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Abstract

In this paper we address the analytical solution of the non-resonant inter-

action between two identical V-type three-level atoms passing consecutively

through a single-mode cavity field in the presence of intensity-dependent cou-

pling. By considering an identical initial condition for both atoms and an

initial coherent field, we find the analytical solution of the state vector of

the entire atom-field system. Accordingly, we could carefully investigate the

influence of various parameters in the circumstances of the interacting sys-

tem on different physical quantities such as the atomic population inversion,

atom-field entanglement, field squeezing, sub-Poissonian statistics and the

Wigner quasi-probability distribution function. In detail, we discuss numeri-

cally the influences of the detuning parameters and a particular nonlinearity

function on the mentioned quantities and demonstrate that they have sub-

stantial effects on the temporal behavior of the above-mentioned nonclassical
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1. Introduction

The interaction of a two-level atom with a single-mode quantized electro-

magnetic field presents one of the most fundamental problems in quantum

optics area [1]. The simplest powerful scheme to investigate this interaction

is the Jaynes-Cummings model (JCM)[2]. JCM leads to the prediction of

a wide range of experimentally interesting phenomena. Also, in order to

survey the JCM in different concepts, interesting results have been attained

according to various generalizations of this model. We may refer to a few

examples of them as follow: the interaction between two two-level atoms

and a single-mode field [3], the interaction between N-level atom and (N-1)-

mode field [4], the interactions of a multi-level atom and one- or two-mode

field [5, 6], multi-photon transitions in the atom-field interaction [7, 8, 9, 10],

intensity-dependent JCM (nonlinear regime) [11, 12, 13] which in particu-

lar we will also deal with in the present paper, different interaction schemes

between atoms and electromagnetic field in the presence of a Kerr medium

[14, 15, 16], JCM with electromagnetic field in the presence of converter terms

[17, 18], JCM in the presence of Stark shift [7, 19, 20] and finally JCM when

the atom-field coupling is position-dependent [21, 22].

The Fock state, as the most nonclassical state, in general can be prepared

in cavity QED experiments in which passing atoms interact with a high-Q
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cavity field one-by-one (see page 390 of Ref. [1]) . A single-photon Fock state

is created in this procedure by an adiabatic successive passage sequence in an

optical cavity [23]. In the latter case, the realization of a quantum memory

in a cavity QED experiment has been reported which will be useful in quan-

tum information processing operations. In this regard, Phoenix and Barnett

have presented a scheme to entangle two nonlocal atoms passing successively

through a cavity [24], while they never interact directly with each other. It

is also emphasized there that, this may be happen even when a measure-

ment occurred on the first extracted atom, while the second atom is still not

entered the cavity. The authors then demonstrate that how such a model

can violate the Bell’s inequality. Considering the above-mentioned literature

and in particular the Ref. [25], motivate us to study how the consecutive

passage of two V-type three-level atoms transfers a classical (coherent state)

cavity field into a nonclassical one. In more detail, we consider here a basic

model to describe the non-resonant interaction between two identical V-type

three-level atoms passing subsequently through a single-mode coherent field

which is considered in the intensity-dependent coupling regime. Recently,

a similar model has been studied, however, with constant coupling and in

resonant condition [25]. We attempt to remove these limitations and go fur-

ther to evaluate the effects of detuning and intensity-dependent coupling on

some of the nonclassical properties of the entire atom-field system. After ob-

taining the explicit form of the state vector, at first we pay attention to the

variation of the atomic population inversion (as exchange of energy between

atom and field) in which collapse-revival of Rabi oscillations are revealed.

Then, due to the fact that, (i) recently much attention has been paid to the
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entanglement phenomenon in various circumstances, (ii), the JCM and its

generalizations are the simplest resource of entangled state, we evaluate the

degree of entanglement of the obtained system state. This notion is known as

a key resource in the quantum information theory and so plays a central role

in quantum computation, quantum information, quantum cryptography [26]

and quantum teleportation [27, 28]. Next, as two other important nonclassi-

cal criteria, we examine the squeezing [29], first and second order, as well as

the sub-Poissonian photon statistics of the field [30] and finally the variation

of Wigner quasi-probability distribution function in phase space is presented

[1]. We should emphasize that our presentation is quite general and may

be considered for arbitrary nonlinearity function. However, to present our

numerical results which followed by the related discussion, we have chosen

the well-known nonlinearity function f(n) =
√
n as the intensity-dependent

function. This function has been used frequently in the literature [31, 32].

The remainder of paper is organized as follow: we try to find the explicit

form of the state vector of the entire system after passing the second atom

from the cavity field in the next section. Then in section 3 we discuss on the

atomic population inversion, von Neumann entropy, squeezing effects, Man-

del parameter and finally Wigner quasi-probability distribution function. At

last, section 4 includes a summary and concluding remarks.

2. The model and its solution

We consider two identical V-type three-level atoms passing through a

cavity containing a single-mode quantized field with frequency ν [25]. We
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should emphasize that in this model, at any time there exists only one atom

in the cavity. Therefore, passing the first atom through the cavity evolves

the atom and the initial cavity field, from which one obtains particular cir-

cumstances for the atom and field that determine the initial field state for

entering the second atom (after doing a measurement on the atom). More-

over, in general the atoms which respectively transit in the cavity interact

with the field non-resonantly and we suppose the intensity-dependent cou-

pling regime. Also, since in general the V-type three-level atoms coupled to

a field with λ1 6= λ2 where λ1 and λ2 are the atom-field coupling constants.

We do not consider equal coupling as in Ref. [25] has been done. Let us

express the configuration of the atoms in detail. Their energy states are ωe,

ωi and ωg which correspond to the atomic energy levels |e〉, |i〉 and |g〉 (Fig.

1). The allowed photon transitions are |i〉 ←→ |g〉 and |e〉 ←→ |g〉, and the

transition |i〉 ←→ |e〉 is forbidden. Since at any time there exists only one

atom in the cavity, so the Hamiltonian of the atom-field system is the same

at all times. Therefore, as the first step, we perform the Hamiltonian for the

interacting subsystems by extending the JCM (~ = 1) as follows [1]:

Ĥ = Ĥ0 + Ĥint, (1)

where Ĥ0 denotes the atom and field Hamiltonians in the absence of any

interaction:

Ĥ0 = νâ†â+ ωe|e〉〈e|+ ωi|i〉〈i|+ ωg|g〉〈g|, (2)

and Ĥint is the interaction Hamiltonian in the rotating wave approximation:

Ĥint = λ1(R̂|e〉〈g|+ R̂†|g〉〈e|) + λ2(R̂|i〉〈g|+ R̂†|g〉〈i|), (3)
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which its form in the interaction picture reads as:

V̂I = λ1(R̂ei∆1t|e〉〈g|+ R̂†e−i∆1t|g〉〈e|)

+ λ2(R̂ei∆2t|i〉〈g|+ R̂†e−i∆2t|g〉〈i|), (4)

where ∆1 = (ωe − ωg)− ν and ∆2 = (ωi − ωg)− ν are the detuning param-

eters. The operators â and â† are the well-known bosonic annihilation and

creation operators, respectively and two nonlinear operators R̂ = âf(n̂) and

R̂†=f(n̂)â† satisfy the non-canonical commutation relation:

[R̂, R̂†] = (n̂+ 1)f 2(n̂+ 1)− n̂f 2(n̂). (5)

n̂ = â†â where n̂ is the number operator. λ1 , λ2 in (3), (4) are the atom-

field coupling constants; which in our nonlinear JCM they are changed to

the intensity-dependent atom-field coupling λif(n) (with i = 1, 2) where

f(n) represents an arbitrary nonlinearity function. To study the dynamics

of the considered system, we should acquire its wave function at first. The

general wave function for our system at any time t > 0 can be written as a

proper combination of the basic eigenstates of the atom and field, i.e.:

|ψ(t)〉 =
+∞∑
n=0

A1(n, t)|e, n〉+B1(n, t)|i, n〉+ C1(n+ 1, t)|g, n+ 1〉.(6)

In order to obtain the probability amplitudes in |ψ(t)〉, one should solve the

time-dependent Schrödinger equation i ∂
∂t
|ψ(t)〉 = V̂I |ψ(t)〉. Along doing this

task, one arrives at three coupled differential equations in term of the above

expansion coefficients in (6):

i Ȧ1 = λ1

√
n+ 1f(n+ 1)ei∆1tC1,

i Ḃ1 = λ2

√
n+ 1f(n+ 1)ei∆2tC1,
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i Ċ1 = λ1

√
n+ 1f(n+ 1)e−i∆1tA1

+ λ2

√
n+ 1f(n+ 1)e−i∆2tB1, (7)

Now, by considering B1 = eiµt and inserting it into these equations, an

algebraic third-order equation in the following form is obtained:

µ3 + x1µ
2 + x2µ+ x3 = 0, (8)

where

x1 = ∆1 − 2∆2,

x2 = ∆2
2 −∆2∆1 − (λ2

1 + λ2
2)(n+ 1)f 2(n+ 1),

x3 = λ2
2(∆2 −∆1)(n+ 1)f 2(n+ 1). (9)

Three different roots of (8) are as follow [33, 34]:

µr = −1

3
x1 +

2

3

√
x2

1 − 3x2 cos

[
θ +

2

3
(r − 1)π

]
, r = 1, 2, 3.

with

θ =
1

3
cos−1

[
9x1x2 − 2x3

1 − 27x3

2(x2
1 − 3x2)3/2

]
. (10)

Consequently, B1 can be written as a linear combination of eiµjt in the form:

B1 =
3∑
j=1

kje
iµjt. (11)

Finally, by replacing equation (11) in (7) and after some lengthy but straight-

forward manipulations, we arrive at explicit form of the probability ampli-

tudes in (6) as follow:

A1(n, t) =
3∑
j=1

kje
i(µj−∆2+∆1)t(µ2

j −∆2µj − λ2
2(n+ 1)f 2(n+ 1))

λ1λ2(n+ 1)f 2(n+ 1)
,
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B1(n, t) =
3∑
j=1

kje
iµjt,

C1(n+ 1, t) =
3∑
j=1

−kjµjei(µj−∆2)t

λ2

√
n+ 1f(n+ 1)

. (12)

The coefficients kj can be determined by the initial conditions of atom and

field. For this purpose, we suppose that initially the first atom is in a coherent

superposition of two of its excited states, i.e.,:

|ψ(0)〉A =
1√
2

(|e〉+ |i〉), (13)

and the field is prepared in the coherent state:

|ψ(0)〉F =
+∞∑
n=0

Fn|n〉, Fn = e−
n̄
2
αn√
n!
, (14)

where n̄ = |α|2 implies the initial average photon number of the field. Now,

by replacing (13) and (14) in the wave function (6) with the introduced

amplitudes in (12), we can derive:

kj =
Fn√

2µjlµjk
(µkµl + (λ2

2 + λ1λ2)(n+ 1)f 2(n+ 1)), (15)

where µjk = µj − µk and j 6= k 6= l = 1, 2, 3. A1(n, t), B1(n, t) and

C1(n + 1, t) are complex values that satisfy the normalization condition∑+∞
n=0 |A1(n, t)|2 + |B1(n, t)|2 + |C1(n + 1, t)|2 = 1. Consequently, the state

vector of the considered atom-field system at any time t > 0 is obtained

completely. Now, we assume that the atom is detected in its ground state,

after the interaction time t = t1 between atom and the cavity field. In our

case, this particular time may be appropriately chosen using the dynamics

of the population inversion. By this time, we will determine the initial field

condition for entering the second atom and allowing it to interact with the
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field. Accordingly, the normalized state of the field, after the projection of

the atom into the state |g〉, reads as1:

|ψ1(t1)〉F =
( +∞∑
n=0

|C1(n+ 1, t1)|2
)− 1

2

+∞∑
n=0

C1(n+ 1, t1)|n+ 1〉, (16)

where C1(n + 1, t1) is determined by the third relation of (12). At this

moment, we allow the second atom enters the cavity while it is in a coherent

superposition state |ψ2(t2 = 0)〉A = 1√
2
(|e〉 + |i〉), like the first atom. The

atom-field interaction occurs in the time interval t2; briefly |ψ2(t1; t2 = 0)〉F =

|ψ1(t1)〉F . Generally, similar to (6) we suppose that the state of the system

along the passage of the second atom changes to:

|ψ2(t1, t2)〉 =
+∞∑
n=0

A2(n, t1, t2)|e, n〉+B2(n, t1, t2)|i, n〉

+ C2(n+ 1, t1, t2)|g, n+ 1〉. (17)

Again, with the help of the time-dependent Schrödinger equation, the fol-

lowing coupled differential equations are obtained:

i Ȧ2 = λ1

√
n+ 1f(n+ 1)ei∆1t2C2,

i Ḃ2 = λ2

√
n+ 1f(n+ 1)ei∆2t2C2,

i Ċ2 = λ1

√
n+ 1f(n+ 1)e−i∆1t2A2

+ λ2

√
n+ 1f(n+ 1)e−i∆2t2B2, (18)

where the dot refers to differentiation with respect to time t2. Now, if we

set B2 = eiut2 and by using the relations in (18) we arrive at an algebraic

1In Ref. [25] the author did not explicitly refer to the normalization condition of the

final field state after projecting the atom-field state into its ground state |g〉 in the first

atom-field interaction procedure.
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third-order equation:

u3 + y1u
2 + y2u+ y3 = 0, (19)

where

y1 = ∆1 − 2∆2,

y2 = ∆2
2 −∆2∆1 − (λ2

1 + λ2
2)(n+ 1)f 2(n+ 1),

y3 = λ2
2(∆2 −∆1)(n+ 1)f 2(n+ 1). (20)

Three different roots of (19) can be determined like the equations (8) and(10).

So, the general form of B2 reads as the linear combination of eiurt2 as B2 =∑3
r=1 qre

iurt2 . Replacing this summation into the relations (18) and after

some lengthy manipulations, finally arrive us at the explicit form of the

expansion coefficients of our final atom-field state vector (17) as below:

A2(n, t1, t2) =
3∑
r=1

qre
i(ur−∆2+∆1)t2

λ1λ2(n+ 1)f 2(n+ 1)

× (u2
r −∆2ur − λ2

2(n+ 1)f 2(n+ 1)),

B2(n, t1, t2) =
3∑
r=1

qre
iurt2 ,

C2(n+ 1, t1, t2) =
3∑
r=1

−qrurei(ur−∆2)t2

λ2

√
n+ 1f(n+ 1)

, (21)

where the coefficients qr should be determined via the initial condition of the

second atom and field in (16). Then, by using (21) the following relations

may be obtained:

qr =
C1(n+ 1, t1)√

2
∑+∞

n=0 |C1(n+ 1, t1)|2

×
((λ2

2 + λ1λ2)(n+ 1)f 2(n+ 1) + uluk
urlurk

)
, (22)
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where url = ur − ul and r 6= k 6= l = 1, 2, 3. Accordingly, the wave function

of the entire atom-field system |ψ2(t1, t2)〉 in (17) is completely determined

in an explicit form. Finding the whole considered system state, allows us to

evaluate all its physical properties.

3. Physical properties

Now, which we have obtained the explicit form of the final atom-field state

vector, we are able to analyze its physical properties. However, in order to

simplify our presentation, we can transform the results in the previous section

such that, all necessary quantities can be computed if we determine the

relative values of λ1/λ2 and ∆i/λ2; i = 1, 2. We consider λ1/λ2 = 0.9 in all of

the numerical calculations in the remainder of this paper. Consequently, we

can plot all required quantities as function of the scaled times τ1 = λ2t1 and

τ2 = λ2t2 for the interaction times of the first and second atom, respectively.

It is also worth mentioning that we present our numerical results, by choosing

the well-known nonlinearity function f(n) =
√
n as the intensity-dependent

function. In addition, (i) due to the minor correction applied on [25], in

addition to the fact that (ii) we will consider the off-resonant case and (iii)

nonequal constant couplings (λ1 6= λ2), we also plot the related figures for

f(n) = 1, too.

3.1. The population inversion

The atomic population inversion is defined as a measure of energy ex-

change between atom and field. Studying this quantity in the full quan-

tum mechanical approach is usually together with appearing the collapse
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and revival phenomena that are resulted from the discrete nature of pho-

tons (field quantization). The so-called population inversion for a V-type

three-level atom can be computed by the difference between the probabili-

ties of finding the atom in the two excited states and the ground state, i.e.,

W (t2) = (ρee + ρii)− ρgg.

When the first atom passes through the cavity, the values of the probability

amplitudes of the atom-field system in the cavity is in term of the scaled

time τ1 may be derived, from which one can obtain the temporal behav-

ior of the atomic inversion for the first atom (W (τ1)). We considered the

field state (16) as initial field condition for passing the second atom, i.e., the

atomic state |g〉 is the result of the atomic measurement. We are going to

plot the atomic inversion after passing only the first atom to achieving such

a condition appropriately (see Fig. 2). To state more explicitly, when (the

scaled times which) the atomic inversion is in its minima values the atomic

state may be observed in the ground state of the V-type atom (we will need

these scaled times for our further calculations in this paper). From Fig. 2

we can choose the appropriate moments of the scaled time τ1 for which the

above-mentioned condition may properly happen. Thus, we are able to use

the final state vector (after entering the second atom) (Eq. (21)), correctly.

In Fig. 3 we plotted the atomic inversion for the second atom in term of the

scaled time τ2 for particular chosen values of the scaled time τ1 extracted

from Fig. 2. The left figures show the numerical results in the absence of the

intensity-dependent coupling and the right ones deal with the presence of the

intensity-dependent coupling. The above two plots 3(a) indicate the exact

resonance case (∆1 = ∆2 = 0) and the two below plots 3(b) display the effect
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of the detuning parameters (∆1

λ2
= 7, ∆2

λ2
= 15). The initial mean number of

photons of the field is considered as |α|2 = 25. In all plotted curves in Fig. 3

one can see that the atomic population inversion is clearly occurred together

with the collapse-revival phenomena. From the plotted curves one may con-

clude that the nonlinearity in the atom-field coupling makes the patterns of

collapse-revival more visible, in particular nearly the full revival is occurred

in the resonance condition and intensity-dependent coupling. Moreover, in

the absence of nonlinearity, the detuning causes a noticeable shift to positive

values of atomic inversion in the pattern of collapse-revival, while the revival

amplitudes in the nonlinear regime experience slightly decrease by entering

the detuning parameters.

3.2. The von Neumann entropy

Entanglement is a pure quantum phenomenon that Schrödinger designed

it as a private trait of quantum mechanic. It shows the nonclassical corre-

lation in the information aspects. Entanglement may be quantified via the

evaluation of the entropy which represents a measure of lack of information

from the system [35]. Actually, the field entropy is a criterion that shows

the degree of entanglement. In this regard, Araki-Lieb theorem [36] demon-

strates that, by starting from the initial pure state of any atom-field system,

one has SA(t) = SF (t) at any time t > 0 [37](notice that in our model we

have SA(F )(t1, t2) instead of SA(F )(t), where SA(F )(t1, t2) denote the entropy

of the second atom(field)). Notice that the effect of passing the first atom in

the state of the system has been taken into account in selecting particular

form of the initial field state. So because of the mentioned equivalence, we

can calculate either the atomic or field entropy. We use the von Neumann
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entropy which is defined in terms of the reduced density matrix (of the second

atom) as [38]:

SA(F )(t1, t2) = −TrA(F)(ρA(F) ln ρA(F)) (23)

where

ρ̂A(t1, t2) = TrF (|ψ2(t1, t2)〉〈ψ2(t1, t2)|)

=


ρee ρei ρeg

ρie ρii ρig

ρge ρgi ρgg

 . (24)

The above matrix elements are explicitly given as below:

ρee =
+∞∑
n=0

A2(n, t1, t2)A∗2(n, t1, t2),

ρei = ρ∗ie =
+∞∑
n=0

A2(n, t1, t2)B∗2(n, t1, t2),

ρeg = ρ∗ge =
+∞∑
n=0

A2(n+ 1, t1, t2)C∗2(n+ 1, t1, t2),

ρii =
+∞∑
n=0

B2(n, t1, t2)B∗2(n, t1, t2),

ρig = ρ∗gi =
+∞∑
n=0

B2(n+ 1, t1, t2)C∗2(n+ 1, t1, t2),

ρgg =
+∞∑
n=0

C2(n+ 1, t1, t2)C∗2(n+ 1, t1, t2). (25)

A2(n, t1, t2), B2(n, t1, t2) and C2(n + 1, t1, t2) are the amplitudes which have

been determined in section (1). Meanwhile, the von Neumann entropy of the

system can be obtained as follows [38]:

SF (t1, t2) = SA(t1, t2) = −
3∑
j=1

γj ln γj, (26)
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where γj represents the eigenvalues of the reduced density matrix of the atom

in (24) may be expressed as:

γj = −1

3
β1 +

2

3

√
β2

1 − 3β2 cos

[
α +

2

3
(j − 1)π

]
,

α =
1

3
cos−1

[
9β1β2 − 2β3

1 − 27β3

2(β2
1 − 3β2)3/2

]
, (27)

with

β1 = −ρee − ρii − ρgg = −1,

β2 = ρeeρii + ρiiρgg + ρggρee − ρeiρie − ρigρgi − ρgeρeg,

β3 = −ρeeρiiρgg − ρeiρigρge − ρegρgiρie + ρeeρigρgi

+ ρiiρgeρeg + ρggρeiρie. (28)

Now, we are ready to present the evolution of entropy. The three-dimensional

Fig. 4 represents the dynamics of the von Neumann entropy with respect to

the scaled times τ1 and τ2. It is readily observed that, the four plotted figures

show the notable entanglement between atom and field. By comparing the

left plots of 4(a) and 4(b), i.e., the graphs for the atom-field constant coupling,

one can realize that entering the detuning parameters increases the amount

of entropy (and so the entanglement measure), while paying attention to the

right graphs, i.e, in the nonlinear regime, arrives one to the fact that the

detuning does not have significant effect on the amount of entropy.

3.3. The field squeezing

It is well known that the nonclassical light is a radiation field that it does

not have any classical analogue. Squeezing is another important nonclassical

phenomenon in the framework of quantum optics. It is described with reduc-

ing the noise in one of quadratures of the field in comparison to the coherent
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state or the vacuum state with the price of an increase of the noise in the

other quadrature of the field such that the uncertainly relation is still satis-

fied. Supposing the two operators x̂ and ŷ possess the commutation relation

[x̂, ŷ] = ẑ, then the uncertainly relation is written as ∆x̂∆ŷ > 1
2
|〈ẑ〉| where

∆ŝ =
√
〈ŝ2〉 − 〈ŝ〉2. For evaluating this quantity, we define two quadrature

components of the field in terms of the bosonic operators x̂k = (âk+(â†)k)/
√

2

and p̂k = (âk− (â†)k)/
√

2i where the subscript k = 1, 2, 3, ... shows the order

of squeezing of the electromagnetic field. In these relations the first-order

and the second-order squeezing correspond respectively to k = 1 and k = 2.

In order to calculate the normal squeezing of the field, one can obtain simply

[x1, p1] = i with the uncertainly relation (∆x̂)2(∆p̂)2 ≥ 1
4
. Equivalently, we

can consider the quadratures variances by defining the following squeezing

parameters S
(1)
x = ((∆x̂)2 − 0.5)/0.5 and S

(1)
p = ((∆p̂)2 − 0.5)/0.5. Conse-

quently, squeezing happens if −1 < S
(1)
x < 0 or −1 < S

(1)
p < 0. The above

relations can be rewritten as:

S(1)
x = 〈â2〉+ 〈â†2〉+ 2〈â†â〉 − 2〈â〉〈â†〉 − 〈â〉2 − 〈â†〉2,

S(1)
p = −〈â2〉 − 〈â†2〉+ 2〈â†â〉 − 2〈â〉〈â†〉+ 〈â〉2 + 〈â†〉2.

(29)

To go further, we have to obtain the following expectation value with respect

to the state of the system in (17):

〈â†â〉 =
+∞∑
n=0

(
n(|A2(n, t1, t2)|2 + |B2(n, t1, t2)|2)

+ (n+ 1)|C2(n+ 1, t1, t2)|2
)
, (30)

〈âr〉 =
+∞∑
n=0

√
(n+ r)!

n!

[
A2(n+ r, t1, t2)A∗2(n, t1, t2)
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+ B2(n+ r, t1, t2)B∗2(n, t1, t2)

+

√
(n+ r + 1)

(n+ 1)
C2(n+ r + 1, t1, t2)C∗2(n+ 1, t1, t2)

]
, (31)

in which probability amplitudes A2, B2 and C2 were determined in (21) and

clearly 〈â†r〉 = 〈âr〉∗. The three-dimensional plots in Fig. 5 show the behav-

ior of S
(1)
x versus the scaled times τ1 and τ2 in which we have used the same

parameters as in Fig. 3. Moreover, to increase our precision for the investi-

gation of the occurrence of squeezing, we have depicted four two-dimensional

plots in Fig. 6 in terms of the scaled time τ2, for particular the scaled times

τ1 which are distinguished (and extracted) from Fig. 2 (in other words, these

two-dimensional plots are indeed appropriate cross-sections of Fig. 5). In

both of resonance and nonresonance conditions and in the absence and pres-

ence of intensity-dependent atom-field coupling (Figs. 5 and 6, respectively),

we see that squeezing takes place appropriately in intervals of time at the

beginnings of the interaction.

Now, we turn our attention to the evaluation of the second-order squeezing

(k = 2). The operators of considered squeezing obey of the commutation

relation [x̂2, p̂2] = (2n̂ + 1)i with the uncertainly relation (∆x̂2)2(∆p̂2)2 >

|〈n̂ + 1
2
〉|2. Then the amplitude-squared squeezing parameters can be given

as S
(2)
x = ((∆x̂2)2 − 〈n̂+ 1

2
〉)/〈n̂+ 1

2
〉 and S

(2)
p = ((∆p̂2)2 − 〈n̂+ 1

2
〉)/〈n̂+ 1

2
〉.

One can rewrite the above relations as:

S(2)
x =

1

4〈n̂〉+ 2
(〈â4〉+ 〈â†4〉+ 2〈(â†â)2〉 − 2〈â†â〉

− (〈â2〉+ 〈â†2〉)2),

S(2)
p =

1

4〈n̂〉+ 2
(2〈(â†â)2〉 − 2〈â†â〉 − 〈â4〉 − 〈â†4〉

+ (〈â†2〉 − 〈â2〉)2). (32)
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To evaluate the second-order squeezing, we require the following mean value:

〈(â†â)2〉 =
+∞∑
n=0

(
n2(|A2(n, t1, t2)|2 + |B2(n, t1, t2)|2)

+ (n+ 1)2|C2(n+ 1, t1, t2)|2
)
, (33)

where A2, B2 and C2 were found in (21). Now, using the relations (30), (31)

and (33), we are able to calculate S
(2)
x and S

(2)
p . The three-dimensional plots

in Fig. 7 indicate the second-order squeezing in the x̂2 versus the scaled

times τ1 and τ2. Also, plotted figures in Fig. 8 are the cross-sections of

the plots of Fig. 7 in two-dimension in term of the scaled time τ2 for a few

particular the scaled times τ1 (which are determined in Fig. 2). In the linear

regime (the left plots of Figs. 7 and 8) squeezing is visible at the beginnings

of the interaction in both of resonance and nonresonance conditions. In the

intensity-dependent regime (the right plots of Figs. 7 and 8), the absence

and presence of the detuning parameters show the squeezing effect in a few

different intervals of time.

3.4. The photon statistics: Mandel parameter

One of the nonclassicality features in the context of quantum statistics

is the sub-Poissonian behavior, the criterion which well illustrated by the

Mandel parameter in quantum optics. This quantity is given by [39]:

Q =
〈(â†â)2〉 − 〈â†â〉2

〈â†â〉
− 1. (34)

The cases Q > 0 , Q = 0 and Q < 0 correspond to the super-Poissonian

(classical), Poissonian (for the standard coherent state) and sub-Poissonian

(nonclassical) statistics, respectively. All of the required quantities in (34)
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can be obtained from (30) and (33). Accordingly, the three-dimensional plots

of the Mandel parameter versus the scaled times τ1 and τ2 are shown in Fig.

9. One can see that, this parameter takes both negative and positive values

in all plots. Possessing negative values of this parameters indicates that the

state vector has sub-Poissonian statistics, and so the considered interaction

has transfered the classical coherent state to a nonclassical field state.

3.5. The Wigner quasi-probability distribution function

This quantity is a remarkable tool to obtain enough knowledge for study-

ing pure quantum features of a quantum system in phase space. Negativity

of the Wigner distribution function in phase space is an indicator of the

nonclassical feature of a specific state. This function is defined as [1]:

W (α, α∗) =
2

π2
e2|α|2

∫
〈−γ|ρ̂F |γ〉e−2(γα∗−γ∗α)d2γ, (35)

where |γ〉 and | − γ〉 are coherent states. Inserting the state vector of our

considered system which is given by relation (17) in the relation (35) and

by tedious calculations, the above integral changes to the following partial

differentiations for our considered system [40]:

W (α, α∗) =
2

π
e2|α|2

[ +∞∑
n=0

+∞∑
m=0

((−2)−(n+m)

√
n!m!

×
(
A2(n, t1, t2)A∗2(m, t1, t2) +B2(n, t1, t2)B∗2(m, t1, t2)

)
× ∂n+m

∂(α∗)n∂αm
e−4|α|2

)
+

+∞∑
n=0

+∞∑
m=0

( (−2)−(n+m+2)√
(n+ 1)!(m+ 1)!

× C2(n+ 1, t1, t2)C∗2(m+ 1, t1, t2)

× ∂n+m+2

∂(α∗)n+1∂αm+1
e−4|α|2

)]
. (36)
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In detail, the up and down plots of Fig. 10 display the variation of the

atomic inversion for the first and the second atom in term of the scaled times

τ1 and τ2 respectively in the resonance condition for |α|2 = 4. The left figures

show the numerical results in the linear regime and the right ones deal with

the nonlinear regime. In the up plots, we denote the particular the scaled

times τ1 in which the first atom is in its ground state, then by considering

these scaled times τ1 in the down plots, we show the special the scaled times

τ2 in which the second atom is also in its ground state, too. The Wigner

quasi-probability function of our considered system for particular values of

the scaled times τ1 and τ2, which are defined in Fig. 10, is depicted in

Fig. 11. In this situation, with the constant coupling (the left plot), we see

that the Wigner function gets negative values (nonclassical feature) at some

finite regions in phase space; but in the presence of the intensity-dependent

coupling (the right plot), one can perceive a little amount of negativity of

the Wigner function in phase space.

4. Summary and conclusions

In this paper, we considered the interaction between two identical V-type

three-level atoms that pass from a coherent single-mode field fulfilled a cav-

ity consecutively using the generalized JCM with the intensity-dependent

coupling between atom and field in the resonance as well as non-resonance

conditions. After we obtained accurate form of the state vector of our system,

the effects of the detuning parameters and the intensity-dependent coupling

(by considering nonlinearity function f(n) =
√
n) on the atomic popula-

tion inversion, field entropy, field squeezing, photons quantum statistical and
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Wigner quasi-probability distribution function are examined, numerically.

Summing up our results, we achieve the following conclusions:

• The intensity-dependent coupling between the atom and the field re-

veals the collapse-revivals in the variation of population inversion in a

clearer manner, in comparison with the constant coupling. The revivals

in the intensity-dependent regime reach about its maximum value, in

the resonance condition, while this is not occurred in the constant cou-

pling. Moreover, the detuning parameters cause a noneducable shift

to higher values of population inversion in the collapse-revival pattern

in the linear regime, such that the nearly all negative values of this

quantity will be disappeared.

• In the linear regime and in the nonresonance condition, the maximum

amounts of the entropy are increased and so the entanglement between

the atom and field is more visible.

• In the constant as well as intensity-dependent coupling regimes by con-

sidering both of the resonance and non-resonance condition, squeezing

takes place appropriately in a few intervals of time at the beginnings

of the interaction.

• According to our numerical results, we can see that the field has the

sub-Poissonian behavior either in the intensity-dependent or constant

coupling regimes. Also, the sub-Poissonian behavior of the photons in

both of the resonance and nonresonance conditions can be observed.
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• In order to study the quantum features of our considered atom-field

system in phase space, we evaluated the Wigner quasi-probability func-

tion and find that, in the absence of detuning and intensity-dependent

regime, cavity field possess more nonclassical features according to this

criteria.

At last, paying attention to the obtained results, we notice that either the

detuning parameters or the intensity-dependent coupling have remarkable ef-

fects on the creation of nonclassical properties in appropriate situations. As

an outlook of the present work, it is mentionable that the work of this paper

can be accomplished for Λ-type and Ξ-type three-level atoms, too. These

works are performing and will be submitted in the near future.
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Figure 1: Schematic diagram of the interaction between two V-type three-level atoms

passing consecutively through a cavity field.
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Figure 2: The atomic inversion for the first atom as a function of the scaled time τ1 = λ2t1

when the atom is initially in a coherent superposition of their excited states and the field

is in a coherent state with |α|2 = 25. The left plots correspond to the absence of the

intensity-dependent coupling f(n) = 1, and the right ones are plotted in the presence

of the intensity-dependent coupling with nonlinearity function f(n) =
√
n. Also, (a)

∆1 = ∆2 = 0, (b) ∆1

λ2
= 7, ∆2

λ2
= 15.
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Figure 3: The atomic inversion when the second atom entered the cavity as a function of

the scaled time τ2 = λ2t2 for particular chosen values of the scaled time τ1 = λ2t1 extracted

from Fig. 2, when the atom is initially in a coherent superposition of its excited states.

The left plots correspond to the absence of the intensity-dependent coupling f(n) = 1,

and the right ones are plotted in the presence of the intensity-dependent coupling with

nonlinearity function f(n) =
√
n. Also, (a) ∆1 = ∆2 = 0, (b) ∆1

λ2
= 7, ∆2

λ2
= 15.
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Figure 4: Three-dimensional plots of the time evolution of the von Neumann entropy in

term of the scaled times τ1 = λ2t1 and τ2 = λ2t2; other parameters are chosen similar to

Fig. 3.
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Figure 5: Three-dimensional plots of the time evolution of normal squeezing of the field

in term of the scaled times τ1 = λ2t1 and τ2 = λ2t2; other parameters are chosen similar

to Fig. 3.
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Figure 6: The cross-section of the plots of Fig. 5: normal squeezing as a function of the

scaled time τ2 = λ2t2 for particular values of the scaled time τ1 = λ2t1 in Fig. 2; other

parameters are chosen similar to Fig. 3.
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Figure 7: Three-dimensional plots of the time evolution of the second-order squeezing of

the field in term of the scaled times τ1 = λ2t1 and τ2 = λ2t2; other parameters are chosen

similar to Fig. 3.
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Figure 8: The cross-section of the plots of Fig. 7: the second-order squeezing as a function

of the scaled time τ2 = λ2t2 for particular values of the scaled time τ1 = λ2t1 in Fig. 2;

other parameters are chosen similar to Fig. 3.
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Figure 9: Three-dimensional plots of the time evolution of the Mandel parameter in term

of the scaled times τ1 = λ2t1 and τ2 = λ2t2; other parameters are chosen similar to Fig.

3.
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Figure 10: The variation of the population inversion for the first in term of the scaled time

τ1 = λ2t1 and the second atom in term of the scaled time τ2 = λ2t2 in the up and down

rows respectively in the resonance condition for |α|2 = 4. The left plots correspond to the

absence of the intensity-dependent coupling f(n) = 1, and the right ones are plotted in

the presence of the intensity-dependent coupling with nonlinearity function f(n) =
√
n.

Figure 11: The Wigner quasi-distribution function in phase space for the scaled times τ1

and τ2 which are defined in the Fig. 10.
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