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In this work, we show that ma-QAOA is equivalent to a restriction of continuous-time quantum
walks on dynamic graphs. We then show it is universal for computation by finding the appropriate
B and C operators and angles that implement the universal gate set consisting of the Hadamard,
π/8 and Controlled-Not gates in the ma-QAOA framework. This result begins to bridge the gap
between the continuous-time quantum walk model and gate model of quantum computation.

I. INTRODUCTION

In classical computing, combinatorial optimization (CO) problems are defined by bits and constraints on the bits,
called clauses. The goal of these problems is to maximize or minimize some objective,

C =
∑
a

Ca,

where Ca refers to the ath clause. The quantum approximate optimization algorithm (QAOA) is a well-studied
algorithm that approximately solves CO problems [1]. The algorithm requires that C is encoded into a unitary
operator

U(γ,C) = e−iCγ ,

where γ ∈ R is a real valued parameter, often called an angle. U(γ,C) and a mixing unitary,

U(β,B) = e−iBβ

where β ∈ R, are applied to an initial state which is the equal superposition over the computational basis states

|s〉 =
1√
2n

∑
z

|z〉.

Typically B is a sum of Pauli-x operators acting on each qubit, however, other mixers have been considered [2, 3].
The QAOA ansatz applied p times to |s〉 is denoted p-QAOA. The result of p-QAOA is

|γ, β〉 = U(βp, B)U(γp, C) . . . U(β1, B)U(γ1, C)|s〉,

where the subscript i denotes the angle chosen for iteration i of the algorithm. The classical parameters γ and β are
chosen to maximize 〈γ, β|C|γ, β〉. While QAOA is typically thought of as an algorithm that solves CO problems, it
has been shown to be a universal model of quantum computation [4, 5]. Recently, multi-angle QAOA (ma-QAOA)
was introduced as a generalization of QAOA that allows for additional classical parameters [6]. In that same paper,
it was shown that ma-QAOA always performs at least as well as QAOA for optimization and can strictly outperform
it in some cases.

Continuous-time quantum walks on dynamic graphs (dynamic CTQWs) were introduced in [7] and proven to be
universal for quantum computation. In this paper, we show that ma-QAOA is equivalent to a restriction of dynamic
CTQWs in Section II. We then find the appropriate operators B and C, and angles β and γ that implement the
universal gate set of the Hadamard (H), π/8 (T ), and Controlled-Not (CX) gates in Section III. These gates have
been determined in the dynamic CTQW framework, so the graphs and times used in that framework define the
operators and angles used in the ma-QAOA framework. In Section IV, we work through the implementation of the
H, T and CX gates and then close with a discussion in Section V.

∗ rherrma2@utk.edu

ar
X

iv
:2

20
9.

00
41

5v
1 

 [
qu

an
t-

ph
] 

 1
 S

ep
 2

02
2

mailto:rherrma2@utk.edu


Relating ma-QAOA and dynamic CTQWs 2

II. BACKGROUND

In this section, we present relevant background information for ma-QAOA and dynamic CTQWs. We then discuss
how ma-QAOA can be viewed as a restriction of dynamic CTQWs.

A. ma-QAOA

Multi-angle QAOA is a generalization of QAOA in which additional classical parameter input are allowed. As with

QAOA, in ma-QAOA two operators U(~γ`, C) and U(~β`, B) are applied in succession to the state |s〉 which is an equal

superposition over the computational basis. U(~γ`, C) and U(~β`, B) are defined as

U(~γ`, C) = e−i
∑
a Caγ`,a =

∏
a

e−iγ`,aCa

and

U(~β`, B) = e−i
∑
v∈V (G) Bvβ`,v =

∏
v∈V (G)

e−iβ`,vBv .

Here, ~γ` = (γ`,a1 , γ`,a2 , . . . , γ`,am) ∈ Rm is the vector of angles used when U(~γ`, C) is applied for the `th time and
~β` = (β`,v1 , β`,v2 , . . . , β`,vn) ∈ Rn is the vector of β angles for U(~β`, B) when applied for the `th time. Each a denotes
a clause in the CO problem and vj refers to a specific qubit in the problem formulation, and Bv typically refers to
the Pauli-x matrix acting on qubit v. Each problem can be translated into a graph by identifying each qubit with a
vertex and each interaction between qubits with an edge between the appropriate vertices [8–10].

Typically, C is identified with a combinatorial optimization problem, such as MaxCut. The objective function for
the MaxCut problem is

min
x∈{0,1}n

∑
ij∈E(G)

xj(xi − 1) + xi(xj − 1) = min
x∈{0,1}n

∑
ij∈E(G)

2xixj − xi − xj .

This is encoded into C as

C = 1/2
∑

ij∈E(G)

(−ZiZj + I)

where Zj is the Pauli-z operator acting on qubit j and I is the 2n × 2n identity matrix. This is a diagonal matrix,
so we denote the diagonal entries d0, . . . , d2n−1. Note that all entries of C are zero except for possibly the diagonal
entries d1 through d2n−2, depending on the edges in the graph.

B. Dynamic CTQWs

Continuous-time quantum walks (CTQWs) on graphs were introduced to search decision trees [11] and have numer-
ous applications including modeling coherent transport on complex networks [12] and spatial searches [13]. Further-
more, they are universal for computation [14]. In a CTQW on a graph G = (V,E), a walker moves between vertices
of G according to the Schrödinger equation

i
d|ψ〉
dt

= H|ψ〉,

where ~ = 1, and H is either equal to the adjacency matrix or Laplacian of G. In this work, we use the adjacency
matrix formulation.

The concept of CTQWs on dynamic graphs was introduced in [7] and proven to be universal for computation. A
dynamic CTQW is a set of continuous-time quantum walks on a dynamic graph. A dynamic graph is a set of ordered
pairs of graphs and associated propagation times, G = {(Gi, ti)}. A dynamic CTQW is defined to be a sequence of
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FIG. 1: The dynamic CTQW implementation of the H gate, which requires three graphs, G1, G2, and G3.

0 1

t = 7π/4

G1

FIG. 2: The dynamic CTQW implementation of the T gate.

CTQWs on each graph Gi for the associated time ti performed in order of increasing index on some initial state.
Mathematically, let |ψ0〉 be the initial state of the walker and {(G1, t1), (G2, t2), . . . , (Gk, tk)} be the dynamic CTQW
that acts upon it. Then the final state of the walker, |ψ〉, is

|ψ〉 = e−iAktk/||Ak|| . . . e−iA2t2/||A2||e−iA1t1/||A1|||ψ0〉
where Ai is the adjacency matrix of Gi and ||Ai|| is the spectral norm of Ai.

When showing dynamic CTQWs were universal for computation, the authors of [7] defined each Gi to have 2n

vertices, which is the number of possible states in an n-qubit system. The vertices of these graphs were allowed to
have self-loops, which adds phase to the quantum state, however multi-edges were not permitted. A self-loop in the
dynamic graph on vertex v is represented in the adjacency matrix as a 1 on the diagonal element dv. In the original
dynamic CTQW formulation, any vertex that did not have an edge incident to it was required to have a self-loop,
however the author of [15] relaxed this condition so that vertices can exist in isolation without accumulating phase.
We will use this relaxation throughout this paper.

We now recall the dynamic CTQWs that give the universal gate set of H, T , and CX as defined in [15].

1. Dynamic CTQW implementation of the H gate

The dynamic CTQW equivalent of the single qubit H gate consists of three graphs [15] which are shown in Figure 1.
Formally, the dynamic CTQW for this gate is written as GH = {(G1, 3π/2), (G2, π/4), (G3, 3π/2)}, and the adjacency
matrices corresponding to G1, G2, and G3 are A1, A2, and A3, respectively. These adjacency matrices are

A1 = A3 =

(
0 0
0 1

)
A2 =

(
0 1
1 0

)
.

2. Dynamic CTQW implementation of the T gate

The dynamic CTQW equivalent of the T gate consists of a single graph [15], which is shown in Figure 2. The
dynamic CTQW for this gate is written as GT = {(G1, 7π/4)}, and the adjacency matrix corresponding to G1 is

A1 =

(
0 0
0 1

)
.

3. Dynamic CTQW implementation of the CX gate

The dynamic CTQW equivalent of the two qubit CX gate consists of two graphs [15] which are shown in Figure 3.
Formally, the dynamic CTQW for this gate is written as GCX = {(G1, π/2), (G2, 3π/2)}, and the adjacency matrices
corresponding to G1 and G2 are A1 and A2, respectively. These adjacency matrices are
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FIG. 3: The dynamic CTQW implementation of the CX gate, which requires two graphs, G1 and G2.

A1 =

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

 A2 =

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 .

C. ma-QAOA as a restriction of dynamic CTQWs

Both ma-QAOA and dynamic CTQWs act on an initial state |ψ〉 by applying operators of the form e−iAjtj where
Aj is a Hermitian matrix and tj is a real valued parameter. Both methods use underlying graphs to determine the
structure of Aj , as well. Furthermore, all dynamic CTQWs for the gate set H, T , and CX consist of alternating a
graph that has self-loops as its only edges with graphs that have no self-loops as edges. Multi-angle QAOA is similar
in that the C matrix contains only diagonal entries, which is the adjacency matrix of a graph with only self-loops, up
to constants, while the B matrix has only off-diagonal positions. The main difference is that in ma-QAOA, the two
operators B and C have well-defined structure that does not change with the number of iterations of the algorithm.
In contrast, the dynamic CTQW graphs have no such restriction.

Thus, it is natural to think of ma-QAOA as a restriction of dynamic CTQWs where alternate graphs have adjacency
matrix C and the others have adjacency matrix B. In order to explicitly relate ma-QAOA to dynamic CTQWs, one
can define the ma-QAOA C matrix as a sum of matrices,

∑
a Ca, each of which receives its own angle γa. One

can also define a B =
∑
dBd matrix as a sum of matrices that receives its own angle βd. If

∑
Caγa = Aktk, then

e−i
∑
a Caγa = e−iAktk , so U(γ,C) acts on a quantum state the same way that e−iAktk does, which clearly holds when

considering
∑
dBd and βd, as well. Thus, we can show that ma-QAOA is universal for computation if we can develop

B and C matrices and find appropriate ~β and ~γ such that
∑
Bdβd = Aktk or

∑
Caγa = Aktk for each graph Ak and

associated time tk in the dynamic CTQW representation of the H, T , and CX gates.

When implementing the dynamic CTQWs, there are two types of graphs- graphs in which a subset of vertices
has self-loops with no other edges, and graphs that contain only edges with no self-loops. When solving the MaxCut
problem with ma-QAOA, C is a diagonal matrix with non-negative entries, which can be seen as the adjacency matrix
of a graph with only weighted self-loops. B has only off-diagonal entries that are 0-1 valued, which can be seen as
the adjacency matrix of a graph with no self-loops.

Since C is a diagonal matrix, we want to relate C to the dynamic CTQW matrices that have only self-loops as
edges. The first and last adjacency matrices in the dynamic CTQW implementation of the H gate, the only matrix
in the dynamic CTQW implementation of the T gate, and the last matrix in the dynamic CTQW implementation
of the CX gate are the only matrices that satisfy these criteria. Note that the self-loops for these graphs do not
necessarily appear on the same vertices, so when defining C, we require that an arbitrary diagonal position of C is
the only non-zero entry of C. Thus, we want to define C such that there exists a collection of angles γa associated
with each Ca such that e−i

∑
a Caγa = e−iAktk where Ak is an arbitrary diagonal matrix.

Similarly, one can define a B matrix as a sum of matrices,
∑
dBd, each of which receives its own angle, βd. We

want to relate B to the dynamic CTQW graphs that do not contain self-loops, which are the second graph in the
H gate implementation and the first graph in the CX gate implementation. Thus, we want to define B such that
there exists a collection of angles βd associated with each Bd such that e−i

∑
d Bdβd = e−iAktk where Ak is a matrix of

the form used in the dynamic CTQW implementation of the H and CX gates. An advantage of relating ma-QAOA
to dynamic CTQWs is that well-studied CTQW phenomena, such as hitting times, could potentially be used to
understand ma-QAOA better and could potentially be used to find optimal ma-QAOA β parameters.
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III. USING MA-QAOA TO IMPLEMENT A UNIVERSAL GATE SET

In this section, we show how the ma-QAOA operators B and C and parameters ~β and ~γ can be selected that
implement the equivalent of the dynamic CTQW universal set of gates H, T , and CX.

A. Defining C

First, we discuss how to define the C operator. In the dynamic CTQW formulation, phase can be added to arbitrary
vertices in the graph. The MaxCut C formulation in Section II A, however, does not allow for this; for example, since
the diagonal entries corresponding to |0 . . . 0〉 and |1 . . . 1〉 are always 0, no phase can ever be added to these vertices.
Thus, the MaxCut definition of C from Section II A is not sufficient to implement the universal gate set. In order to
ensure that phase can be added to any vertex, we modify C to obtain

C =
∑
z

|z〉〈z|.

In terms of the operators from Section II A, each clause Ca is defined as Ca = |a〉〈a|. The following property of C is
needed to implement the universal gate set H, T , and CX.

Property III.1. Let z be a base-10 number and z0 . . . zn−1 its binary representation. There exists a linear combi-
nation of summands of C with coefficients in {0, 1} and the only non-zero diagonal entry of the linear combination is
in position z.

Proof. By definition, |z〉 = |z0〉 ⊗ . . .⊗ |zn−1〉, and |zi〉〈zi| = ((−1)ziZi + Ii)/2 for zi ∈ {0, 1}, as

(Zi + Ii)/2 = [|0〉〈0|+ |1〉〈1|+ (|0〉〈0| − |1〉〈1|)]/2 = |0〉〈0|
and

(−Zi + Ii)/2 = [|0〉〈0|+ |1〉〈1| − (|0〉〈0| − |1〉〈1|)]/2 = |1〉〈1|.
If vertex z is the only vertex to receives phase, then Cz receives a coefficient of 1, while all other summands of C
receive a coefficient of 0. This ensures that z is the only non-zero entry of the linear combination.

Thus, phase can be added to an arbitrary vertex by picking the appropriate linear combination of summands of
C. One potential drawback to this formulation of C is that all combinations of Z gates are required, which can lead
to deep circuits. However, the diffusion operation in Grover’s algorithm uses Z gates and can be implemented in a
scalable manner [16], so we expect that the above C can be implemented on large systems, as well.

B. Defining B

We now turn our attention to defining B. The T gate requires only self-loops, so it does not need to be considered
when developing the B matrix. The B matrix requires summands such that a linear combination of the summands
results in the adjacency matrix of a discrete hypercube, which is needed to implement the H gate. In order to
implement a CX gate using B, a linear combination of the summands must also result in non-zero entries at positions
(a, b) and (b, a) such that the binary representations of a and b have a 1 in position j and the binary representations
of a and b are identical except in position v. This must be possible for all choices of j and v.

In order to begin constructing B, first note that the sum of all Pauli-x matrices acting on a single qubit,
∑
iXi,

is a matrix that is identical to the adjacency matrix of the discrete hypercube graph. Thus, we include
∑
iXi in

the definition of B. Unfortunately, CX is not easily implemented with just Xi. Each Xi term connects vertices
that contain a 0 in position i in its binary representation to a vertex that contains 1 in position i in its binary
representation, where the rest of the terms in the binary representation are identical. For example, consider a two
qubit system. Let B = X1 +X2, where Xi is the Pauli-x operator acting on qubit i. Then

B =

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 .
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FIG. 4: The graph given by the adjacency matrix B = X1 +X2.
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FIG. 5: The graph given by the adjacency matrix B = X1.

This is the adjacency matrix of the graph in Figure 4. If B = X1, then

B =

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ,

which is the adjacency matrix for the graph in Figure 5. In fact, if B has a summand Xi, then it is the adjacency
matrix for a graph in which the vertex corresponding to |0 . . . 0〉 is adjacent to some other vertex in the graph.
However, |0 . . . 0〉 will never be affected by a CX gate. Thus, we require a method that removes any edge incident to
|0 . . . 0〉, and potentially other edges that are not used in the CX gate.

One method of eliminating these edges is to subtract terms of the form XiZj to Xi. For example, if B = X1−X1Z2,
then

B =

0 0 0 0
0 0 0 2
0 0 0 0
0 2 0 0

 .

When divided by two, this gives the adjacency matrix of the graph in Figure 6, which connects vertices that are
swapped in a CX with control bit 2 and target bit 1.

We will now show that B of the form

B = 1/2(
∑
v

Xv −
∑
v

∑
j 6=v

XvZj),

has the following property that will be needed to implement the CX gate.

Property III.2. There exists a linear combination of summands of B, called B′, with coefficients in {0, 1} such that
for arbitrary qubits 1 ≤ v ≤ n and 1 ≤ j ≤ n where v 6= j, B′ = |0v1j〉〈1v1j |+ |1v1j〉〈0v1j |.

00

01

10

11

FIG. 6: The graph given by the adjacency matrix B = X1 −X1Z2.



Relating ma-QAOA and dynamic CTQWs 7

Proof. Let us show that 1/2(Xj −XjZv) yields a matrix with the above property.

(Xv −XvZj) = (|0v〉〈1v|+ |1v〉〈0v|)− [(|0v〉〈1v|+ |1v〉〈0v|)⊗ (|0j〉〈0j | − |1j〉〈1j |)]
= (|0v〉〈1v|+ |1v〉〈0v|)⊗ (|0j〉〈0j |+ |1j〉〈1j | − (|0j〉〈0j | − |1j〉〈1j |))
= (|0v〉〈1v|+ |1v〉〈0v|)⊗ 2|1j〉〈1j |
= 2(|0v1j〉〈1v1j |+ |1v1j〉〈0v1j |).

Dividing by two gives the result.

C. Selecting ~β and ~γ for the H gate

The Hadamard gate, H, acts on a single qubit and can be represented by the matrix

H =
1√
2

(
1 1
1 −1

)
.

The authors of [17] showed that the H⊗n gate can be implemented in the dynamic CTQW framework using a sequence
consisting of self-loops, an n-dimensional hypercube, and more self-loops. The self loops can be implemented by the C
operators described earlier in this section and are used to add phase ωv to vertex v based on its Hamming distance from
|0 . . . 0〉. Let h(v) be the Hamming distance of vertex v relative to |0 . . . 0〉. The phase factor required to implement
the H gate is

ωv =


−1, h(v) ∼= 0 (mod 4)

−i, h(v) ∼= 1 (mod 4)

1, h(v) ∼= 2 (mod 4)

i, h(v) ∼= 3 (mod 4)

which is derived in [17]. Since ||Ci|| = 1 for all i, the angles required to obtain the above phases are ~γ1 = ~η = (η1, . . .),
where ηv is

ηv =


π, h(v) ∼= 0 (mod 4)

π/2, h(v) ∼= 1 (mod 4)

0, h(v) ∼= 2 (mod 4)

3π/2, h(v) ∼= 3 (mod 4).

The B operator defined earlier in this section can be used to implement the n-dimensional hypercube. For the n-

dimensional hypercube, we set all ~β1 = (nπ/4, . . . , nπ/4, 0, . . . , 0), where all nπ/4 angles correspond to Xi terms in
the sum and all 0 angles correspond to terms of the form XiZj . Note that nπ/4 is the dynamic CTQW hypercube
mixing time for the H gate. For the last self-loop graph, we let ~γ2 = ~γ1.

D. Selecting ~β and ~γ for the T gate

The T gate acts on a single qubit and is represented by the matrix

T =

(
1 0

0 e
iπ
4

)
The T gate acting on qubit k adds a phase to all vertices that have a 1 in position k in their binary representation.
This can be implemented by finding the linear combinations of summands of C that give non-zero di where di has a 1
in position k of its binary representation and setting γi = 7π/4, since −7π/4 = π/4, while setting the rest of the γj to
0. Note that in order to implement this single qubit gate with ma-QAOA, we use Ca, which depends on multi-qubit
interactions. This is because C must be able to add self-loops to arbitrary vertices in order to implement the H gate,
and C is not allowed to change from iteration to iteration of ma-QAOA.
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|+〉 H •

|+〉 T

FIG. 7: The example circuit.

U Angle vector

U(γ1, C) (π, π, π/2, π/2)

U(β1, B) (0, π/4, π/4, 0)

U(γ2, C) (π, π, π/2, π/2)

U(β2, B) (0, 0, 0, 0)

U(γ3, C) (0, 7π/4, 0, 7π/4)

U(β3, B) (0, 0, 0, 3π/2)

U(γ4, C) (0, 0, π/2, π/2)

U(β4, B) (0, 0, 0, 0)

TABLE I: The βp,i−j angles for an ma-QAOA implementation of the circuit found in Figure 7. The vectors γi have
entries (γi,0, γi,1, γi,2, γi,3) and vectors βj have entries (βj,0−1, βj,0−2, βj,1−3, βj,2−3), where the subscript f − g for
f, g ∈ R refers to the edge connecting vertex f to vertex g.

E. Selecting ~β and ~γ for the CX gate

The controlled-not gate, denoted CX, is a two qubit gate. The matrix representation when the control is the first
qubit and the target is the second qubit is

CX =

 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

The dynamic CTQW for this gate is easy to implement and requires one graph that adds phase to a subset of vertices
and another which connects vertices based on which bit is the control and which is the target. These two graphs
can be performed in any order. Property III.1 and Property III.2 can be used to implement the CX gate with ma-
QAOA, and the implementation is similar to the dynamic CTQW one. From Property III.2, e−i(Xj−XjZv)π/2 gives
the adjacency matrix for the CX gate with control bit v and target bit j, up to a factor of −i on the qubits affected
by the swap. The −i factor is eliminated by adding a phase of i to the vertices affected by the swap via Property III.1.

IV. EXAMPLE

Let us examine the circuit in Figure 7. It has two qubits and an H gate acts on the first qubit, a T on the second,
and a CX targets the second qubit and is controlled by the first. This will require 4 layers of ma-QAOA. The angles
that implement this circuit with ma-QAOA are found in Table I.

We now confirm that these angles implement the above circuit when used with the B and C operators as defined
above. First, note that H ⊗ I followed by I ⊗ T followed by CX with control qubit 1 and target qubit 2 acts on the
state |+〉 as

1/2
[
|00〉+ |01〉+ |10〉+ |11〉

]
H⊗I−−−→ 1/

√
2
[
|00〉+ |01〉

]
+ 0
[
|10〉+ |11〉

]
I⊗T−−−→ 1/

√
2
[
|00〉+ eiπ/4|01〉

]
+ 0
[
|10〉+ eiπ/4|11〉

]
CX−−→ 1/

√
2
[
|00〉+ eiπ/4|11〉

]
+ 0
[
eiπ/4|01〉+ |10〉

]
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U(~β1, B)
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β1,0−2 β1,1−3

β1,2−3

00 01
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U(~γ2, C)
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γ2,1
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U(~β2, B)

β2,0−1

β2,0−2 β2,1−3

β2,2−3

00 01

10 11

U(~γ3, C)
γ3,0

γ3,1

γ3,2

γ3,3

00 01

10 11

U(~β3, B)

β3,0−1

β3,0−2 β3,1−3
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U(~γ4, C)
γ4,0

γ4,1
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U(~β4, B)

β4,0−1

β4,0−2 β4,1−3

β4,2−3

FIG. 8: The ma-QAOA implementation of the circuit found in Figure 7 with angles found in Table I. The top row
implements the H gate, the left graph on the bottom row implements the T gate, and the bottom middle two graphs
implement the CX gate. The last graph is not necessary, but is included to show four full iterations of ma-QAOA.

The ma-QAOA implementation of the H gate varies slightly from above, as H only acts on one qubit in this circuit,
not both of them. The 1-dimensional hypercube is a path on two vertices, and since the H is performed on the first
qubit, the non-zero β angles correspond to edges that connect vertices whose first qubit are either both 0 or both 1.
Additionally, the ωv are changed so that one vertex in each two-dimensional hypercube has a factor of −1 and the
other has a factor of −i. The angles for this implementation are found in Table I. These angles act on the initial state
|+〉 as

1/2
[
|00〉+ |01〉+ |10〉+ |11〉

]
U( ~γ1,C)−−−−−→ −1/2

[
|00〉+ |01〉

]
− i/2

[
|10〉+ |11〉

]
U( ~β1,B)−−−−−→ −1/

√
2
[
|00〉+ |01〉

]
+ 0
[
|10〉+ |11〉

]
U( ~γ2,C)−−−−−→ 1/

√
2
[
|00〉+ |01〉

]
+ 0
[
|10〉+ |11〉

]
U( ~γ2,B)−−−−−→ 1/

√
2
[
|00〉+ |01〉

]
+ 0
[
|10〉+ |11〉

]
U( ~γ3,C)−−−−−→ 1/

√
2
[
|00〉+ eiπ/4|01〉

]
+ 0
[
|10〉+ eiπ/4|11〉

]
U( ~β3,B)−−−−−→ 1/

√
2
[
|00〉 − i|11〉

]
+ 0
[
eiπ/4|01〉+ eiπ/4|11〉

]
U( ~γ4,C)−−−−−→ 1/

√
2
[
|00〉+ eiπ/4|11〉

]
+ 0
[
eiπ/4|01〉+ |10〉

]
U( ~β4,B)−−−−−→ 1/

√
2
[
|00〉+ eiπ/4|11〉

]
+ 0
[
eiπ/4|01〉+ |10〉

]
,

which is the same final state as before.

V. DISCUSSION

In this paper, we show that ma-QAOA is equivalent to a restriction of dynamic CTQWs in which the underlying
graphs can only consist of singletons or of discrete hypercubes with dimension at most n and then find the appropriate
operators and angles that yield the universal gate set H, T , and CX in the ma-QAOA framework. Since ma-QAOA
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can be viewed as a restriction of dynamic CTQWs, there is potential that well-studied CTQW phenomena, such as
hitting times, can be used to determine the optimal β parameters for ma-QAOA. Finding optimal QAOA parameters
is a challenging problem, and several techniques such as transferability, reinforcement learning, and neural networks
[18–21]. Relating ma-QAOA to CTQWs gives a new framework through which to view the algorithm. It would be of
interest to determine if viewing CTQWs through a QAOA lens leads to better understanding of CTQWs.

The authors of [17] gave methods for simplifying dynamic CTQWs based on the underlying graph structure. Since
ma-QAOA is equivalent to a restricted dynamic CTQW, ma-QAOA operators can potentially be rearranged and
combined to reduce the circuit depth needed to implement arbitrary operations. In the formulation in this manuscript,
each H, CX, and T implementation require at most 1.5 layers of ma-QAOA, so a circuit that implements N of these
gates would require at most 1.5N layers of ma-QAOA. Future work includes examining if there are operations that
can be used to reduce the ma-QAOA circuit depth outside of those found in [17].

Finally, in [4], the author proves the universality of QAOA using a line graph quantum architecture, which is
not easily comparable to the method of showing ma-QAOA universality in this paper. The author mentions that
this architecture is limited but says that the techniques used to prove QAOA universality can be expanded to higher
dimensions. It would be of interest to determine if there are cases where the QAOA universality methods in [4] require
fewer operations to implement an arbitrary circuit than the method in this paper, and vice-versa. Additionally, fully-
connected architecture and gates that act on n qubits for all n ≥ 2 are required in this implementation, whereas the
line architecture in [4] is much more sparse. It would be of interest to determine if there is a more natural method
of using QAOA or ma-QAOA for computation on lattices such as the square grid or hexagonal lattice, which more
closely model current quantum architecture [22, 23].
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