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Sign inversion in the lateral van der Waals force between an anisotropic particle and a plane with a
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We investigate the lateral van der Waals (vdW) force between an anisotropic polarizable particle and a per-

fectly conducting plane with a hemispherical protuberance with radius R. We predict, via an exact calculation,

a sign inversion in the lateral vdW force, in the sense that, instead of pointing to the protuberance, in certain

situations this force points to the opposite direction. In the literature, predictions of sign inversions in the lateral

vdW force were based on perturbative solutions, valid when the height of the protuberance is very small when

compared to the distance z0 between the particle and the plane. Here, taking into account exact formulas, we

investigate how such nontrivial geometric effect depends on the ratio R/z0, and how the particle orientation and

anisotropy affect this sign inversion.
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I. INTRODUCTION

Investigations of the Casimir-Polder–van der Waals (CP-

vdW) [1] interaction considering anisotropic particles gener-

ally involves nontrivial behaviors. Among them is the pre-

diction of a repulsive CP-vdW force [2–7] and a torque on a

particle [8–11]. Beyond this, when considering the lateral CP-

vdW force that acts on a particle interacting with a corrugated

surface, nontrivial behaviors of this force are predicted when

calculations are made beyond the proximity force approxi-

mation (PFA). As an example, it was predicted the presence

of regimes in the behavior of the lateral vdW force when an

anisotropic polarizable particle interacts with a periodic cor-

rugated surface [12, 13]. In addition, recently it was predicted

that, for an anisotropic particle interacting with a conducting

plane with a protuberance, a sign inversion in the lateral vdW

force can occur, in the sense that, instead of pointing to the

protuberance, in certain situations the force points to the op-

posite direction [14].

The prediction discussed in Ref. [14] was based on the ap-

plication of a formula proposed by Eberlein and Zietal in Ref.

[15] to compute the vdW interaction between a neutral polar-

izable particle and a perfectly conducting surface of arbitrary

shape. This formula is written in terms of the homogeneous

part of the Green’s function of the Laplacian operator, where it

is stored the information about the geometry of the surface. In

Ref. [14], it was considered a perturbative analytical solution

for the Green’s function for the case of a perfectly conduct-

ing plane with a protuberance and, using it in the Eberlein-

Zietal formula, it was predicted the mentioned sign inversion

in the lateral vdW force up to first perturbative order in the ra-

tio a/z0 ≪ 1 (z0 is the distance from the particle to the plane,

and a is the height of the protuberance).

In Ref. [16], the Eberlein-Zietal formula was combined

with the well known solution for the Green’s function for the
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problem of a perfectly conducting plane with a hemispherical

protuberance with radius R [17], and it was investigated the

curvature effects of the hemisphere on the vdW force normal

to the plane. In the present paper, we use the same calcula-

tion technique but focus our attention specifically on the lat-

eral vdW force. We confirm, now via an exact calculation, the

sign inversion previously predicted in Ref. [14] in the context

of a perturbative approach. We show how such nontrivial ge-

ometric effects are regulated by the ratio R/z0, and how the

existence of these effects depend on the particle orientation

and its anisotropy.

The paper is organized as follows. In Sec. II, we make a

brief review of the perturbative predictions made in Ref. [14].

In Sec. III, we present the exact calculation made to write the

formulas for interaction between a neutral polarizable particle

and a conducting plane with a hemisphere. In Sec. IV, we

present our final remarks.

II. A BRIEF REVIEW OF THE PERTURBATIVE

CALCULATION

In Ref. [14], it was considered the vdW interaction between

a plane surface (z = 0) with a single slight protuberance,

and a neutral polarizable particle located at r0, and kept con-

strained to move on a plane z = z0 > 0 (Fig. 1). To inves-

tigate this interaction, it was took as basis the analytical per-

turbative formula presented in Ref. [12], related to the vdW

interaction between the particle and a grounded conducting

corrugated surface described by z = h(r‖), with h(r||) de-

scribing a general small modification [max|h(r||)| = a ≪ z0]
of a planar surface at z = 0 (in Ref. [14], this modifica-

tion is represented by a single protuberance on the surface).

The vdW interaction energy UvdW, between the particle and

the corrugated surface, was written as UvdW ≈ U
(0)
vdW + U

(1)
vdW,

where the first term U
(0)
vdW is the vdW potential for the case of

a grounded conducting plane [18], whereas U
(1)
vdW is the first

perturbative correction of U
(0)
vdW due to the presence of the cor-

rugation, and is given by Eqs. (1)-(3) in Ref. [14]. This ap-
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proach requires no demand on the smoothness of the rough

surface, so that the results are valid beyond the PFA.

Figure 1. Illustration of a neutral anisotropic polarizable particle

(elliptic figures), kept constrained to move on the plane z = z0 (hor-

izontal dotted lines), interacting with a perfectly conducting plane

with a single slight Gaussian protuberance with characteristic width

d. Due to the presence of the protuberance, the particle feels a lateral

force (arrows). In (i), the particle at A′ (or A′′) feels a lateral force

that takes it back to A; in (ii), for a decreased ratio d/z0, the lateral

force moves the particle away from A. This sign inversion in the

lateral force was predicted in Ref. [14].

The main situation discussed in Ref. [14] was the case of

a Gaussian protuberance of height a and width d, given by

h(r‖) = a exp[−
(

|r‖|/d
)2
]. It was shown that when the PFA

is considered (d/z0 → ∞), the lateral vdW force always leads

the particle towards the peak of the protuberance. On the other

hand, for a generic value of d/z0, nontrivial geometric effects

arise when considering an anisotropic polarizable particle and

manipulating the ratio d/z0. In this situation, the main pre-

diction is that as d/z0 decreases, the minimum value of the

vdW energy can no longer coincide with the peak of the pro-

tuberance, which means that, instead of being attracted to the

peak, the particle can be moved away from it (see Fig. 1). It

was also shown in Ref. [14] that such a sign inversion in the

lateral vdW force is affected by the particle orientation and its

anisotropy, so that, depending on them, the mentioned effects

can be suppressed.

As mentioned, in Ref. [14] these nontrivial behaviors of the

lateral vdW force were predicted by means of a perturbative

approach with a/z0 ≪ 1, and investigating them using only

the first perturbative correction U
(1)
vdW. Differently from this, in

the next section, we study such nontrivial effects by means of

an exact calculation, considering a perfectly conducting plane

with a hemispherical protuberance.

III. EXACT CALCULATION

Let us start considering a point charge Q, located at the po-

sition r
′ = r

′
|| + z′ẑ (with z′ > 0 and r

′
|| = x′

x̂ + y′ŷ),

interacting with a conducting plane surface (z = 0) that has

a protuberance with the shape of a hemisphere of radius R, as

shown in Fig. 2(a). The potential Φ (r), related to the Pois-

son’s equation of this problem, can be obtained exactly by

means of the image method. For this case, one can obtain that

only three image charges are necessary to obtain Φ (r) = 0 at

the plane z = 0 and the hemisphere [16, 17]. In this way, one

can obtain that the potential is given by

Φ (r) =
Q

|r− r′|
+

Q̃

|r− r̃′|
+

Q

|r− r
′|
+

Q̃

|r− r̃ ′|
, (1)

where r̃
′, r

′ and r̃
′ are the position vectors of the image

charges Q̃, Q and Q̃, respectively [see Fig. 2(b)] [16, 17].

By writing these position vectors in cylindrical coordinates

(ρ, φ, z), one obtains [16]

|r− r
′| =

√

ρ2 + ρ′2 − 2ρρ′ cos (φ− φ′) + (z − z′)
2
, (2)

|r− r̃
′| =

√

ρ2 + ρ′2 − 2ρρ′ cos (φ− φ′) + (z + z′)
2
, (3)

|r− r
′| =

1

(ρ′2 + z′2)

√

ρ2 (ρ′2 + z′2)
2
+R4ρ′2 − 2R2 (ρ′2 + z′2) ρρ′ cos (φ− φ′) + [z (ρ′2 + z′2)−R2z′]

2
, (4)

|r− r̃
′| =

1

(ρ′2 + z′2)

√

ρ2 (ρ′2 + z′2)
2
+R4ρ′2 − 2R2 (ρ′2 + z′2) ρρ′ cos (φ− φ′) + [z (ρ′2 + z′2) +R2z′]

2
, (5)

and the charges Q̃, Q and Q̃, in terms of Q, as Q̃ = −Q, Q = −QR/
√

ρ′2 + z′2, and Q̃ = QR/
√

ρ′2 + z′2 [16]. Since

Φ (r, r′) = QG (r, r′), the Green’s function G (r, r′) is given by

G (r, r′) =
1

|r− r′|
−

1

|r− r̃′|
−

R
√

ρ′2 + z′2

(

1

|r− r
′|
−

1

|r− r̃ ′|

)

. (6)

Now that we have the Green’s function related to a point charge in the presence of a conducting plane with a hemi-
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(a) (b)

Figure 2. (a) Illustration of a charge Q located at r′ = r
′
‖ + z′ẑ (with z′ > 0), interacting with a conducting plane surface (z = 0) that has a

protuberance with the shape of a hemisphere of radius R. (b) Illustration of the charge Q and its three image charges Q̃, Q and Q̃, which are

located at r̃′, r′ and r̃
′, respectively.

sphere, we can compute the vdW interaction UvdW between a

polarizable particle located at r0 and this surface, by using the

formula proposed by Eberlein and Zietal in Ref. [15], which

is given by

UvdW(r0) =
1

8πǫ0

∑

i,j

〈d̂id̂j〉∇i∇
′
j GH(r, r′)|

r=r
′=r0

, (7)

where

GH (r, r′) = G (r, r′)−
1

|r − r′|
, (8)

and d̂i are the components of the dipole moment operator.

Thus, using Eq. (6) in Eq. (8), and substituting in Eq. (7),

one obtains that UvdW = U
(0)
vdW + U

(h)
vdW [16]. The first term

U
(0)
vdW is the vdW potential for the case of a grounded conduct-

ing plane [18], and is given by

U
(0)
vdW = −

1

64πǫ0z30

[

〈d̂2ρ〉+ 〈d̂2φ〉+ 2〈d̂2z〉
]

. (9)

The second term, U
(h)
vdW, is the term of the energy that arises

due to the presence of the hemisphere, and can be written as

U
(h)
vdW = −

1

64πǫ0z30

[

〈d̂2ρ〉Rρρ + 〈d̂2φ〉Rφφ + 〈d̂2z〉Rzz + 〈d̂ρd̂z〉Rρz

]

, (10)

where

Rρρ = −8R















R
2
+ ρ20

(

R
2
− ρ20 − 1

)3 +

R
2
[

(

R
2
+ 1

)2

− ρ20

(

R
2
+ ρ20 + 8

)

]

+ ρ20
(

1 + ρ20
)2

[

R
4
+ 2R

2 (
1− ρ20

)

+
(

1 + ρ20
)

2
]5/2















,

Rφφ = −8R
3











1
(

R
2
− ρ20 − 1

)3 +
1

[

R
4
+ 2R

2 (
1− ρ20

)

+
(

1 + ρ20
)2
]3/2











,

Rzz = −8R















R
2
+ 1

(

R
2
− ρ20 − 1

)3 −

R
2
[

(

R
2
− ρ20

)2

+
(

R
2
− 1− 8ρ20

)

]

−
(

1 + ρ20
)2

[

R
4
+ 2R

2 (
1− ρ20

)

+
(

1 + ρ20
)2
]5/2















, (11)

Rρz = −16Rρ0











1
(

R
2
− ρ20 − 1

)3 −
5R

4
+ 4R

2 (
1− ρ20

)

−
(

1 + ρ20
)2

[

R
4
+ 2R

2 (
1− ρ20

)

+
(

1 + ρ20
)2
]5/2











,

with R = R/z0 and ρ0 = ρ0/z0. Note that a lateral vdW force that acts on the particle arises due to the dependence of
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U
(h)
vdW on the variable ρ0. Since we are interested only in the

behavior of this force, hereafter we focus our attention only

on U
(h)
vdW. We remark that the behavior of the lateral force just

depends on the ratios R/z0 and ρ0/z0, and, thus, we investi-

gate how the variation of R/z0 affects the behavior of U
(h)
vdW in

relation to ρ0/z0. Besides this, one can note that for R → 0,

U
(h)
vdW vanishes, and we recover the energy interaction for the

case of a grounded conducting plane [16].

In Ref. [14], the geometric effects due to the presence of

the protuberance are regulated by the ratio between the char-

acteristic width d of the protuberance and the distance z0 from

the particle to the plane. In a similar way, in the situation dis-

cussed here, the geometric effects due to the presence of the

hemisphere are regulated by the ratio R/z0. In this way, we

are going to investigate how the variation of this ratio affects

the behavior of U
(h)
vdW. We remark that, unlike the perturbative

approach discussed in Ref. [14], by manipulating the width of

the hemisphere we alter its size as a whole, and therefore the

geometric effects predicted here are related to a change in the

entire size of the protuberance, not just its width.

To investigate the behavior of U
(h)
vdW, let us start consider-

ing a class of particles whose tensor 〈d̂id̂j〉 diagonalized, in

cylindrical coordinates, is represented by the matrix

〈d̂id̂j〉 =





〈d̂2n〉 0 0

0 〈d̂2n〉 0

0 0 〈d̂2p〉



 , (12)

which represents cylindrically symmetric polarizable parti-

cles, and thus the subscript p and n refer to the directions

parallel and normal to the symmetry axis of the particle (here,

we consider 〈d̂2p〉 ≥ 〈d̂2n〉). For a general orientation of this

particle, we can write

〈d̂2ρ〉 = 〈d̂2p〉
[

β + (1− β) sin2 (θ) cos2 (γ − φ0)
]

, (13)

〈d̂2φ〉 = 〈d̂2p〉
[

β + (1− β) sin2 (θ) sin2 (γ − φ0)
]

, (14)

〈d̂2z〉 = 〈d̂2p〉
[

β + (1− β) cos2 (θ)
]

, (15)

〈d̂ρd̂z〉 = 〈d̂2p〉

[

1− β

2
sin (2θ) cos (γ − φ0)

]

, (16)

where β = 〈d̂2n〉/〈d̂
2
p〉 (0 < β ≤ 1), and the angles θ and γ

describe the particle orientation, as illustrated in Fig. 3. As a

first case, let us consider a particle, kept constrained to move

on the plane z = z0, characterized by β = 0.2 and oriented

with θ = π/2 and γ = 0 (its symmetry axis is along the

x-direction). In Fig. 4, we show the behavior of U
(h)
vdW for

R/z0 = 0.6 [Fig. 4(a)] and R/z0 = 0.2 [Fig. 4(b)]. In Fig.

4(a), note that the minimum point of U
(h)
vdW is over the origin,

which means that the lateral vdW force always leads the par-

ticle to the peak of the hemisphere. On the other hand, in Fig.

4(b), we decrease the value of the ratio R/z0 and one notes

that U
(h)
vdW now has two minimum points, and none of them

coincide with the peak of the hemisphere. This change in the

minimum points means that a particle slightly displaced from

the origin can feel a sign inversion in the lateral force, in the

sense that instead of being attracted towards the hemisphere,

the particle can be moved away from it. These examples show

that such a sign inversion in the lateral vdW force, which is a

nontrivial geometric effect of the presence of the hemisphere

on the conducting plane, is regulated by the ratio R/z0. More-

over, the existence of this effect is now confirmed by means

of an exact calculation, with no restriction on the size of the

hemisphere or the particle position, differently from Ref. [14].

(a) (b)

Figure 3. Illustration of a polarizable particle characterized by Eq.

(12) with a general orientation described by the angles θ and γ. In

(a), it is shown a 3D view, whereas in (b), a 2D one.

The change in the minimum points by manipulating the ra-

tio R/z0, as shown in Fig. 4, also occurs for other values

of β. But, we remark that above a certain value of β, U
(h)
vdW

will always have only one minimum point over the peak of

the hemisphere, independently on the ratio R/z0. This means

that, the mentioned sign inversion in the lateral vdW force is

affected by the particle anisotropy. In this way, for a parti-

cle free to move along the x-axis (y0 = 0) and oriented with

θ = π/2 and γ = 0, in Fig. 5(a) we show the configura-

tions of β and R/z0, such that the peak of the hemisphere

(x0 = 0) is a minimum (dark region) or a maximum (light

region) point of U
(h)
vdW. The sign inversion in the lateral force

is obtained when a transition from the dark to the light region

occurs, and, thus, one can note that for β > 3/8 there are no

manipulation of the ratio R/z0 that makes possible the sign

inversion in the lateral force. In addition, the regions shown

in Fig. 5(a) change depending on the orientation of the particle

in the xy plane, which is given by the angle γ (see Fig. 3), and

thus, we show these regions for other values of γ in Figs. 5(b)

and 5(c). This means that, behaviors similar to that shown in

Fig. 4 also occur for other values of γ, but with the change in

the minimum points occurring for different configurations of

β and R/z0. This not occur when we reorient the particle by

changing the angle θ. In this situation, we have an asymmetric

behavior of U
(h)
vdW when 0 < θ < π/2, as shown in Figs. 6(a)

and 6(b). When θ = 0 (symmetry axis of the particle along

the z-direction), the minimum point of U
(h)
vdW is always over

the origin [see Fig. 6(c)], independent on the value of β or the

ratio R/z0. All of this show us that the sign inversion in the

lateral vdW force is also affected by the particle orientation.
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(a)

(b)

Figure 4. Behavior of U
(h)
vdW/U , with U = 〈d2p〉/(64πǫ0z

3
0), versus

x0/z0 and y0/z0, for a particle fixed at z = z0. In each panel, we

consider this particle characterized by β = 0.2 and oriented such

that θ = π/2 and γ = 0 (its symmetry axis is along the x-direction).

From panel (a) to (b), we change the value of the ratio R/z0 from

R/z0 = 0.6 to R/z0 = 0.2. The insets on the right show the be-

havior of U
(h)
vdW/U with respect to x0 (y0 = 0), and illustrate that the

change in the behavior of the energy results in a sign inversion of the

lateral vdW force (represented by the arrows).

IV. FINAL REMARKS

Using the well known solution for the Green’s function for

the problem of a perfectly conducting plane with a hemispher-

ical protuberance with radius R [Eq. (6)], we investigated the

vdW interaction [Eqs. (9)-(11)] between an anisotropic par-

ticle interacting with a perfectly conducting plane containing

a protuberance with the shape of a hemisphere. We verified,

via an exact calculation, the sign inversion in the lateral vdW

force, so that, instead of pointing to the protuberance [Fig.

4(a)], in certain situations the lateral vdW force points to the

opposite direction [Fig. 4(b)]. In the literature, such predic-

tion considered that the height of the protuberance was very

small when compared to the distance between the particle and

the plane [14]. In contrast, here we discussed such effect with

no restriction on the particle position and on the size of the

hemisphere, obtaining the lateral vdW force for any value of

the ratioR/z0. We investigated how such nontrivial geometric

effect depends on this ratio, and how the particle orientation

and anisotropy affect the sign inversion (Figs. 5 and 6).

The investigation of such nontrivial geometric effects on

(a) (b)

(c)

Figure 5. For a particle free to move along the x-axis (y0 = 0) and

oriented with θ = π/2, it is shown the configurations of β and R/z0
for which x0 = 0 is a minimum (dark region) or a maximum (light

region) point of U
(h)
vdW. These configurations are shown for (a) γ = 0,

(b) γ = π/6 and (c) γ = π/3. We remark that, we just have a dark

region when β > 3/8 in (a), β > 9/29 in (b), and β > 3/23 in (c).

the lateral vdW force, presented here, contributes to a better

understanding and control of the interaction between a neutral

anisotropic polarizable particle and a non-planar surface.
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