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We introduce a volumetric benchmark for near-term quantum platforms based on the generation
and verification of genuine entanglement across n-qubits using graph states and direct stabilizer
measurements. Our benchmark evaluates the robustness of multipartite and bipartite n-qubit en-
tanglement with respect to many sources of hardware noise: qubit decoherence, CNOT and swap
gate noise, and readout error. We demonstrate our benchmark on multiple superconducting qubit
platforms available from IBM (ibmq_belem, ibmq_toronto, ibmq_guadalupe and ibmq_jakarta).
Subsets of n < 10 qubits are used for graph state preparation and stabilizer measurement. Evalu-
ation of genuine and biseparable entanglement witnesses we report observations of 5 qubit genuine
entanglement, but robust multipartite entanglement is difficult to generate for n > 4 qubits and
identify two-qubit gate noise as strongly correlated with the quality of genuine multipartite entan-
glement.

I. INTRODUCTION

Developing benchmarks for quantum processors is cru-
cial to advance the state of the art in noisy intermediate-
scale quantum (NISQ) computing. Meaningful hardware
benchmarks need to be applicable to different qubit tech-
nologies, and adapt to devices with different qubit layouts
and basis gate sets. Application and algorithm metrics
need to quantify the complexity of the states that can
be generated in large Hilbert spaces, and assist in devel-
oping intuition behind the effect of hardware noise and
performance. While it is difficult to distill the complex
operation of a quantum processor to a single number or
a small set of numbers, a good benchmark should accu-
rately capture the relative performance of different pro-
cessors; it should be as simple as possible, and it should
have reasonable scaling as a function of the system size.
A comparison of the proposed benchmarks found in the
current literature shows the trade-off between scaling and
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detailed state characterization. Tomographic methods
[1, 2] obtain highly detailed representation of quantum
states and processes, but scale exponentially. Low-level
benchmarks characterize hardware elements (e.g., qubits
and gates) but interpolating from low-level to high-level
(application) performance may not be straightforward.
On the other hand, high-level benchmarks may fail to
capture the salient features of the processors.

A unifying framework for hardware characterization is
provided by the Volumetric Benchmarks (VBs). IBM in-
troduced quantum volume [3], which benchmarks quan-
tum hardware using randomized circuits. Hardware is
assigned a scalar value based on the largest circuit that
can be successfully executed, where success is defined by
the measurement of heavy output from a random cir-
cuit. The randomized circuits used to evaluate quan-
tum volume are characterized as square: where the width
(number of qubits) and depth (number of computational
steps) are equal. This framework was generalized in Ref.
[4] to rectangular random circuits (where circuit depth
can exceed width). Quantum volume as originally pro-
posed is not clearly related to algorithmic performance or
structured entanglement measures, although further re-
finements have become more closely related to algorithm
performance [4].

Quantum entanglement has been shown to be a valu-
able resource in quantum sensing and metrology [5],
quantum communications [6, 7] and quantum error cor-
rection [8] when computing with pure quantum states
[9]. It is therefore reasonable to design benchmarks
based on the ability of a processor to generate entan-
gled states. For example, an interesting–but poten-
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tially oversimplified — benchmark is the ability to pro-
duce Greenberger–Horne–Zeilinger (GHZ) states [10–13].
While GHZ states have been used as a low-level coherent
noise characterization tool [14], they only represent one
specific class of entanglement out of the plethora of entan-
gled states of n qubits. Beyond GHZ states, specific clus-
ter states and arbitrary graph states have been proposed
as benchmarks of near-term quantum hardware [15, 16].
While a number of studies have used GHZ, cluster state
or graph state preparation as a standalone benchmark
[17–19], individual state preparation as a benchmark
does not generally give a global enough picture of the
device’s capabilities in quantum information processing.
Yet, these observations of multipartite entanglement on
contemporary processors do demonstrate that NISQ de-
vices are capable of storing large entangled states, further
motivating the need for a standard entanglement-based
benchmark [20–23].

The challenge in generalizing and improving
entanglement-based benchmarks is that there exist
too many entangled states of n qubits. More impor-
tantly, the role of entanglement as a computational
resource is subtle, especially when generic entangled
states are considered [24, 25]. As a result, preparing
a small number of arbitrary entangled states does not
allow for a meaningful benchmark of hardware capabili-
ties, and may have minimal use in both near-term and
long-term quantum computing.

FIG. 1: Overview of the robust entanglement score
(a) the graph G(V,E) which defines (b) the unitary U(G)
that prepares the graph state |ψG〉 = |n,E〉 and the sta-
bilizers MS(G) for the entanglement witness. (c) The
unitary is constructed using Hadamard gates and CNOT
gates. (d) Applying a local complement to G(V,E) de-
fines G′(V,E′). (e,f) The associated graph state can be
prepared using (e) the Naïve method which constructs a
new graph unitary U(G′) using the edge set E′(G′) or (f)
the Unitary method which appends single qubit opera-
tions PLC to implement the LC operation on the original
graph unitary U(G).

In this work we introduce a VB for entangled state
generation, robust entanglement score (RES), that en-

compasses practically relevant classes of entangled states
and also scales linearly with circuit width. Its intended
goal is to show robust genuine entanglement [26] over a
large random sampling of entangled quantum states that
are used for a variety of quantum information tasks, in-
cluding quantum error correction, sensing, and one-way
computing. At the heart of our new benchmark is the
generation and verification of n-qubit entangled graph
states that are subgraphs of the device connectivity map,
and their locally equivalent graph states (Fig. 1(a),(d)).
By choosing graph states that are amenable to the de-
vice connectivity map, the state preparation circuits can
be constructed with minimal two-qubit gates (Fig. 1(c)).
But, by generating graph states in the same equivalence
class, we test graph states that are not guaranteed to
have low gate overhead, or that may require measurement
in different bases. Graph states in the same equivalence
class can have very different graph structure, from sparse
to dense (e.g. containing high degree vertices, triangles).

Entanglement verification is the measure of success for
our VB, but successful verification relies on high-fidelity
stabilizer measurements that reveal the underlying hard-
ware quality. Thus, through our benchmark we char-
acterize hardware performance that can be used to in-
fer algorithmic performance where the underlying circuit
structure is graph-like or for applications that make ex-
tensive use of entanglement (e.g. quantum optimization
or physics simulations on lattices). Our results show that
a benchmark such as RES, which exposes both global and
subtle information, and allows for the direct evaluation
of application-driven performance, is necessary in cap-
turing and comparing device performance compared to
other metrics.

Overall, our benchmark evaluates hardware perfor-
mance using graph state preparation, independent stabi-
lizer measurements, and quantification of multi-qubit en-
tanglement through the evaluation of genuine and bisep-
arable witnesses [27, 28]. The benchmark leverages spe-
cific graph state properties: local complementation of
graphs and efficient state characterization via entangle-
ment witnesses [28–30]. This results in global informa-
tion about the processor performance and its ability to
sustain genuine multipartite entanglement among qubit
subsets of the processor. These aspects are presented
in Section V. We execute our benchmark on supercon-
ducting (SC) qubits, but in general our benchmark is
hardware-agnostic and can be used to compare differ-
ent types of devices. Our benchmark is also application
agnostic, though graph states are commonly utilized in
many quantum applications and act as an algorithmic
primitive (see Section III).

Graph States and Entanglement Witnesses

The edges E and vertices V of a simple graph G(V,E)
define a unitary that prepares the n = |V | qubit graph
state |ψG〉 = |n,E〉 = U(G)|0〉⊗n using two-qubit entan-
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FIG. 2: Median genuine witness values aggregated over multiple graph state executions. The upper triangular values
are defined by non-mitigated results, the lower triangular values are defined by error mitigated results, using a tensored
mitigator defined in Qiskit Ignis. Negative values indicate that entanglement.(Left) Benchmarking of ibmq_jakarta
(RES-N= 6, RES-U= 12). (Right) Benchmarking of ibmq_toronto (RES-N= 6, RES-U= 8).

gling operations specified by the edge set E(G). We ver-
ify the generation of multipartite and bipartite entangle-
ment using witness functions (W) constructed from the
graph state stabilizersMS(G) [27, 28, 30, 31]. Negativity,
〈W〉 < 0, indicates entanglement (see Section VC).

Robust Entanglement Score

Volumetric benchmarks are defined by finite length fea-
tures (w = (w0, . . . , wi)) that then define ensembles of
circuits C(w) and a “success criterion” that quantifies
performance [4]. The RES benchmark uses the set of
states {G′i} which are equivalent under local operations
and classical communication (LOCC) [32]. From an ini-
tial n-qubit graph state G this set of states are gener-
ated through sequences of local complement (LC) oper-
ations [33–35] (see Section VB). Thus, from G we use
random sequences of LC operations to randomly sample
from graph states which are in the same equivalence class.
Once the graphs are determined, the corresponding cir-
cuits are constructed in two ways: by generating a new
graph state circuit [c.f. Fig. 1(e)] (the Naïve method) or
by appending local unitaries to the state preparation cir-
cuit of G [c.f. Fig. 1(f)] (the Unitary method). The Uni-
tary method maintains the original number of two-qubit
operations, whereas for the Naïve method the number of
two-qubit operations depends on E(G′).

The features used to evaluate the RES benchmark are
the quantum circuit width (w0 = n = |V (G)|), and graph
treewidth w1 = tw(G) [36, 37]. Treewidth can be used
to identify tree graphs (tw(T ) = 1 independent of n)
or complete graphs (tw(Kn) = (n − 1)) and is indepen-
dent of the circuit transpilation. In classical computing,
treewidth has been used to quantify problem difficulty
[38, 39], computational complexity [40] and complexity
of database queries [41].

Success for the RES benchmark is witness function
negativity (genuine or biseparable). We assign the RES
score for a given backend using the largest set of n-qubits
that can be genuinely entangled multiplied by the largest
treewidth (maxw0 × max w1). We distinguish the RES
scores by the method used: either the Naïve method
(RES-Naïve) or the Unitary method (RES-Unitary).

II. EVALUATION ON IBM HARDWARE

The RES benchmark was executed on multiple super-
conducting devices available through IBM Quantum [42],
listed in Table I with their respective quantum volumes
as reported by IBM. In Figs. 2,3 we present the median
genuine witness values evaluated on four IBM backends.
Using graph circuits of increasing order we determine
what is the largest treewidth, and largest set of qubits
(n) that can be genuinely entangled and verified. This is
not a test of which qubits on the hardware that can be en-
tangled, but starting from arbitrary qubit subsets, what
is the largest entangled state that can be prepared and
how robust is it to various sources of hardware noise. The
smallest number of qubits that we tested entanglement
across was n = 2 and the maximum number of qubits was
n = 9 (or the maximum number of qubits available on a
device). All backends were accessed through cloud-based
queues, and the data collection method is described in
Appendix VD. Tensored mitigators were evaluated dur-
ing data collection using the Qiskit library Ignis 1 [43].
The RES-Naïve and RES-Unitary values reported in Ta-
ble I are computed from unmitigated values. Mitigated
RES values are reported in Table II.

1 Library now depreciated, functionality available in qiskit-terra
and qiskit-experiments
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FIG. 3: Median genuine witness values aggregated over multiple graph state executions. The upper triangular values
are defined by non-mitigated results, the lower triangular values are defined by error mitigated results, using a tensored
mitigator defined in Qiskit Ignis. Negative values indicate entanglement. (Left) Benchmarking of ibmq_belem (RES-
N= 3, RES-U= 6). (Right) Benchmarking ofibmq_guadalupe (RES-N= 6, RES-U= 6).

Backend
Name Processor Qubits Quantum

Volume
RES-
Naïve

RES-
Unitary

ibmq_toronto r4 27 32 6 8
ibmq_guadalupe r4p 16 32 6 6
ibmq_jakarta r5.11H 7 16 6 12
ibmq_belem r4T 5 16 3 6

TABLE I: Quantum backends, processor types, total
number of qubits available, published Quantum Volume,
RES-Naïve and RES-Unitary values.

Preparation of genuine entanglement over arbitrary
graphs states represents a stringent benchmark, but
biseparable entanglement and sub-chain entanglement
are also readily measurable on NISQ devices [13]. In
Appendix A, we report similar heatmaps for the median
biseparable witness results. In general, all backends sup-
port high quality bipartite entanglement; the scores are
commensurate with other work which has demonstrated
multiple two-qubit chains entangled on specific backends.

Overall we observe that in the aggregate it is very dif-
ficult to generate and validate genuine n-qubit entangle-
ment that is robust against two-qubit gate noise or circuit
depth. On the other hand, robust biseparable entangle-
ment was detectable for qubit sizes up to n = 9. Readout
error mitigation provides moderate improvement for both
the genuine and biseparable witness value.

III. EFFECT OF HARDWARE NOISE ON
STABILIZER MEASUREMENT

A. Stabilizer Measurement Fidelity

The color scales of the heat maps shown in Figs. 2,3 are
defined by the median genuine entanglement witness val-
ues evaluated over multiple graph states randomly drawn
from the LC graph orbit of n-qubit hardware graphs.
The evaluation of the witness values is dependent on the
measurement of individual stabilizers of each graph state,
and the ability to generate and detect entanglement in
an n-qubit graph state is thus determined by the capabil-
ity of hardware to prepare and measure these stabilizers
with high fidelity. In this section we delve into the indi-
vidual stabilizer measurements and discuss factors that
affect stabilizer measurement fidelity: circuit width, sta-
bilizer weight, circuit scheduling, and treewidth. These
features are chosen for our analysis based on the Pear-
son r-coefficients (see Appendix F for details). As shown
in Fig. 4, the median stabilizer measurement computed
over all n qubit graph states decreases with increasing
graph order, with the exception of n = 2 results gener-
ated on ibmq_toronto. The median expectation values
obtained with the Naïve method of graph state construc-
tion decrease more rapidly with the number of qubits
than the Unitary method. This performance can likely
be attributed to the increased number of CNOTs, since
an increase in circuit depth through CNOT additions is
likely to cause worse performance than an increase in
circuit depth caused by local complement (single qubit)
operations in the Unitary method as single qubit error
rates are lower than the CNOT error rates. In Fig. 4
there are notable outliers in the stabilizer expectation
values with n = 2 qubits, specifically for data collection
on qubit subsets: [0, 1], [2, 3], [3, 5]. On ibmq_toronto we
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FIG. 4: Quartiles of stabilizer expectation values calcu-
lated over all measurements evaluated per circuit width.

observe that the n = 2 stabilizer measurements exhibit
a large negative skew – we discuss the connection to low
level calibration metrics in Appendix D.

B. Error mitigation

Executing the graph state circuits on near-term quan-
tum devices result in noisy measurements. Hardware
noise is generated by many sources such as qubit de-
coherence, gate noise and readout error. We consider
how individual stabilizer measurements can be affected
by two-qubit gate error, readout error or stabilizer weight
(non identity measurements). Figure 16, for example, in
Appendix F shows the correlations between these low-
level circuit structure datum and expectation values. The
Pearson correlation coefficients are computed pairwise
between: circuit width, and number of CNOTs in the
transpiled circuits, stabilizer weights, graph treewidth
and the observed stabilizer measurement.

The gate scheduling is not optimized, but we investi-
gate the effect of readout error mitigation on benchmark
performance. For our chosen set of states and backends
there are many methods available for noise and error mit-
igation. For the circuits executed on IBM backends we
use the error mitigation library Ignis in Qiskit [43] to
construct tensored error mitigators: a matrix of noise

characterization that is used to post-process the returned
distribution over bitstrings prior to evaluation of indi-
vidual expectation values. Ref [28] also showed that the
inclusion of additional stabilizer measurements improves
the robustness of the genuine witness to white noise. Cur-
rently, we evaluate these additional terms to test stabi-
lizer measurement stability, but they are not included in
the evaluation of the entanglement witness.

In Table I we reported the RES-N and RES-U scores
for each backend, based on the unmitigated median wit-
ness values. As seen in Figs. 5 and 6, the application of
readout error mitigation results in a general shift of sta-
bilizer expectation values closer to 1.0. As seen in Figs.
3, 2 the use of readout error mitigation also improves
the median genuine witness value. As a result the RES-
N and RES-U scores for each backend are generally im-
proved. We report the effect of readout error mitigation
(ROEM) on the RES scores for each backend in Table II.
In general increased CNOT counts via SWAP additions

Backend
Name

RES
Naïve + ROEM RES

Unitary + ROEM

ibmq_toronto 8 15
ibmq_guadalupe 8 24
ibmq_jakarta 6 15
ibmq_belem 6 12

TABLE II: Quantum backends, and mitigated RES val-
ues evaluated using tensored mitigators.

lead to expected degraded performance. Exceptions exist
when readout noise contains strong correlated noise, the
stabilizer expectation values veer far from describing en-
tanglement when particular qubits are used which show
large amounts of correlated readout noise. We tested this
noise source on SC hardware by examining the effect of
readout noise mitigation on the two-qubit subsystem that
exhibited the most readout noise on ibmq_toronto. We
found that highly-correlated qubits on this device dras-
tically reduced the probability of successfully preparing
an entangled state.

Figures 5 and 6 show the change in the distribution
of stabilizer expectation values for each backend after a
tensored noise mitigator was used to implement read-
out error mitigation. Overall, the effect of noise mitiga-
tion is a general shift rightwards towards the ideal value
〈gi〉 = 1. It is possible that the noise mitigation step will
result in non-physical values 〈gi〉 > 1. When we compute
the entanglement witness values with noise mitigated sta-
bilizer measurements we clip the expectation values at
max (gi, 1.0). A future version of the benchmark will in-
clude correlated readout noise mitigation rather than the
tensored method in order to connect the observed perfor-
mance with low-level correlations on-chip. Unless explic-
itly stated our analysis in the remainder of Section III is
of unmitigated measurement data.
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FIG. 5: Distribution of stabilizer values measured on SC
qubit backends using the Naïve method. Readout error
mitigation is implemented using tensored construction of
assignment error matrices. Shaded region indicates non-
physical values generated by noise mitigation.

IV. CONNECTING BENCHMARK
PERFORMANCE TO APPLICATION

PERFORMANCE

The focus of this volumetric benchmark is the genera-
tion and verification of robust n-qubit genuine (multipar-
tite) entanglement. But in benchmarking entanglement
we are interested in exploring the control of long-range
interactions and correlations between qubits [44]. In con-
trast to existing volumetric benchmarks which rely on
random circuits, we argue that our benchmark can be
closely related to near-term application performance or
expanded and adapted to other applications. For exam-
ple, connections between instantaneous quantum poly-
nomial (IQP) circuits and state preparation for weighted

FIG. 6: Distribution of stabilizer values measured on SC
qubit backends using the Unitary method. Readout error
mitigation is implemented using tensored construction of
assignment error matrices. Shaded region indicates non-
physical values generated by noise mitigation.

graph states [45], or planar graph states [46] have been
established. We can apply our benchmark to planar and
non-planar graph states, the circuit construction can be
expanded to include hypergraphs and weighted graphs,
although state verification will need to be modified away
from stabilizer measurements [32]. In this section we dis-
cuss additional areas where benchmark performance can
be used to infer future application performance on NISQ
hardware.

First, the metric acts as a surrogate model for near-
term algorithm and application performance. Many ap-
plications executed on NISQ hardware may not map di-
rectly into the sparse qubit connectivity. When a densely
connected circuit on n qubits is transpiled into a sparsely
connected device, the resulting instruction set may have
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many additional two-qubit gates. Using ideal graphs, i.e.
those that embed into the native hardware graph with
minimal overhead, we can estimate a “best case” per-
formance in the presence of hardware noise (gate noise,
qubit decoherence and readout error). The non-ideal
graph states from the Unitary method then test the ro-
bustness of n-qubit entanglement to swap gate noise or
circuit depth.

Second, the benchmark gathers data through the con-
struction of various graph states, and the measurement
of n stabilizers through repeated state preparation. This
data can be leveraged to develop noise mitigation meth-
ods for either the bitstring distribution or the stabilizer
expectation values. Additionally, the variability in the
individual stabilizer values can be used to infer the sta-
bility of state preparation for variational algorithms [47].
Overall the ability to efficiently characterize how close
a prepared state is to a target graph state, without the
need for full tomography, makes this benchmark appeal-
ing and scalable.

V. METHODS

Graph states provide us a flexible and extensible means
of generating entangled states which also provides insight
into the hardware capabilities [27, 28, 31, 32]. This sec-
tion will describe the theory behind entanglement wit-
nesses, the design of the NISQ circuits for witness evalu-
ation and finally how the metric is evaluated.

A. Benchmark circuit construction

A given NISQ device is characterized by the qubit
technology, the hardware noise, and the hardware native
graph B which is the fixed layout of couplers and waveg-
uides between physical qubits. This layout defines which
two-qubit gates can be implemented with low overhead,
or without incurring additional swap gates. For each
of the IBM backends we use in this work (ibmq_belem,
ibmq_jakarta, ibmq_guadalupe, and ibmq_toronto),
these layouts are given in Fig. 11 of the Appendix.

The state preparation circuit for |ψG〉 = |n,E〉 is con-
structed in two steps [c.f. Fig. 1(c)]. First, the all-
zero register |0〉⊗n is transformed into |+〉⊗n by applying
Hadamard gates to all qubits in the register. Next, each
two-qubit entanglement operation defined by the undi-
rected edge set E(G)is decomposed into a CNOT gate
and two Hadamard gates acting on the target qubit fol-
lowing the sequence used in [17]. In this initial demon-
stration of the benchmark, we limit the degree of opti-
mization in gate scheduling used during the transpilation
step. The graph state construction does not schedule
gates to reduce gate depth or optimize gate scheduling in
general. We apply barriers to prevent the consolidation
of the single qubit gates applied in the Unitary method.
In future demonstrations, different compilation and tran-

spilation techniques could be incorporated to improve the
benchmark performance.

B. LC equivalent state preparation

FIG. 7: The transformation of an initial 4 vertex path
graph (far left) using local graph complements. The ver-
tex used to define the local complement at each step is
highlighted in red.

Evaluating the entanglement metric samples from a fi-
nite set of locally equivalent graph states for an initial
graph state. This equivalence class is defined by local
complement operations (LC). A local complement of a
graph G is defined by a vertex vi ∈ V (G) and its neigh-
borhood N(vi). The complement of the neighborhood
graph N ′(vi) is used to define G′ = G

⋃
N ′. An example

of LC operation on a 4 vertex path graph is shown in Fig.
(7). We describe the two methods for implementing LC
operations on graph states that we evaluate in this study:
the Unitary method and the Naïve method considering
an initial graph G and a specific LC operation (`).

The Unitary method implements the action of a LC
operation (`) on vertex (a) using local single qubit gates
[32, 48],

`a = e−i
π
4 σ

a
x

∏
b→a

ei
π
4 σ

b
z (1)

where b → a denotes all neighbors of vertex (a). The
graph state circuit is initially constructed with the edge
list of G, then the LC operation (` : G → G′) modifies the
circuit UG → U ′G′ by appending X- and- Z axis rotations
to UG according to Eq. 1. The Unitary method also mod-
ifies the stabilizer strings MS →MLC(S) [32, 49]. This
method keeps the number of controlled rotation gates
minimal, at the expense of circuit depth and with the
requirement of different basis transformations (X,Y, Z).

The Naïve method implements a LC operation by
wholly redefining UG. The LC operation is first applied
to the underlying graph, ` : G → G′, and the result-
ing graph G′, is used to construct the graph state circuit.
This method of modifying the underlying graph may lead
to graph state circuits with two qubit gates that do not
embed into B with minimal overhead, as a result this
method may incur additional noise and overhead in the
form of swap gates. However, the definition of the sta-
bilizer strings will only using the measurement settings
X,Z.

We close this section by noting that each subgraph ex-
tracted from the hardware native graphs corresponded
to graphs in different LC equivalence classes as shown
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in Table V of [32]. This is relevant because while differ-
ent graphs can be contained as subgraphs of individual
graphs– for example the 4-vertex star graph is seen as
a subgraph in several graphs of the 4-vertex path graph
orbit shown in Fig. 7, the graphs generated in each re-
spective LC orbit were not contained in another LC orbit.

C. Entanglement witnesses for graph states

A state is entangled when it is not fully separable.
Multipartite entanglement has richer structure than a
bipartite entanglement. A state that is not bisepara-
ble is called genuinely multipartite entangled. Bisepa-
rable entanglement witnesses and genuine entanglement
witnesses can be used to characterize the entanglement.
Constructing these witnesses for a general state |Ψ〉 is dif-
ficult, but since we are considering graph states we can
leverage the graph state stabilizers.

For each vertex in vk ∈ V (G) there is an associated
generator constructed from the Pauli Z,X operators,

g
(G)
k = X(k)

∏
l→k

Z(l), (2)

where l→ k denotes the product over all neighbors of ver-
tex (k). For vertices that are not neighbors of (k) an iden-
tity operator is inserted. Each n-qubit graph state has a
set of n+ 1 stabilizers, the n generators plus the identity
string. These Pauli strings are measured and their ex-
pectation values are used to compute the entanglement
witness functions. These measurements are done serially
with multiple preparations of the graph state (see Fig.
1(b)) and measuring each individual stabilizer string.

The genuine entanglement witness operator WG can
be constructed using all n generator measurements:

WG = (n− 1)1−
∑
k

gGk . (3)

Each genuine entanglement witnesses constructed as in
Eq. 3 requires n stabilizer measurements for each n-qubit
circuit. This implementation is not optimized for noise
robustness: as stated in Ref. [27] the witnesses defined
with n stabilizer measurements are only robust against
noise levels up to pnoise < 1/n. Many studies have inves-
tigated entanglement witness construction [2, 8, 50–56].
Entanglement witnesses were also recently used in a fault-
tolerant weight-4 parity check measurement scheme [57],
which demonstrated genuine six-qubit multipartite en-
tanglement in their shuttling-based trapped-ion quantum
computer. However, for the purposes of our benchmark,
we consider the witness construction in Eqs. 3,A1 to be
optimal because it uses the same number of stabilizer
measurements per graph, and the entanglement of each
generated graph state is evaluated using witnesses with
the same level of noise robustness.

D. Data Collection

Given n (number of qubits), we can induce a subgraph
of n vertices on a backend with hardware native graph
GB (see Fig. 11 in Appendix B). This subgraph can be
used to prepare a specific graph state, and we sample
a set of LC equivalent graph states from its LC graph
orbit. This is done by generating random sequences of
LC operations: [a, b, c] corresponds to applying the LC
at vertex (a), followed by the LC at vertex (b), followed
by the LC at vertex (c). Depending on the induced sub-
graph, the LC graph orbit can be very small (e.g. see the
LC graph orbits associated with GHZ states in Appendix
B) or it can contain a large number of graphs (see Table
V of Ref. [32]). For n qubits we generate a minimum
of 2n+1 sequence of LC sequences. Each sequence length
is drawn uniformly at random from [1, 2n] and the only
constraints applied to the random sequences is that du-
plicate operations (e.g. [a, a]) are consolidated to [a]. We
do not require that unique graphs are generated by each
sequence, it is possible that two sequences ` = [a, b, c]
and `′ = [a′, b′, c′] will generate the same graph. It is
also possible that a sequence will have no net effect on
the induced subgraph of the hardware native graph.

Once the LC sequences have been generated, each in-
dividual graph state preparation circuit is constructed in
Qiskit n times to evaluate the n stabilizers of the tar-
get graph state, plus the identity string (measurement
in the computational basis only). Overall, a sequence of
L LC sequence of a n qubit graph state will require nL
circuits. This data is collected using large job batches.
Each backend available via the IBM Q Experience has a
maximum number of experiments that can be sent under
the same job batch. We generate circuit sets (see pseu-
docode in Appendix C) which are partitioned into job
batches (each graph, each set of stabilizers) such that the
maximum number of experiments are sent to the back-
end. However, if multiple batches are needed, then the
jobs are partitioned such that all circuits for a specific
graph state are sent in the same batch. After a batch
has been sent to a backend and executed, we send the
necessary circuits to evaluate the tensored mitigator.

VI. DATA AVAILABILITY

The datasets generated during and/or analyzed during
the current study are available from the corresponding
author on reasonable request.

VII. CONCLUSIONS

The benchmark we have introduced in this paper has
applications and benefits to near-term, NISQ computing
as well as longer term applications. It is challenging to
develop metrics that capture the impact of errors, but in-
cluding additional states of the Hilbert space would give
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a more thorough characterization of the device. In the
near term, the data collected during the execution of this
study has amassed a large corpus of state preparation
results. This resource will be leveraged to advance near-
term noise mitigation methods that can be applied to the
2n distribution of bitstring counts or the individual ex-
pectation values. Also in the near term, our benchmark
can be used to infer performance on variational quan-
tum algorithms (VQAs). Our benchmark relies on Clif-
ford circuits, and to demonstrate the potential benefits
for VQAs we point to recent studies that have leveraged
Clifford circuits for bootstrapped initialization of VQAs
[58]. In this work, Clifford circuits are used to find re-
gions of the optimization landscape to facilitate training.
The specific graph state preparations used in our bench-
mark can capture the dynamics and impact of errors in
different regions of the Hilbert space, and in different
bases.

Adaptable, informative benchmarking will assist in the
development of hardware and algorithms that reach this
milestone. While the generation of n-qubit multi-partite
entanglement may not be a final goal of near-term com-
puting, quantifying this entanglement can be connected
with many applications and serves as an effective way to
benchmark quantum hardware.
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Appendix A: Biseparable Witnesses

FIG. 8: Median biseparable witness values aggregated
over multiple graph state executions. The upper tri-
angular values are defined by non-mitigated results, the
lower triangular values are defined by error mitigated re-
sults, using a tensored mitigator defined in Qiskit Ignis.
Negative values indicate that entanglement can be gen-
erated and detected. (Top) Volumetric benchmarking of
ibmq_jakarta (Bottom) ibmq_toronto using bisepara-
ble entanglement witnesses.

Evaluating the biseparable entanglement witnesses
quantifies the separability between pairs of qubits in the
n-qubit state. A biseparable entanglement witness can be
constructed for each edge eij ∈ E(G) and only requires

http://arxiv.org/abs/2202.12924
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two measurements (see [31])

Wi,j(G) = 1− g(G)i − g(G)j . (A1)

In Figures 8, 9 we similarly plot the median value aggre-
gated over all biseparable witness values evaluated from
the LC graph orbits. The biseparable witnesses are eval-
uated using the same set of stabilizer measurements col-
lected from graphs sampled from the LC graph orbit.

FIG. 9: Median biseparable witness values aggregated
over multiple graph state executions. The upper tri-
angular values are defined by non-mitigated results, the
lower triangular values are defined by error mitigated re-
sults, using a tensored mitigator defined in Qiskit Ignis.
Negative values indicate that entanglement can be gen-
erated and detected. (Top) Volumetric benchmarking of
ibmq_belem (Bottom) ibmq_guadalupe using bisepara-
ble entanglement witnesses.

Appendix B: GHZ state preparation

We have evaluated the robustness of entanglement gen-
erated on four IBM machines using our benchmark. Each
backend has a specific hardware native graph which de-
fines the possible set of subgraphs that can be extracted
on n qubits. By design, our benchmark only considers
the graph orbits associated with induced subgraphs of
the hardware native graphs defined for a specific backend.
In this section we highlight the optimal preparation of n-

FIG. 10: The graph orbits associated with the
|GHZ2〉, |GHZ3〉, |GHZ4〉 states that can be prepared
from subgraphs directly extracted from the 4 IBM back-
ends we have discusssed in this work. The graphs in each
orbit have treewidths of either 1 or n− 1.

qubit GHZ state |GHZn〉 encountered during the evalua-
tion of our metric. For the qubit layouts shown in Fig. 11,
each backend can prepare the |GHZ2〉, |GHZ3〉, |GHZ4〉
graph states from hardware subgraphs (see Fig. 10).
The LC graph orbit associated with a n-vertex star graph
contains only the star graph (tw = 1) and the n-vertex
complete graph (tw = n− 1) (see Fig. 10).

In Tables III and IV we highlight the lowest observed
genuine entanglement witnesses and the lowest observed
biseparable entanglemnt witnesses for GHZ graph states
and their orbits.

Genuine Witness-GHZ orbit
Name Qubits Star Complete Method

ibmq_belem

2 -0.740234 -0.740234 Naïve
2 -0.728271 -0.728271 Unitary
3 -0.458252 -0.116211 Naïve
3 -0.541260 -0.458252 Unitary
4 -0.127197 1.232422 Naïve
4 -0.135742 -0.130615 Unitary

ibmq_toronto

2 -0.718018 -0.718018 Naïve
2 -0.710693 -0.710693 Unitary
3 -0.476318 -0.185791 Naïve
3 -0.471680 -0.459717 Unitary
4 0.143799 1.496826 Naïve
4 0.142578 0.180176 Unitary

ibmq_guadalupe

2 -0.860352 -0.860352 Naïve
2 -0.856201 -0.856201 Unitary
3 -0.568359 -0.191162 Naïve
3 -0.587158 -0.565186 Unitary
4 -0.250244 0.914551 Naïve
4 -0.104980 -0.032227 Unitary

ibmq_jakarta

2 -0.792969 -0.792969 Naïve
2 -0.779785 -0.779785 Unitary
3 -0.640381 -0.321045 Naïve
3 -0.552246 -0.540039 Unitary
4 -0.447998 0.727783 Naïve
4 -0.422363 -0.377197 Unitary

TABLE III: Minimum non-mitigated genuine witness
values measured for n qubit GHZ states prepared
on ibmq_belem, ibmq_toronto, ibmq_guadalupe, and
ibmq_jakarta.
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FIG. 11: (Left to Right) Hardware native graphs of ibmq_toronto, ibmq_guadalupe, ibmq_jakarta, and ibmq_belem.
On ibmq_toronto, the largest qubit subset used in this study contained 9 qubits. On ibmq_guadalupe, the largest
qubit subset used in this study contained 6 qubits. On ibmq_jakarta and ibmq_belem graph states were generated
which used all qubits on the backend.

Biseparable Witness-GHZ orbit
Name Qubits Star Complete Method

ibmq_belem

2 -0.740234 -0.740234 Naïve
2 -0.728271 -0.728271 Unitary
3 -0.644531 -0.524170 Naïve
3 -0.705566 -0.628662 Unitary
4 -0.583984 -0.225342 Naïve
4 -0.540283 -0.531494 Unitary

ibmq_toronto

2 -0.718018 -0.718018 Naïve
2 -0.710693 -0.710693 Unitary
3 -0.668213 -0.511719 Naïve
3 -0.667725 -0.663574 Unitary
4 -0.411133 -0.002686 Naïve
4 -0.408691 -0.400391 Unitary

ibmq_guadalupe

2 -0.860352 -0.860352 Naïve
2 -0.856201 -0.856201 Unitary
3 -0.716309 -0.534180 Naïve
3 -0.729248 -0.708740 Unitary
4 -0.580322 -0.275391 Naïve
4 -0.496826 -0.443604 Unitary

ibmq_jakarta

2 -0.792969 -0.792969 Naïve
2 -0.779785 -0.779785 Unitary
3 -0.754395 -0.599365 Naïve
3 -0.699707 -0.687988 Unitary
4 -0.710693 -0.425781 Naïve
4 -0.696289 -0.652100 Unitary

TABLE IV: Minimum non-mitigated bisepable witness
values measured for n qubit GHZ states prepared
on ibmq_belem, ibmq_toronto, ibmq_guadalupe, and
ibmq_jakarta via the Unitary method.

Appendix C: Pseudocode

We provide pseudocode to implement data collection
using the Naïve method (in Algorithm 1) and the Unitary
method (in Algorithm 2) described in the main text.

Algorithm1 Circuit construction and data collection for
the Naïve method.
Require: |{qi}| ≥ 2 . fixed set of hardware qubits
Ensure: B[{qi}] is connected
G ← B[{qi}]
{`} ← []
for i← 0 to 2n+1 do . Generate random LC sequences

m← x ∼Unif(0, 2n)
~̀
i ← []

for j ← 0 to m do
~̀
i.append(y ∼Unif(0, n− 1))

end for
`.append(~̀i)

end for
M ← []
for i← 0 to m do
G′ ← G
for j ← 0 to |~̀i| do
G′ ← `i[j](G′) . Construct LC transformed graph

end for
|ψG′〉 ← U(G)|0〉⊗n . Prepare state
{g′k} ← g

(G′)
k . define generators (cf. Eq. 2)

for j ← 0 to k do
M.append(〈ψG′ |g′j |ψG′〉)

end for
end for
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Algorithm2 Circuit construction and data collection for
the Unitary method.
Require: |{qi}| ≥ 2 . fixed set of hardware qubits
Ensure: B[{qi}] is connected
G ← B[{qi}]
{`} ← []
for i← 0 to 2n+1 do . Generate random LC sequences

m← x ∼Unif(0, 2n)
~̀
i ← []

for j ← 0 to m do
~̀
i.append(y ∼Unif(0, n− 1))

end for
`.append(~̀i)

end for
M ← []
for i← 0 to m do
|ψG〉 ← U(G)|0〉⊗n . Prepare state
US ← 1

for j ← 0 to |~̀i| do
US .append(U(`i[j])) . Construct local unitary (cf.

Eq. 1)
{gk} ← {g′k} . Transform generators (see Ref. [49])

end for
M.append(〈ψG′ |U†Sg

′
jUS |ψG′〉)

end for

Appendix D: Hardware calibration data

Once the circuit batches are composed (see Section
VD), they are sent to cloud-based queues. Prior to send-
ing the job batches, we pull the most recent calibration
data available for our target backend, and store this data.
This data includes single qubit calibration data (T1, T2
values, anharmonicity, frequency) gate calibration data
(length, frequency) and also error characterization (sin-
gle qubit readout error and individual gate error). Based
on the features we analyzed in the main text, the effi-
cacy of readout error mitigation and the correlation with
number of CNOT gates, we present in Figs. 12,13 the
values of the single qubit readout error and CNOT gate
error reported by IBM for each backend, collected at the
time of data collection.

In Fig. 4 of the main text, the two-qubit stabilizer mea-
surements on ibmq_toronto had a large negative skew.
We highlight the connection between the qubit subsets
that resulted in low stabilizer measurements and the low-
level calibration data extracted here. As a threshold we
isolate the stabilizer measurements that are below the
noise robust threshold of the genuine entanglement wit-
ness (1/2). This data was collected in April of 2022.

For this subset of data, the couplers which
correspond to low stabilizer measurements were
[0, 1], [2, 3], [3, 5]. The recorded CNOT gate errors for
couplers [0, 1], [1, 0], [2, 3], [3, 2] was 1.0, but for couplers
[3, 5], [5, 3] the gate error was reported as 0.024. For
the individual qubits, the reported readout errors were:
0.353 for qubit 0, 0.04 for qubit 1, 0.02 for qubit 2, 0.04
for qubit 3, and 0.02 for qubit 5. While the high gate

FIG. 12: Single qubit readout error values collected from
calibration data for each backend. Only the error val-
ues for the individual hardware qubits used in our data
collection are plotted. Calibration data was pulled over
several days.

FIG. 13: CNOT gate error values collected from calibra-
tion data for each backend plotted on log scale. Only the
error values for gates on the individual hardware qubits
used in our data collection are plotted. Calibration data
was pulled over several days.

error associated with couplers [0, 1], [1, 0], [2, 3], [3, 2], and
high readout error for qubit 0 may have contributed to
the poor preparation of a two-qubit entangled state (Bell
state) on hardware qubits 0 and 1, the calibration data
for qubits 3, 5 and the associated couplers [3, 5], [5, 3]
does not correlate with the observed low stabilizer
measurements.

Appendix E: Minimum Entanglement Witness
Values

Figures 8, 9 in the main text show the median witness
value evaluated over several graph states drawn from the
relative LC graph orbit of n qubit subgraphs. In Table V
we report the lowest non-mitigated genuine entanglement
witness values measured for n qubits on each backend.
Then, in Table VI we report the lowest biseparable wit-
ness values evaluated on each backend, using the Naïve
or the Unitary method. When reporting the hardware
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qubit subset, we emphasize the pair of qubits used to
define the generators used in the specific witness.

Appendix F: Correlation Matrices

In the main text Section III we structure our analy-
sis along several circuit structure features: circuit width,
number of in the transpiled circuits, graph treewidth,
and stabilizer weight. These features were chosen based
on the observed correlations with stabilizer expectation
values. For each feature, we compute the Pearson r-
coefficient, and show correlation matrix plots for each
backend in Figs. 14,15,16,17. All r-coefficient values were
found with with p < 0.001.
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Genuine Witness
Name Qubits Unitary Qubits Naïve

ibmq_belem

[0,1] -0.72827 [0,1] -0.740234
[0, 1, 2] -0.541260 [0, 1, 2] -0.458252
[0, 1,2, 3] -0.135742 [0, 1,2, 3] -0.127197
[0, 1, 2, 3, 4] 0.371826 [0, 1, 2, 3, 4] 0.333252

ibmq_toronto

[1, 2] -0.710693 [1, 2] -0.718017
[5, 8, 11] -0.471680 [5, 8, 11] -0.476318
[5, 8, 11, 14] -0.143555 [5, 8, 11, 14] -0.186523
[3, 5, 8,11, 14] 0.241211 [3, 5, 8,11, 14] 0.275879
[3, 5, 8,11, 14, 16] 0.659424 [3, 5, 8,11, 14, 16] 0.584717
[3, 5, 8, 11, 14, 16, 19] 1.558837 [3, 5, 8, 11, 14, 16, 19] 1.526367
[0, 1, 2, 4, 7, 6, 10, 12] 2.520996 [3, 5, 8, 11,14, 16, 19, 22] 2.414062
[3, 5, 8, 11, 14, 16, 19, 22, 25] 3.303223 [3, 5, 8, 11, 14, 16, 19, 22, 25] 3.167969

ibmq_guadalupe

[3, 5] -0.85620 [3, 5] -0.86035
[0, 1, 2] -0.587158 [0, 1, 2] -0.568359
[10, 12, 6, 7] -0.495117 [10, 12, 15, 13] -0.513427
[7, 10, 12, 13, 14] 0.070801 [7, 10, 12,13, 14] 0.099609
[5, 8, 11, 12, 13, 14] 0.267822 [0, 1, 2,4, 6, 7] 0.102051

ibmq_jakarta

[1, 3] -0.779785 [1, 3] -0.792969
[0, 1, 2] -0.552246 [0, 1, 2] -0.640381
[0, 1, 3, 5] -0.429688 [0, 1, 2, 3] -0.447998
[0, 1, 2, 3, 5] -0.028564 [0, 1, 2,3, 5] -0.198242
[0, 1, 2, 3, 5, 6] 0.47729 [0, 1, 2, 3, 5, 6] 0.186279
[0, 1, 2, 3,5, 4, 6] 1.264648 [0, 1, 2, 3, 5, 4, 6] 1.053223

TABLE V: Hardware qubits that returned the minimum non-mitigated genuine witness values measured on
ibmq_belem, ibmq_toronto, ibmq_guadalupe, and ibmq_jakarta.

Biseparable Witness
Name Qubits Unitary Qubits Naïve

ibmq_belem

[0,1] -0.72827 [0,1] -0.74023
[0, 1,2] -0.7056 [0, 1,2] -0.6445
[2, 1, 3,4] -0.5991 [2, 1, 3,4] -0.6057
[0, 1, 2, 3,4] -0.5630 [0, 1, 2, 3,4] -0.6086

ibmq_toronto

[1,2] -0.710693 [1,2] -0.718017
[5, 8,11] -0.667725 [5, 8,11] -0.668213
[5, 8, 11,14] -0.709717 [5, 8, 11,14] -0.697510
[3, 5, 8, 11,14] -0.737793 [3, 5, 8, 11,14] -0.737549
[3, 5, 8, 11, 14,16] -0.747559 [3, 5, 8, 11, 14,16] -0.754639
[3, 5, 8, 11,14, 16, 19] -0.600342 [3, 5, 8, 11, 14, 16,19] -0.632324
[3, 5, 8, 11, 14,16, 19, 22] -0.501953 [3, 5, 8, 11,14, 16, 19, 22] -0.506348
[3, 5, 8, 11, 14, 16, 19, 22,25] -0.645264 [3, 5, 8, 11, 14, 16, 19, 22,25] -0.635742

ibmq_guadalupe

[3,5] -0.856201 [3,5] -0.860352
[0,1, 2] -0.729248 [0,1, 2] -0.716309
[11, 12,13, 14] -0.771729 [11, 12,13, 14] -0.786621
[7, 10, 12, 13,14] -0.730957 [7, 10, 12, 13,14] -0.736816
[5, 8, 11, 12,13, 14] -0.779297 [0, 1, 2, 4, 6,7] -0.793213

ibmq_jakarta

[1,3] -0.779785 [1,3] -0.792969
[0, 1,2] -0.699707 [0, 1,2] -0.754395
[0, 1, 3,5] -0.759277 [0, 1, 3,5] -0.762695
[0, 1, 2, 3,5] -0.719971 [0, 1, 2, 3,5] -0.753174
[0, 1, 2, 3, 5,6] -0.707031 [0, 1, 2, 3, 5,6] -0.749023
[0, 1, 2, 3, 5,4, 6] -0.597900 [0, 1, 2, 3, 5,4, 6] -0.5551758

TABLE VI: Minimum non-mitigated biseparable witness values measured for n qubits on ibmq_belem, ibmq_toronto,
ibmq_guadalupe, and ibmq_jakarta.
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FIG. 14: Correlation matrix for ibmq_toronto. Linear regression fit plotted in red with confidence interval and
Pearson’s r-coefficient computed between features are reported on individual scatter plots. ibmq_toronto r-coefficients
are computed with 19272 degrees of freedom.
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FIG. 15: Correlation matrix for ibmq_guadalupe. Linear regression fit plotted in red with confidence interval and Pear-
son’s r-coefficient computed between features are reported on individual scatter plots. ibmq_guadalupe r-coefficients
are computed with 17368 degrees of freedom.
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FIG. 16: Correlation matrix for ibmq_jakarta. Linear regression fit plotted in red with confidence interval and
Pearson’s r-coefficient computed between features are reported on individual scatter plots. ibmq_jakarta r-coefficient
values were computed with 23018 degrees of freedom.
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FIG. 17: Correlation Matrix for ibmq_belem. Linear regression fit plotted in red with confidence interval and Pearson’s
r-coefficient computed between features are reported on individual scatter plots. ibmq_belem r-coefficient values were
computed with 5650 degrees of freedom.
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