. the QFI FQ for the
phase shift in the presence of photon losses in MZI, not
shown here for simplicity. In particular, for the case of
the transmissivity η = 1 corresponding to the ideal case,
the expression for FQ just reduces to Eq. (11), as ex-
pected.
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0 1
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FIG. 10: The quantum Fisher information FQ as a function of
the transmissivity η, for the photon number n = 0, 1, 2, 3 and
the squeezing parameter r = 0.7.

Based on these formula above, we can clearly discuss
the relation between QFI and related parameters. In Fig.
10, we present the QFI FQ as a function of the transmis-
sivity η for different photon number n = 0, 1, 2, 3 under
given the squeezing parameter (r = 0.7). From Fig. 10,
it is clearly seen that the FQ increases with the increase
of η or n. This indicates that although photon losses can
reduce the QFI, it can be significantly improved by in-
creasing the excited photon number. In addition, with
the increasing of η, the increasing of n has more clear
improvement on the QFI.

Fig. 11 shows the QFI FQ and the QCRB as a function
of the squeezing parameter r for the different transmis-
sivity η = 1, 0.8 and excited photon number n = 0, 1, 2, 3.
It is shown that the FQ can be increased by increasing
the excited photon number n or the squeezing parameter
r. In particular, the difference of FQ between ideal and
photon-loss cases increase as n or r, which becomes more
clear in the small squeezing region. This implies that,
in a realistic case, the FQ with a higher excited photon-
number is more susceptible to the environment, espe-
cially in small squeezing region. In addition, the case be-
comes less obvious in large squeezing region. This case
is true for the QCRB where ∆ϕQCRB = 1/

√
FQ, see Fig.

11(b).
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FIG. 11: For the photon number n = 0, 1, 2, 3, the transmissiv-
ity η = 1 and η = 0.8, (a) the quantum Fisher information FQ

as a function of the squeezing parameter r, (b) ∆ϕQCRB as a
function of r.

In order to further clearly see the relation between the
QCRB and the SQL, the HL, we plot the QCRB ∆ϕQCRB

as a function of the squeezing parameter r for different
excited photon number n = 0, 1, 2, 3 and both ideal and
realistic cases in Fig. 12. Here the SQL and the HL are
also plotted for comparison. From Fig. 12, it is clear
that (i) for the case of n = 0 corresponding to the TMSV,
the QCRB can break the SQL and the HL. In fact, consid-
ering the TMSVs as inputs of the ideal MZI, it is found
that ∆ϕQCRB = 1√

N̄2+2N̄
,which exceeds the HL defined

as 1
N̄

[27]. (ii) for the cases of n = 1, 2, 3, the QCRB is
between the SQL and the HL. In particular, for the ideal
case of η = 1, the QCRB with n = 1 basically coincides
with the HL. (iii) the QCRB can almost saturate the HL
as the increasing of r. Although the QCRB breaks the HL
at n = 0, the QCRB can still be improved with increasing
n. In addition, the difference between ideal and realistic
cases becomes smaller with increasing r. These results
imply that although the QCRB can break the HL for the
TMSV, the QCRB can be further improved by introducing
excited photon number.
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FIG. 12: ∆ϕQCRB as a function of the squeezing parameter r comparing with the SQL and the HL (a) for n = 0, η = 1, 0.8, (b) for
n = 1, η = 1, 0.8, (c) for n = 2, η = 1, 0.8, (d) for n = 3, η = 1, 0.8.

V. CONCLUSION

In summary, we introduced a kind of non-Gaussian
state, i.e., Laguerre polynomial excited squeezed state as
input of the traditional MZI. Then we first investigated
the phase sensitivity with parity detection and the QFI in
ideal case. In particular, we derived an equivalent op-
erator by using the Weyl ordering invariance under sim-
ilarity transformations, whose normal ordering form is
given. It is convenient to calculate the average of par-
ity operator using the equivalent operator for any input
state of the traditional MZI. This method is also effect
when considering the realistic case.

We further examined the effects of photon losses on
the phase sensitivity, including internal and external
losses. It is found that the external loss presents a big-
ger influence than the internal one. Moreover, the phase
sensitivity can be improved with the increase of the ex-
cited photon number n for any squeezing parameter r.
Specially speaking, the optimal phase sensitivity is at the
point with ϕ = 0, and becomes better as n increases for
the ideal case. For the realistic case, however, the opti-
mal point of the phase sensitivity will deviate from ϕ = 0,
and the ∆ϕ value corresponding to optimal point de-
creases with the increase of n. It is interesting that even
in the realistic case, the phase sensitivity still surpass that

by the TMSV in the ideal case, but the improved region
of ϕ becomes smaller with the increase of n. When fix-
ing the total input photon number, the phase sensitivity
can also be enhanced by increasing n in the realistic case,
although this case is not true in the ideal case.

In addition, we investigated the effects of photon
losses on the QFI. It is shown that although the QFI will
reduce due to the photon losses, it can still increase as
the squeezing parameter r or the photon number n. But
the FQ with a higher excited photon-number is more sus-
ceptible to the environment, which becomes more clear
in the small squeezing region. The QCRB ∆ϕQCRB can
break the SQL and even beat the HL, which can be fur-
ther improved by introducing excited photon number.
These results can be effectively applied to improve the
accuracy of phase measurement in the realistic case.
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