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Transcription Factors (TFs) are proteins that regulate gene expression. The regulation mechanism
is via the binding of a TF to a specific part of the gene associated with it, the TF’s target. The
target of a specific TF corresponds to a vanishingly small part of the entire DNA, where at the
same time the search must end in a matter of tens of seconds at most for its biological purpose to
be fulfilled – this makes the search a problem of high interest. Facilitated Diffusion is a mechanism
used in nature for a robust and efficient search process. This mechanism combines 1D diffusion
along the DNA and “excursions” of diffusion in 3D that help the TF to quickly arrive at distant
parts of the DNA. In this paper we provide a derivation concerning this mechanism that links this
search process to fundamental concepts in probability theory (conditional probability).

I. MOTIVATION

The basic concept of conditional probability could be
summarized by the following equation:

P (A|B) =
P (A ∩B)

P (B)
. (1)

This concept gives rise to neat and non-intuitive results
as captured beautifully in Elchanan Mossel’s Dice Para-
dox [1].
This “paradox” is phrased as follows [2]:

You roll a fair six-sided die until you get 6.
What is the expected number of rolls condi-
tioned on the event that all rolls gave even
numbers?

It is a common mistake to think that the answer is 3
based on the following logic: if the possible outcomes are
either 2, 4 or 6 and we wish to get a 6 then the number
of rolls follows a geometric distribution with a parameter
of 1/3.
The problem with this answer is that it doesn’t take the

conditioning into account appropriately. The probability
is conditioned on getting either 2’s or 4’s prior to getting a
6 but it is still possible to get other results. We will now
perform the correct calculation using Eq. (1). Instead
of A we’ll have Xi which stands for the probability of
getting a 6 on the ith roll and B will stand for getting
strictly even numbers before getting the first 6. First
we’ll calculate P (Xi ∩B)

P (Xi ∩B) =

(

1

3

)i−1

· 1
6
=

1

2
·
(

1

3

)i

, (2)

and using the law of total probability we can calculate
P (B)

P (B) =
∞
∑

i=1

P (Xi ∩B) =
1

2

∞
∑

i=1

(

1

3

)i

=
1

4
. (3)

We can now use Eq. (1), Eq. (2) and Eq. (3) to calculate
the expected number of rolls

E [N ] =

∞
∑

i=1

i
P (Xi ∩B)

P (B)
= 2

∞
∑

i=1

i

(

1

3

)i

=
3

2
. (4)

Which is quite different than what was naively expected.
The origin for this difference is that once we properly
take the conditioning into account we essentially “throw
away” long sequences since they have vanishingly small
probability for not including odd numbers. This differ-
ence could be emphasized by, for example, a 1,000-sided
die. For such a die the naive calculation will produce a
result of E [N ] = 500 while for the correct calculation
E [N ] = 1000

501 ≈ 2.
Next, we will describe an important biological process

known as “facilitated diffusion”, which, intriguingly, is
related to the concept of conditioned probability. In fact,
we will see that this mechanism shares several key prop-
erties with the “paradox” discussed above.

II. FACILITATED DIFFUSION

Transcription Factors (TFs) are proteins designated to
regulate gene expression in cells. In order for the regu-
lation to be effective, the TF has to find its target, a
segment located somewhere along the DNA that is ex-
tremely short compared with the entire length of the
DNA, in tens of seconds or less. TFs motion is via diffu-
sion. An order-of-magnitude estimate for the search time
via either 1D or 3D diffusion is given in [3]. The estimate
for 1D diffusion is a result of comparing the 1D diffusion
rate with the total length of the DNA

tsearch ∼ L2

D1D
, (5)

with L being the DNA total length and D1D the 1D dif-
fusion coefficient. For typical values relevant for bacteria
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this results in a search time of tens of hours. The esti-
mate for 3D diffusion is as follows

tsearch ∼ V

D3Dr
, (6)

with V being the volume restricting the TF and its tar-
get, D3D the 3D diffusion coefficient and r the typical
spatial size of the target. It could be obtained by di-
mensional analysis or, more rigorously, by solving a first-
passage-time problem of a random walker hitting a target
in a restricted volume, as found in Refs. [4, 5]. This re-
sults in a search time of hundreds of seconds, which is
much better than the 1D case, but in reality it is likely
that the protein would also interact with the DNA non-
specifically, making this estimate rather optimistic [6].

Facilitated diffusion is a mechanism where the TF per-
forms 1D diffusion along the DNA and at any given mo-
ment can fall-off and perform 3D diffusion until reattach-
ing the DNA (a 3D excursion) at some random point
along it; this is a key assumption that allows significant
simplifications of the mathematical description of the
mechanism. The 1D diffusion along the DNA and the 3D
excursions happen interchangeably until the TF hits its
target. This model is well studied, see Refs. [3, 7, 8] for
reviews, and empirical evidence supporting it was found
in bacteria, [9]. Fig. 1 shows a cartoon illustrating this
mechanism. As we shall see, the dependence of the search
time on the underlying microscopic parameters (diffu-
sion constants and dimensions) is fundamentally different
than the 1D and 3D models discussed above. For a broad
parameter regime, it can lead to a significant speedup of
the search time.

We will now show a mathematical description of this
model that allows significant speed-up compared with the
results of Eq. (5) and Eq. (6). Namely, we’ll arrive at a
search time that scales like L instead of L2. The key
principle for the success of this mechanism is analogous
to what we described earlier discussing the dice “para-
dox” – the falling-off during a 1D search attempt and re-
trying at a random point along the DNA resembles the
“throwing away” of long die rolling sequences. Namely,
the probability to fall-off is analogous to the probability
of getting an odd number. Note that in the dice prob-
lem once we get an odd number we “reset” the counter,
while in the case of facilitated diffusion failed attempts
do contribute to the total time. However, in both cases
the “resetting” allows us to avoid lengthy runs and thus
shortens the mean first passage time (MFPT). Further-
more, in both cases we see the dramatic effects of the a
priori benign conditioning process: in the dice problem,
this leads to a MFPT always smaller than 2 (for any
number of facets of the die). In the facilitated diffusion
problem, conditioning on a successful search leads to a
MFPT linear in the distance from the target, rather than
quadratically as we might expect intuitively.

III. MATHEMATICAL DESCRIPTION

We now present the mathematical description of the
facilitated diffusion mechanism. We start from a micro-
scopic point of view, move on to a continuum description
and by properly taking the conditional probability into
account we arrive at a description of the full search pro-
cess. Our results are closely related to the extensive ana-
lytical results obtained by Ref. [10], albeit our derivation
is more elementary and focuses on different aspects of the
mathematical description of the mechanism.
We start by solving the one dimensional problem of a

TF hitting the target while being bound to the DNA.
Afterwards we’ll take the 3D excursions into account.

A. The 1D problem

As a “warm-up” we’ll start with a time-independent
problem of the probability of a particle hitting a target
before falling-off starting at distance x from the target,
p̃ (x). We can write the recursion relation for p̃ (x) as
follows

p̃ (x) = (1− γ)
p̃ (x+ δx) + p̃ (x− δx)

2
, (7)

where γ is the probability to fall at any step and δx be-
ing the step size. This recursion relation holds since at
each step the particle falls off with probability γ, and
otherwise goes to each of its two neighboring sites with
probability 1

2 . In Eq. (7) we neglect the effect of having
finite boundaries – given that the DNA is much longer
compared with the size of the TF we may, without sig-
nificantly affecting the results, solve the problem on an
infinite domain, x ∈ (−∞,∞), while assuming the target
is at x = 0.
Subtracting p̃ (x) from Eq. (7) and multiplying by 2

(δx)2

we arrive at the following

0 =
p̃ (x+ δx)− 2p̃ (x+ δx) + p̃ (x− δx)

(δx)
2

− γ

δt

2δt

(δx)
2

p̃ (x+ δx) + p̃ (x− δx)

2
,

(8)

where we also multiplied the second term by 1 = 2δt
2δt , δt

being the time step, taking continuum limit: δx → 0,

δt → 0 and γ → 0, while defining D ≡ (δx)2

2δt and Γ ≡ γ
δt
.

This brings us to the following ODE

d2p (x)

dx2
=

Γ

D
p (x) , (9)

whose solution is

p (x) = exp

(

−
√

Γ

D
|x|
)

. (10)
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FIG. 1. Cartoon illustrating the facilitated diffusion search mechanism. The TF (circle) performs 1D diffusion along the DNA
(solid line). It then falls off, performs 3D diffusion and lands somewhere else along the DNA (3D diffusion excursion) – which
could get it closer to its target (square) or further away from it. This process repeats itself until the TF finds the target.

Eq. (9) has another solution, exp
(√

Γ
D
|x|
)

. But, this

solution is unphysical since it predicts that the probabil-
ity for hitting the target prior to falling off is greater for
more distant starting points.
This result will be useful later on. For now, we wish

to solve a time dependent problem that will allow us
to calculate the time “spent” on 1D search attempts –
the First Passage Time (FPT) problem. Analogously to
what we did for p̃ (x), we can write a recursion relation
for g̃ (x, t) which can stand for either one of the following
two: the probability distribution for a particle to be at
x at time t or the probability that the particle would hit
the the target by time t given that it started at position
x [11].

g̃ (x, t) = (1− γ)
g̃ (x+ δx, t− δt) + g̃ (x− δx, t− δt)

2
.

(11)
Similar to what that was done in Eq. (8) and Eq. (9) we

can take the continuum limit and arrive at the following
PDE

∂g (x, t)

∂t
= D

∂2g (x, t)

∂x2
− Γg (x, t) . (12)

Depending on which of the two interpretations listed
above is used, Eq. (12) is either a Fokker-Planck equation
(also known as the Kolmogorov Forward equation) or the
Kolmogorov Backward equation, see Refs. [12–15]. This
is a special case where both the forward problem and the
backward problem are described by the same equation,
which is not generally the case.
Eq. (12) is analytically solvable. Even so, this solution

is of little significance given that the search mechanism
is not “measured” at the level of a single search attempt
but – as we shall see later – on the level of numerous
search attempts. In other words, what we will be inter-
ested in is the MFPT associated with Eq. (12) (not to
be confused with the MFPT of the entire facilitated dif-
fusion process – which we calculate in section III B). We

present the calculation of the FPT distribution for the
sake of completeness in Appendix A.
The MFPT of Eq. (12), which we shall denote as T (x),

can be derived directly from it as shown in Appendix B.
Here we shall present a different derivation which is very
similar to how Eqs. (9) and (12) were derived. We write
the following recursion relation for T (x):

T̃ (x) = δtp̃ (x) + (1− γ)
T̃ (x+ δx) + T̃ (x− δx)

2
, (13)

where the δtp̃ (x) term is a bit subtle: since T (x) includes
the average time of hitting the target over all the trajec-
tories that eventually get there, when advancing a time
step δt, the time contributed to T (x) is the product of δt
and the probability of actually hitting the target. Taking
the continuum limit of Eq. (B1) in a similar manner to
what that was done in Eqs. (8) and (9) gives:

D
d2T (x)

dx2
− ΓT (x) + p (x) = 0. (14)

We arrived at a linear ODE. The boundary conditions
for Eq. (14) are T (0) = T (x → ∞) = 0. The former is
a direct result of the definition of T (x) as a mean first
passage time problem. For the latter, we reiterate that
T (x) is only contributed by successful trajectories – these
become exceedingly rare as x → ∞.
Solving Eq. (14) is possible using a well-known method

called variation of parameters (or variation of constants),
for further reading see Ref. [16], leading to:

T (x) =
|x|

2
√
ΓD

exp

(

−
√

Γ

D
|x|
)

. (15)

Finally, introducing the conditioning (looking strictly at
successful search attempts, by dividing by p (x), the prob-
ability of success) we arrive at

T̂ (x) =
|x|

2
√
ΓD

. (16)
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This result provides another example for the “power” of
the conditioning; while time is usually related to distance
squared in diffusion processes, we get a linear relation.
This is a key property of this mechanism that ultimately
allows the linear relation in the final result.

B. Taking 3D excursions into account

Up to this point we’ve only considered a single 1D
search attempt. Taking the 3D excursions into account
we are able to model the whole process. We will do so by
assuming a finite DNA of length 2L and that the reat-
tachment point after a 3D excursion is distributed uni-
formly on the DNA.
In order to write down the term for the overall search

time we use the following definitions (some were men-
tioned earlier): p (xi) is the probability to hit the target
in the ith 1D search attempt, t1D (xi) is the time spent on

the ith attempt assuming it was successful while t
f
1D (xi)

denotes the time assuming that it wasn’t, all conditioned
on starting from position xi, and ti3D is the time spent

on 3D diffusion assuming the (i− 1)
th

1D search attempt
has failed. The search time then follows (assuming that
the search starts with the TF bound to the DNA; relax-
ing the assumption is inconsequential)

T = p (x0) t1D (x0) + (1− p (x0)) p (x1)

×
(

t1D (x1) + t
f
1D (x0) + t03D

)

+(1− p (x0)) (1− p (x1)) p (x2)

×
(

t1D (x2) + t
f
1D (x0) + t

f
1D (x1)

+t03D + t13D
)

+ ...

=

∞
∑

i=0

p (xi)



t1D (xi) +

i−1
∑

j=0

(

t
f
1D (xj) + t

j
3D

)





×
i−1
∏

j=0

(1− p (xj)) .

(17)

Taking the mean of Eq. (17) over the binding position
xi (assumed to be uniformly distributed) we arrive at the
following

〈T 〉 =
∞
∑

i=0

(

〈p (x) t1D (x)〉 (1− 〈p (x)〉)i

+i 〈p (x)〉
〈

t
f
1D (x) (1− p (x))

〉

(1− 〈p (x)〉)i−1

+i 〈p (x)〉 〈t3D〉 (1− 〈p (x)〉)i
)

=
〈p (x) t1D (x)〉

〈p (x)〉 +

〈

(1− p (x)) tf1D (x)
〉

〈p (x)〉

+ 〈t3D〉 1− 〈p (x)〉
〈p (x)〉 , (18)

and calculating all the means will bring us to

〈T 〉 = 1+ Γ 〈t3D〉
1− e−

√
Γ

D
L

L√
DΓ

−
(

1

Γ
+ 〈t3D〉

)

≈

L√
DΓ

+ L

√

Γ

D
〈t3D〉 . (19)

First, if we optimize the search time with respect to
Γ we arrive at a neat conclusion that the optimal search
time is obtainable by taking Γ = 1

〈τ3D〉 and then the TF

spends half of its time in 1D and half in 3D. The main
result though is that the search time now scales linearly
with L instead of quadratically! As we mentioned before,
this is reminiscent of dice “paradox” – we do not “keep”
long and unsuccessful sequences.

IV. DISCUSSION

In this paper we re-visited a well known and well
studied mechanism for how TFs search for their target
genes. We showed how the mathematical description of
the mechanism naturally utilizes to the basic concept of
conditional probability.
The facilitated problem we discussed here is mathe-

matically related to the class of problems of first passage
time under restart. For these problems, one is interested
in the first passage time of a random walker, with a rate
to ”reset” the particle, typically to a particular site (in
contrast to the random resetting encountered in the fa-
cilitated diffusion problem). Intriguingly, there is an op-
timal restart rate that can speed up the search dramati-
cally. A generic treatment of first passage under resetting
is given in Ref. [17] and a review thoroughly studying dif-
ferent cases and generalizations of the resetting time is
found in [18]. Such processes are deeply related to the in-
spection paradox of probability theory, where a sampling
bias may distort the statistics in counter-intuitive ways.
For instance, in a famous example of this paradox, the av-
erage waiting time for a bus a person measures when they
arrive at the bus station at some random, uniformly dis-
tributed, time is greater than the average time between
consecutive buses. In the case of heavy-tailed distribu-
tions, in fact, the former can be infinite even when the
latter is finite! Resetting allows to overcome this sam-
pling bias and in some cases may even shorten the waiting
time compared with the distribution’s mean. A review
studying the relations between stochastic processes un-
der resetting and the inspection paradox is found in [19].
This study also characterize the processes where resetting
will enable a speed-up compared with a simple mean of
the distribution.
While the facilitated diffusion mechanism is a power-

ful mechanism for shortening the search time, there are
both extensions to this mechanism and other, completely
different, mechanisms worth mentioning. Still within the
framework of facilitated diffusion, one may take into ac-
count the energy landscape the TF experiences while
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moving along the DNA, as discussed in the reviews [3, 7].
Recently, Ref. [20] relates diffusion on such a disordered
landscape to the phenomenon of Anderson localization
and discussed its implications for facilitated diffusion.

Ref. [21] discusses a protein extended in one dimen-
sion in a manner that enables it to interact with many
sequences along the DNA in parallel, which effectively re-
duces the dimensionality of the search (from three to two
dimensions) causing a remarkable speed-up of the search
process – distinct from the mechanism we explored here.
Another distinct example is given in Refs. [22–24] which
discuss the search mechanism TFs use in eukaryotic cells.
In this case, the TFs often have a long polymeric tail
called the Intrinsic Disordered Region (IDR) that plays
a major role in the search, though the theoretical frame-
work for this scenario has yet to be developed.
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Appendix A: Calculating the FPT

In the following we calculate the FPT as opposed to
the MFPT calculated in the main text.

For convenience we re-write Eq. (12) governing the dy-
namics of g (x), the probability that the particle would
hit the the target by time t given that it started at posi-
tion x:

∂g (x, t)

∂t
= D

∂2g (x, t)

∂x2
− Γg (x, t) . (A1)

This equation is supplemented by the initial condition
g (x, 0) = 0 and the boundary condition g (0, t) = 1. To
proceed, as in many FPT problems [5], we will Laplace
transform the equation. Denoting L [g (x, t)] ≡ G (x, s),
we obtain:

sG (x, s) = D
∂2

∂x2
G (x, s)− ΓG (x, s) . (A2)

Relying on the Laplace transform of the initial condition
L [1] = 1

s
, we find that the solution of Eq. (A2) is

G (x, s) =
1

s
exp

(

−
√

s+ Γ

D
|x|
)

. (A3)

Performing the inverse Laplace transform produces the

solution for g (x, t)

g (x, t) = L−1

[

1

s
exp

(

−
√

s+ Γ

D
|x|
)]

=

1

2
exp

(

−
√

Γ

D
|x|
)[

1 + erf

(

2
√
ΓDt− |x|
2
√
Dt

)

+exp

(

2

√

Γ

D
|x|
)

erfc

(

2
√
ΓDt+ |x|
2
√
Dt

)]

.

(A4)

Note that this is not technically a cumulative distribution

function (CDF) since g (x, t → ∞) = exp
(

−
√

Γ
D
|x|
)

(consistent with the result of Eq. (10): there is a non-
vanishing probability not to hit the target of course). If,
on the other hand, we look at the probability to hit the
target conditioned on hitting it, the corresponding CDF
is:

ĝ (x, t) =
1

2

[

1 + erf

(

2
√
ΓDt− |x|
2
√
Dt

)

+exp

(

2

√

Γ

D
|x|
)

erfc

(

2
√
ΓDt+ |x|
2
√
Dt

)]

. (A5)

From this result we can obtain the MFPT:

T (x) =

∫ ∞

0

t
∂

∂t
ĝ (x, t) dt =

x

2
√
ΓD

, (A6)

which reproduces the result of Eq. (16).

Appendix B: Deriving the MFPT equation directly

from the equation for the FPT

In the main text we derived the equation for the MFPT
using the appropriate recursion relation following funda-
mental principles. In the following we shall present an
alternative derivation starting from the equation for the
FPT, namely Eq. (12) (also presented in the previous
appendix as Eq. (A1)).

Since g (x, t) corresponds to the probability to hit the
target until time t given that we start at x, the MFPT
is obtainable from g (x, t) as

T (x) =

∫ ∞

0

t
∂g (x, t)

∂t
dt. (B1)

Note that we expect this time to be finite even on an
infinite domain, since the finite fall-off rate would prevent
the mean time from diverging – in contrast, for example,
to the diverging MFPT associated with normal random
walks in 1D (we have also shown this directly from the
FPT distribution in the previous appendix).



6

If we act on Eq. (A1) with
∫∞

0 t ∂
∂t
dt we arrive at

∫ ∞

0

t
∂2g (x, t)

∂t2
dt = D

∫ ∞

0

t
∂

∂t

∂2g (x, t)

∂x2
dt

−Γ

∫ ∞

0

t
∂g (x, t)

∂t
dt. (B2)

The RHS is simply D
∂2T (x)
∂x2 − ΓT (x), whereas, using

integration by parts, the LHS reads as
∫ ∞

0

t
∂2g (x, t)

∂t2
dt = t

∂g (x, t)

∂t
|∞0

−
∫ ∞

0

∂g (x, t)

∂t
dt = −g (x, t) |∞0

= − exp

(

−
√

Γ

D
|x|
)

. (B3)

Together, we obtain the following equation for the
MFPT:

D
∂2T (x)

∂x2
− ΓT (x) + exp

(

−
√

Γ

D
|x|
)

= 0, (B4)

reproducing Eq. (14) obtained directly using the recur-
sion relation.
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