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Abstract

The multiphoton coherent states, a generalization to coherent sates, are derived for electrons
in bilayer graphene placed in a constant homogeneous magnetic field which is orthogonal to the
bilayer surface. For that purpose a generalized annihilation operator is constructed in order to
determine the multiphoton coherent states as eigenstates of such operator with complex eigenvalue.
In addition, some physical quantities are calculated for these states, as the Heisenberg uncertainty
relation, probability density and mean energy value. Finally, in order to study the dynamics of the
system the time evolution is explored and the time-correlation function is computed.

1 Introduction

In 1900, Max Planck introduced for the first time the concept of quantization to explain black-body
radiation. The revolutionary idea that the exchange of energy between radiation and matter takes place
in a discrete way, through quantum units of energy, was the first breakthrough that gave rise to quantum
mechanics, a probabilistic and indeterministic theory describing the microscopic world [1]. Since then,
quantum mechanics has became the basis of modern physics and has been used in different branches,
giving place to many theoretical and technological developments.

Up to now, the efforts trying to establish a connection between quantum and classical theories keep
constant, and they have contributed to the emergence of different semi-classical approaches. One of them
is the so-called coherent states (CS) which were proposed first by Erwin Schrödinger in 1926 for the har-
monic oscillator [2]. The standard coherent states (SCS) are quantum states that minimize the Heisenberg
uncertainty relation, they evolve along the classical trajectory and are not deformed in time [3,4]. These
are the reasons for the SCS to be sometimes called quasi-classical states, since they provide a natural
framework to analyze the connection between quantum and classical mechanics.

One of the most famous applications of CS happened in the early 1960s, when Glauber, Klauder
and Sudarshan used them to describe coherent electromagnetic radiation [5–10], giving place to a new
area in optics nowadays called quantum optics. The CS can be generalized, i.e., defined appropriately
in order to describe other systems in different areas of physics, as condensed matter, particle, nuclear
and atomic physics, among other [4, 11–13]. In particular, the so-called multiphoton coherent states
(MCS) [14–16] are typically derived as eigenstates of powers of the annihilation operator; they have
been addressed recently in [17] for the harmonic oscillator in the framework of polynomial Heisenberg al-
gebras [18–22]. Furthermore, the MCS were generated in [23] for the supersymmetric harmonic oscillator.
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It is worth noticing that coherent states and their generalizations have been employed recently to de-
scribe interesting physical systems that have attracted attention of the scientific community, the so-called
2D Dirac materials. [24,25]. In particular several works on the most conspicuous member of such a family,
the graphene which is formed by carbon atoms arranged in a honeycomb hexagonal crystal lattice [26],
have been addressed successfully through this semi-classical approach [27–32].

Motivated by the pioneer work about coherent states for monolayer graphene [27], a similar treatment
was recently implemented to derive coherent states for electrons in bilayer graphene placed in a constant
homogeneous magnetic field which is orthogonal to the bilayer surface [33] (see also [34]). With this in
mind, the goal of this article is to extend and generalize the coherent states approach for bilayer graphene,
by constructing now the corresponding multiphoton coherent states. For that purpose, this work has been
organized as follows. In Sec. 2 a generalized annihilation operator is constructed and the MCS for bilayer
graphene will be derived as eigenstates of such a matrix operator with complex eigenvalue α̃. In order to
describe and characterize the system, in Sec. 3 several physical quantities as the Heisenberg uncertainty
relation, probability density and mean energy value will be determined. In Sec. 4 the time evolution is
studied and the time-correlation function for the MCS will be obtained. Finally, in Sec. 5 the conclusions
of this work are presented.

2 Multiphoton coherent states

As mentioned before, the MCS |z̃;m, j〉 are generalizations of the standard CS which can be defined as
eigenstates of a generalized or deformed annihilation operator â−g := (â−)m with complex eigenvalues z̃,

â−g |z̃;m, j〉 = z̃|z̃;m, j〉, z̃ ∈ C. (1)

By expressing |z̃,m, j〉 as a superposition of Fock states, the MCS for the harmonic oscillator turn out
to be

|z̃;m, j〉 = cmj

∞∑
n=0

z̃n√
(mn+ j)!

|mn+ j〉, j = 0, . . . ,m− 1, (2)

where cmj are normalization constants. Note that these states are superposition of states |mn + j〉 with
fixed m, j and different n whose difference of energy is an integer multiple of m, i.e., the number of
photons required to jump between two levels of such superposition is always a multiple of m.

2.1 MCS for bilayer graphene

Bilayer graphene coherent states (BGCS) were built recently as eigenstates of the simplest diagonal
annihilation operator Â− [33]. Consider now a new generalized annihilation operator Â−g defined as
follows

Â−g := (Â−)m, m ∈ Z+. (3)

The MCS for bilayer graphene |α̃;m〉 can be constructed as eigenstates of Â−g with complex eigenvalue
α̃,

Â−g |α̃;m〉 = α̃|α̃;m〉, α̃ ∈ C, (4)

where the states |α̃;m〉 are expressed as linear combinations of {|Ψn〉}∞n=0, i.e.,

|α̃;m〉 =

∞∑
n=0

Cmn |Ψn〉, (5)
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with {|Ψn〉}∞n=0 being the eigenstates of the bilayer graphene effective Hamiltonian, whose explicit ex-
pressions turn out to be

|Ψn〉 =
exp(iky)√
21−δ0n−δ1n

(
(1− δ0n − δ1n)|n− 2〉

|n〉

)
, n = 0, 1, . . . , (6)

where |n〉 are the harmonic oscillator Fock states.

2.2 Generalized annihilation operator Â−g

Let Â−g the bilayer graphene generalized annihilator operator defined in Eq.(3). Using the explicit ex-

pression of Â− given in [33], the operator Â−g turns out to be

Â−g =

(
f3(N̂)f3(N̂ + 1̂) · · · f3

(
N̂ + (m− 1)1̂

)
(â−)m 0

0 f(N̂ + 1̂)f(N̂ + 2̂) · · · f(N̂ +m1̂)(â−)m

)
,

(7)
where f and f3 are two arbitrary functions of the number operator N̂ which will be used to ensure that

Â−g |Ψn〉 = an|Ψn−m〉. (8)

By applying Â−g on to the eigenstates |Ψn〉, the functions f and f3 must fulfil the following constraint,√
(n− 2) · · · [n− (m+ 1)]f3(n− 3) · · · f3 (n− (m+ 2)) =

√
n · · · [n− (m− 1)]f(n) · · · f (n− (m− 1)) ,

(9)
consequently, the generalized annihilation operator Â−g can be rewritten as follows

Â−g =

 √
(N̂+3̂)···(N̂+(m+2)1̂)√

(N̂+1̂)···(N̂+m1̂)
f(N̂ + 3̂) · · · f

(
N̂ + (m+ 2)1̂

)
(â−)m 0

0 f(N̂ + 1̂) · · · f(N̂ +m1̂)(â−)m

 ,

(10)
such that

Â−g |Ψn〉 =



0 for n = 0, 1, . . . ,m− 1,√
(1 + δ1m)n!

2
[f(n)]! |Ψ0〉 for n = m,

√
n!√
2

[f(n)]!

f(1)
|Ψ1〉 for n = m+ 1,

√
n!

(n−m)!

[f(n)]!

[f(n−m)]!
|Ψn−m〉 for n = m+ 2,m+ 3, . . . ,

(11)

where δij is the Kronecker delta and

[f(n)]! :=

{
1 for n = 0,
f(1) · · · f(n) for n > 0.

2.3 Bilayer graphene MCS as eigenstates of Â−g

As mentioned before, the bilayer graphene MCS |α̃;m〉 can be constructed as eigenstates of the generalized
annihilation operator Â−g defined in Eq. (10). Thus, from Eqs. (4,11) and using the linear independence
of the states {|Ψn〉}∞n=0, two recurrence relationships for the coefficients Cmn are obtained, leading to
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Cmm =

√
2 α̃√

(1 + δ1m)m! [f(m)]!
Cm0 , (12)

Cmn+m =

√
2δ1nn!

(n+m)!

[f(n)]! α̃n

[f(n+m)]!
Cmn , n = 1, 2, . . . , (13)

Note that there are m free parameters
{
Cm0 , C

m
1 , . . . , C

m
m−1

}
=
{
Cmj
}m−1
j=0

, thus m independent sets of

MCS |α̃;m, j〉 for bilayer graphene can be constructed, all of them depending on the particular choice of
f(n).

First of all, suppose that f(n) 6= 0 ∀ n = 1, 2, . . . In particular, Eqs.(12,13) for m = 1 lead to

C1
n =

√
21−δ1n

n!

α̃n

[f(n)]!
C1

0 , n = 1, 2, . . . , (14)

with C1
0 being the only free parameter. Thus, the MCS for m = 1 become

|α̃; 1, 0〉 = C1
0

[
|Ψ0〉+

∞∑
n=1

√
21−δ1n α̃n√
n! [f(n)]!

|Ψn〉

]
, (15)

where C1
0 will be used for normalizing them. Note that these states are identical to the BGCS derived

in [33] with α̃ = α, i.e., for m = 1 the BGCS are recovered.

For m > 1 the m independent relations resulting from Eqs. (12,13) become

Cmmn+j =

[√
2δ0j +

√
(δ1j + j)!

]
[f(j)]! α̃n√

(mn+ j)! [f(mn+ j)]!
Cmj , n = 1, 2, . . . , (16)

where j = {0, 1, 2, . . . ,m− 1}. From Eqs. (5) and (16) the MCS turn out to be

|α̃;m, j〉 = Cmj

|Ψj〉+

∞∑
n=1

[√
2δ0j +

√
(δ1j + j)!

]
[f(j)]! α̃n√

(mn+ j)! [f(mn+ j)]!
|Ψmn+j〉

 . (17)

The parameters Cmj will be used to normalize the states |α̃;m, j〉, which in general will depend on the
values of the pair {m, j}. Some explicit expressions of MCS will be written next.

For m = 2 the index j can take two values, {0, 1}, thus two sets of MCS will be obtained

|α̃; 2, 0〉 =

[
1 + 2

∞∑
n=1

|α̃|2n

(2n)![[f(2n)]!]2

]−1/2 [
|Ψ0〉+

∞∑
n=1

√
2α̃n√

(2n)! [f(2n)]!
|Ψ2n〉

]
, (18)

|α̃; 2, 1〉 =

[
1 + 2

∞∑
n=1

[f(1)]2|α̃|2n

(2n+ 1)![[f(2n+ 1)]!]2

]−1/2 [
|Ψ1〉+

∞∑
n=1

√
2f(1)α̃n√

(2n+ 1)! [f(2n+ 1)]!
|Ψ2n+1〉

]
. (19)

These states can be obtained also as even and odd superpositions of bilayer graphene coherent states.
This approach has been implemented recently for the particular case when f(n) = 1 [35].
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For m = 3 the index j can take three values, {0, 1, 2}, thus three sets of MCS are obtained

|α̃; 3, 0〉 =

[
1 + 2

∞∑
n=1

|α̃|2n

(3n)![[f(3n)]!]2

]−1/2 [
|Ψ0〉+

∞∑
n=1

√
2α̃n√

(3n)! [f(3n)]!
|Ψ3n〉

]
, (20)

|α̃; 3, 1〉 =

[
1 + 2

∞∑
n=1

[f(1)]2|α̃|2n

(3n+ 1)![[f(3n+ 1)]!]2

]−1/2 [
|Ψ1〉+

∞∑
n=1

√
2f(1)α̃n√

(3n+ 1)! [f(3n+ 1)]!
|Ψ3n+1〉

]
, (21)

|α̃; 3, 2〉 =

[
1 + 2

∞∑
n=1

[f(1)f(2)]2|α̃|2n

(3n+ 2)![[f(3n+ 2)]!]2

]−1/2 [
|Ψ2〉+

∞∑
n=1

√
2f(1)f(2)α̃n√

(3n+ 2)! [f(3n+ 2)]!
|Ψ3n+2〉

]
. (22)

Note that additional sets of MCS for bilayer graphene could be written explicitly, all of them depending
on the particular choice of the function f(n) and the parameters {m, j}. In order to analyze the electrons
behavior in bilayer graphene, several physical quantities for the MCS will be computed in the following
sections.

3 Physical quantities for the MCS

The MCS |α̃;m, j〉 are quantum states belonging to a Hilbert space H from which several physical
quantities can be extracted, in order to describe the system behavior in such approach.

3.1 Heisenberg uncertainty relation

One of the most important physical quantities useful to characterize a quantum state is the Heisenberg
uncertainty relation (HUR). In order to obtain this quantity for the MCS, the following matrix operators
Ŝk and their squares are defined as follows [24]:

Ŝk = ŝk ⊗ 1̂, Ŝ2
k = ŝ2k ⊗ 1̂, (23)

where

ŝk =
1√
2ik

[
â− + (−1)kâ+

]
, (24)

ŝ2k =
1

2

{
2N̂ + 1̂ + (−1)k

[
(â−)2 + (â+)2

]}
, (25)

with k = 0, 1, such that 〈Ŝk〉|k=0 = 〈q̂〉 and 〈Ŝk〉|k=1 = 〈p̂〉 (similarly for their squares). Thus, the mean
values of these operators in the MCS (17) turn out to be:

〈Ŝk〉 = 0 ∀ m, (26)

〈Ŝ2
k〉 =|Cmj |2

 (1− δ0j − δ1j)2(2j − 3) + 2j + 1

21−δ0j−δ1j
+

 [f(j)]!
[√

2δ0j +
√

(δ1j + j)!
]

[f(mn+ j)]!

2

×
∞∑
n=1

|α̃|2n (2mn+ 2j − 1)

(mn+ j)!
+ (−1)k2<(α̃)

[
[f(j)]!

[f(mn+ j)]!
√

21−δ0j−δ1j j!
+

+

(
[f(j)]!

[f(mn+ j)]!

)2
( ∞∑
n=1

|α̃|2n

(mn+ j)!
+

∞∑
n=1

|α̃|2n√
(mn+ j + 2)!(mn+ j − 2)!

)]
δ2m

}
.

(27)
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Figure 1: Heisenberg uncertainty product σq̂α̃σp̂α̃ as function of α̃ for the MCS with m = 2, j = 0, 1 and
f(n) = 1.

Figure 2: Heisenberg uncertainty product σq̂α̃σp̂α̃ as function of α̃ for the MCS with m = 3, j = 0, 1, 2
and f(n) = 1.

The standard deviation for Ŝk will be found through

σŜk =

√
〈Ŝ2
k〉 − 〈Ŝk〉2, (28)

thus the HUR can be obtained for the MCS, which is given by

σq̂α̃σp̂α̃ ≥
1

2
. (29)

Figures 1 and 2 show the resulting Heisenberg uncertainty product σq̂α̃σp̂α̃ for the MCS as function
of α̃ with f(n) = 1 and the two values m = {2, 3} respectively.

3.2 Probability density

The MCS probability density is determined as

ρα̃(x) = Ψ†α̃(x, y) Ψα̃(x, y), (30)

where Ψα̃(x, y) = 〈x, y|α̃;m, j〉.
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Figure 3: Probability density ρα̃(x) for the MCS with f(n) = 1, ω∗c = 1, m = 2 and j = 0. Different
values of r = |α̃| are taken for θ = 0 (left) and θ = π/2 (right).

This quantity represents the position probability density, i.e., ρα̃(x)dx1 is the probability of finding
the electron between x and x+ dx. For the MCS of Eq. (17) the probability density becomes

ρα̃(x) = |Cmj |2
{

(1− δ0j − δ1j)2|ψj−2|2 + |ψj |2√
21−δ0j−δ1j

+
[
√

2δ0j +
√

(δ1j + j)!]
√

22−δ0j−δ1j
2<

[ ∞∑
n=1

α̃n√
(mn+ j)!

× [f(j)]!

[f(mn+ j)]!

(
(1− δ0j − δ1j)ψmn+j−2ψ∗j−2 + ψmn+jψ

∗
j

)]
+

[
√

2δ0j +
√

(δ1j + j)!]2

2

∣∣∣∣∣
∞∑
n=1

α̃n√
(mn+ j)!

× [f(j)]!

[f(mn+ j)]!
ψmn+j−2

∣∣∣∣2 +
[
√

2δ0j +
√

(δ1j + j)!]2

2

∣∣∣∣∣
∞∑
n=1

α̃n√
(nm+ j)!

[f(j)]!

[f(mn+ j)]!
ψmn+j

∣∣∣∣∣
2
 .

(31)

Using the polar form α̃ = reiθ = r (cos θ + i sin θ), the previous probability density turns out to be

ρα̃(x) = |Cmj |2
{

(1− δ0j − δ1j)2|ψj−2|2 + |ψj |2√
21−δ0j−δ1j

+
[
√

2δ0j +
√

(δ1j + j)!]
√

22−δ0j−δ1j

[ ∞∑
n=1

rn cos(nθ)√
(mn+ j)!

× [f(j)]!

[f(mn+ j)]!

(
(1− δ0j − δ1j)ψmn+j−2ψ∗j−2 + ψmn+jψ

∗
j

)
+

∞∑
k=1

rk cos(kθ)√
(mk + j)!

[f(j)]!

[f(mk + j)]!

×
(
(1− δ0j − δ1j)ψ∗mk+j−2ψj−2 + ψ∗mk+jψj

)]
+

[
√

2δ0j +
√

(δ1j + j)!]2

2

∞∑
n=1

∞∑
k=1

rn+k cos[(n− k)θ]√
(mn+ j)!(mk + j)!

×
[[f(j)]!]2(ψmn+j−2ψ

∗
mk+j−2 + ψmn+jψ

∗
mj+j)

[f(mn+ j)]![f(mk + j)]!

}
.

(32)

Some graphs of ρα̃(x) for the MCS with m = 2 and m = 3 are shown in Figs. 3-7 for the particular
case when f(n) = 1.

1Although the wave function Ψα̃(x, y) depends explicitly on x and y, the associated probability density is independent
of y due to the translational symmetry along this direction; in addition, it will be time independent for stationary states.
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Figure 4: Probability density ρα̃(x) for the MCS with f(n) = 1, ω∗c = 1, m = 2 and j = 1. Different
values of r = |α̃| are taken for θ = 0 (left) and θ = π/2 (right).

Figure 5: Probability density ρα̃(x) for the MCS with f(n) = 1, ω∗c = 1, m = 3 and j = 0. Different
values of r = |α̃| are taken for θ = 0 (left) and θ = π/2 (right).

Figure 6: Probability density ρα̃(x) for the MCS with f(n) = 1, ω∗c = 1, m = 3 are j = 1. Different
values of r = |α̃| are taken for θ = 0 (left) and θ = π/2 (right).
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Figure 7: Probability density ρα̃(x) for the MCS with f(n) = 1, ω∗c = 1, m = 3 and j = 2. Different
values of r = |α̃| are taken for θ = 0 (left) and θ = π/2 (right).

3.3 Mean energy value

In order to characterize the energy of a system, the expected value of the Hamiltonian must be calculated.
For the MCS the mean energy value 〈Ĥ〉α̃ is obtained through

〈Ĥ〉α̃ = 〈α̃;m, j|Ĥ|α̃;m, j〉, (33)

with Ĥ being the bilayer graphene Hamiltonian given by [33],

Ĥ = ~ω∗c
(

0 b̂−2

b̂+2 0

)
, ω∗c =

eB

m∗c
, (34)

where ω∗c is the cyclotron frequency for non-relativistic electrons with effective mass m∗. Thus, it turns
out that

〈Ĥ〉α̃ = |Cmj |2~ω∗c

[√
j(j − 1) +

(√
2δ0j +

√
(δ1j + j)!

)2 ∞∑
n=1

[f(j)]!2
√

(mn+ j)(mn+ j − 1) |α̃|2n

[f(mn+ j)]!2 (mn+ j)!

]
.

(35)

This quantity will be useful for analyzing the time evolution of the MCS, in the same way as in [33].
Figures 8-9 show the mean energy value (35) for the MCS as function of |α̃| = r with f(n) = 1 and the
two values of m = {2, 3}.

3.4 Discussion

Several physical quantities have been calculated when the system is in a MCS. As can be seen in Figs. 1
and 2, the Heisenberg uncertainty relation for the MCS acquires a minimum when α̃→ 0 which depends
on the eigenstate |Ψj〉 with the minimum energy eigenvalue involved in the corresponding expansion.
Thus, for the MCS with m = 2, j = 0 and m = 3, j = 0 the HUR takes the minimum value 1/2 while for
the other three cases (m = 2, j = 1, m = 3, j = 1 and m = 3, j = 2) this quantity tends to 3/2 when α̃
goes to zero.
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Figure 8: Mean energy value 〈Ĥ〉α̃ for the MCS with m = 2, f(n) = 1 and ~ω∗c = 1.

Figure 9: Mean energy value 〈Ĥ〉α̃ for the MCS with m = 3, f(n) = 1 and ~ω∗c = 1.

On the other hand, the probability density for the MCS shows an oscillatory behavior around the
point x0 = −2k/ω∗c , which is similar to what happens in [33] (ω∗c is the cyclotron frequency). Moreover,
this behavior becomes more evident as r increases and ρα̃(x) extends along the x-direction (see Figs.
3-7). This means that, as r grows, the probability to find the electron in a particular spatially confined
region (in x-direction) decreases. Besides, when the phase of α̃ changes the maximum value of ρα̃(x) also
changes. Therefore, by choosing a specific α̃ it is possible to find the electrons in a given region with the
highest probability.

Finally, from Figs. 8-9 it can be seen that the mean energy value for the MCS is a continuous function
of |α̃| whose behavior above a certain |α̃| is approximately linear. Moreover, when |α̃| → 0 the behavior of
〈Ĥ〉α̃ is different for each set of MCS, since in this limit the MCS tend to the state Ψj with the minimum
energy eigenvalue involved in the expansion, which is different for the MCS with different j (see Eqs.
(18-22)).
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4 Evolution of the MCS for bilayer graphene

The time evolution operator U(t) = exp(−iĤt/~) acting on the MCS of Eq. (17) induces the dynamical
behavior of these states, which is given by:

|α̃;m, j; t〉 =Cmj

e−iω∗
c

√
j(j−1) t|Ψj〉+

∞∑
n=1

[√
2δ0j +

√
(δ1j + j)!

]
[f(j)]! α̃n√

(mn+ j)! [f(mn+ j)]!

×e−iω
∗
c

√
(mn+j)(mn+j−1) t|Ψmn+j〉

]
.

(36)

Therefore, the evolving probability density for the MCS of bilayer graphene turns out to be

ρα̃(x, t) = |Cmj |2
{

(1− δ0j − δ1j)2|ψj−2|2 + |ψj |2√
21−δ0j−δ1j

+
[
√

2δ0j +
√

(δ1j + j)!]
√

22−δ0j−δ1j
2<

[ ∞∑
n=1

α̃n√
(mn+ j)!

× [f(j)]!

[f(mn+ j)]!

(
(1− δ0j − δ1j)ψmn+j−2ψ∗j−2 + ψmn+jψ

∗
j

)
exp[−iω∗c (

√
(mn+ j)(mn+ j − 1)

−
√
j(j − 1)) t]

]
+

[
√

2δ0j +
√

(δ1j + j)!]2

2

∣∣∣∣∣
∞∑
n=1

exp(−iω∗c
√

(mn+ j)(mn+ j − 1) t) α̃n√
(nm+ j)!

× [f(j)]!

[f(mn+ j)]!
ψmn+j−2

∣∣∣∣2 +
[
√

2δ0j +
√

(δ1j + j)!]2

2

∣∣∣∣∣
∞∑
n=1

exp(−iω∗c
√

(mn+ j)(mn+ j − 1) t) α̃n√
(mn+ j)!

× [f(j)]!

[f(mn+ j)]!
ψmn+j

∣∣∣∣2
}
,

(37)

which, when taking α̃ = reiθ = r (cos θ + i sin θ) becomes

ρα̃(x, t) = |Cmj |2
{

(1− δ0j − δ1j)2|ψj−2|2 + |ψj |2√
21−δ0j−δ1j

+
[
√

2δ0j +
√

(δ1j + j)!]2

2

∞∑
n=1

∞∑
k=1

rn+k√
(mn+ j)!(mk + j)!

× [[f(j)]!]2

[f(mk + j)]![f(mn+ j)]!
cos[ω∗c (

√
(mn+ j)(mn+ j − 1)−

√
(mk + j)(mk + j − 1) ) t− (n− k)θ]

×(ψmn+j−2ψ
∗
mk+j−2 + ψmn+jψ

∗
mk+j) +

[
√

2δ0j +
√

(δ1j + j)!]
√

22−δ0j−δ1j

[ ∞∑
k=1

rk√
(mk + j)!

[f(j)]!

[f(mk + j)]!

× cos[ω∗c (
√

(mk + j)(mk + j − 1)−
√
j(j − 1) ) t− kθ] ((1− δ0j − δ1j)ψ∗mk+j−2ψj−2 + ψ∗mk+jψj)

+

∞∑
n=1

rn√
(mm+ j)!

[f(j)]!

[f(mn+ j)]!
cos[ω∗c (

√
(mn+ j)(mn+ j − 1)−

√
j(j − 1)) t− nθ]((1− δ0j − δ1j)

×ψmn+j−2ψ∗j−2 + ψmn+jψ
∗
j )
]}
.

(38)

In Figs. 10-14 the probability densities for the evolving states (36) are shown, with f(n) = 1 and the
two values of m = {2, 3}.
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Figure 10: Left: Probability density ρα̃(x, t) for the bilayer graphene MCS with f(n) = 1, m = 2 and
j = 0. Right: Probability density ρα̃(x, t) at some fixed times (suggested approximate period τ '

√
2π

and some of its multiples). The values |α̃| = 1, θ = 0 and ω∗c = 1 were taken.

Figure 11: Left: Probability density ρα̃(x, t) for the bilayer graphene MCS with f(n) = 1, m = 2 and
j = 1. Right: Probability density ρα̃(x, t) at some fixed times (suggested approximate period τ '

√
2π/
√

3
and some of its multiples). The values |α̃| = 1, θ = 0 and ω∗c = 1 were taken.
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Figure 12: Left: Probability density ρα̃(x, t) for the bilayer graphene MCS with f(n) = 1, m = 3 and
j = 0. Right: Probability density ρα̃(x, t) at some fixed times (suggested approximate period τ '

√
2π/
√

3
and some of its multiples). The values |α̃| = 1, θ = 0 and ω∗c = 1 were taken.

Figure 13: Left: Probability density ρα̃(x, t) for the bilayer graphene MCS with f(n) = 1, m = 3 and
j = 1. Right: Probability density ρα̃(x, t) at some fixed times (suggested approximate period τ ' π/

√
3

and some of its multiples). The values |α̃| = 1, θ = 0 and ω∗c = 1 were taken.
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Figure 14: Left: Probability density ρα̃(x, t) for the bilayer graphene MCS with f(n) = 1, m = 3 and
j = 2. Right: Probability density ρα̃(x, t) at some fixed times (suggested approximate period τ ' 2π/3
and some of its multiples). The values |α̃| = 1, θ = 0 and ω∗c = 1 were taken.

4.1 Auto-correlation function

In order to analyze further the dynamics of the MCS for bilayer graphene, the auto-correlation function
C(t) will be computed, as in [29],

C(t) = 〈Ψ(t = 0)|Ψ(t)〉. (39)

Using equations (17) and (36) such auto-correlation function becomes

C(t) = |Cmj |2

e−iω∗
c

√
j(j−1) t +

∞∑
n=1

[√
2δ0j +

√
(δ1j + j)!

]2
[[f(j)]!]2 |α̃|2n

(mn+ j)! [[f(mn+ j)]!]2
e−iω

∗
c

√
(mn+j)(mn+j−1) t

 .
(40)

In Figs. 15-19 the squared absolute value of this auto-correlation function |C(t)|2 for the MCS is
shown, with ω∗c = 1, f(n) = 1 and several values of |α̃|.

4.2 Discussion

Since the energy levels for the harmonic oscillator are equally spaced the SCS are stable in time, i.e., an
SCS evolves into another SCS and for a given α such evolution is cyclic, with the harmonic oscillator
period τ = 2π/ω. On the other hand, for bilayer graphene the Landau-levels are not equidistant for
all n (see [26, 33]) and thus the stability in time in general cannot be guaranteed. However, as it was
shown in [33] starting from certain integer (for n & 2) the energy spectrum is essentially linear (see a
similar approximation in [36]), thus the time stability of the MCS will appear when the contribution of
the eigenstates |Ψ0〉 and |Ψ1〉 is either small or null compared with the contribution of all other states.
This behavior can be seen clearly in Fig. 14, where the evolved MCS for m = 3 and j = 2 are stable
in time, with a period τ ' 2π/3ω∗c . Moreover, as |α̃| grows (|α̃| → ∞) this condition is also fulfilled,
thus the bilayer graphene MCS in practice are stable in time for all m and j, with the period τ ' 2π/mω∗c .

However, if the contribution of the states |Ψ0〉 and |Ψ1〉 is non-trivial compared with all other contribu-
tions the MCS |α̃;m, j〉 will be only approximately stable in time, i.e., for some values of t the probability
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Figure 15: Left: Squared absolute value of the auto-correlation function |C(t)|2 for the MCS with several
values of |α̃|, f(n) = 1, m = 2 and j = 0. Right: Probability density ρα̃(x, t) for |α̃| = 1 and several fixed
times, multiples of the first approximate period τc ' 2

√
2π obtained from |C(t)|2. The values of θ = 0

and ω∗c = 1 were taken.

Figure 16: Left: Squared absolute value of the auto-correlation function |C(t)|2 for the MCS with several
values of |α̃|, f(n) = 1, m = 2 and j = 1. Right: Probability density ρα̃(x, t) for |α̃| = 1 and several fixed
times, multiples of the first approximate period τc ' 2.6 obtained from |C(t)|2. The values of θ = 0 and
ω∗c = 1 were taken.
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Figure 17: Left: Squared absolute value of the auto-correlation function |C(t)|2 for the MCS with several
values of |α̃|, f(n) = 1, m = 3 and j = 0. Right: Probability density ρα̃(x, t) for |α̃| = 1 and several fixed
times, multiples of the first approximate period τc ' 2.6 obtained from |C(t)|2. The values of θ = 0 and
ω∗c = 1 were taken.

Figure 18: Left: Squared absolute value of the auto-correlation function |C(t)|2 for the MCS with several
values of |α̃|, f(n) = 1, m = 3 and j = 1. Right: Probability density ρα̃(x, t) for |α̃| = 1 and several fixed
times, multiples of the first approximate period τc ' 1.8 obtained from |C(t)|2. The values of θ = 0 and
ω∗c = 1 were taken.
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Figure 19: Left: Squared absolute value of the auto-correlation function |C(t)|2 for the MCS with several
values of |α̃|, f(n) = 1, m = 3 and j = 2. Right: Probability density ρα̃(x, t) for |α̃| = 1 and several fixed
times, multiples of the first approximate period τc ' 2.1 obtained from |C(t)|2. The values of θ = 0 and
ω∗c = 1 were taken.

density looks similar to what it was at t = 0 2 (see Figs. 10-13). In order to explain the evolution of
these states an approximate period τ can be calculated as previously done for the BGCS [33]. Thus, by
setting α̃ the mean energy value is first computed, then the interval in which it lies is determined, which
is bounded by two consecutive energies Emn+j+m and Emn+j such that Emn+j < 〈Ĥ〉α̃ < Emn+j+m.
Thus, the possible approximate period is obtained as follows

τ =
2π~

Emn+j+m − Emn+j
. (41)

As an example, the approximate period τ for the MCS (36) with |α̃| = 1, m = 2 and m = 3 has been
obtained. Figs. 10-14 show the probability density ρα̃(x, t) for these states evaluated at this suggested
period and some of its multiples.

On the other hand, as it was explained before a useful tool to analyze the dynamics of a quantum
system is the auto-correlation function. This function provides a qualitative way to know how long a
MCS persists at two different times. More precisely, its squared absolute value indicates how close the
evolved state is to the initial state at t = 0. For the MCS with m = 2 and m = 3 the auto-correlation
function shows an oscillatory behavior, with an oscillation period which depends on the value of |α̃| (see
Figs. 15-19). If the squared absolute value of the auto-correlation function is very close or equal to one,
|C(t)|2 ≈ 1 3, the states |α̃;m, j; t〉 and |α̃;m, j; 0〉 are said to be almost completely correlated, i.e., the
MCS at t = 0 is reconstructed for some t > 0. Therefore, the approximate evolution period for the MCS
can be determined by looking for the time t when |C(t)|2 ≈ 1. In Figs. 15-19 the squared absolute value
of C(t) is shown for several values of |α̃|, and from these plots a suggested approximate period τc has
been determined. Moreover, the probability densities for some fixed times (the suggested approximate
period τc and some of its multiples) are also plotted.

Finally, as it was said before when the contribution of the states {Ψn}∞n=0 with n = 0 and n = 1
is small compared to the eigenstates with n ≥ 2 the MCS for bilayer graphene turn out to be stable,
as the BGCS derived in [33]. Therefore, the evolved MCS and BGCS are cyclic, showing the so-called
revivals in both kind of states. Moreover, in this regime the evolution period of the MCS turns out to be

2When the evolved probability density adopts a shape similar to what it was at t = 0 it is said that there are revivals [37].
3In quantum mechanics, notably in quantum information theory, a parameter called fidelity F (σ, ρ) is defined as a

measure of the distance between quantum states [38]. For pure states the fidelity is simply the squared absolute value of
the scalar product between the two states, i.e., F = |〈ϕσ |ϕρ〉|2. The reconstruction happens precisely if the fidelity is equal
to one [39,40].
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Figure 20: Up: Squared absolute value of the auto-correlation function |C(t)|2 for the BGCS and MCS
with f(n) = 1, |α̃| = 10, m = 2 and j = 0. From |C(t)|2 ≈ 1 it can be seen the revivals taking place at
τBGCS = 2π and τMCS = π respectively. Down: Squared absolute value of the auto-correlation function
|C(t)|2 for the BGCS and MCS with f(n) = 1, |α̃| = 35, m = 3 and j = 0. From |C(t)|2 ≈ 1 it can
be seen the revivals taking place at τBGCS = 2π and τMCS = 2π/3 respectively. The values θ = 0 and
ω∗c = 1 were taken.
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a fraction of the evolution period of the BGCS (see Figs. 20), i.e., τMCS = τBGCS/m = 2π/mω∗c , which
is similar to what happens for the multiphoton coherent states of the harmonic oscillator [17].

5 Conclusions

In this work the multiphoton coherent states were derived, in order to describe the interaction of electrons
in bilayer graphene placed in a constant homogeneous magnetic field which is perpendicular to the bilayer
surface. Such states are an important generalization of the CS, and constitute an alternative description
allowing the quantum systems to be addressed through a semi-classical approach. Based on [33] an ap-
propriate generalized annihilation operator was first defined as Â−g := (Â−)m, then the bilayer graphene
MCS were obtained as eigenstates of such operator with complex eigenvalue.

In addition, in order to analyze the system some physical quantities were obtained for such states,
including the Heisenberg uncertainty relation, probability density and mean energy value. It was found
that in this approach the complex eigenvalue α̃ plays an important role in the description, since it defines
the system initial conditions.

On the other hand, the time evolution of the MCS for bilayer graphene were studied as in [33]. It was
found that the MCS in general are not stable in time (see Figs. 10 - 14), i.e., the shape of its probability
density is not preserved in time since the energy spectrum of the bilayer graphene Hamiltonian Ĥ is not
linear in n. However, since starting from certain integer (n & 2) the energy spectrum of Ĥ becomes
practically equidistant, there are cases for which the probability density ρα̃(x, t) shows as well revivals
suggesting that the MCS could be quasi-stable. Hence, for MCS where the contribution of the states
|Ψ0〉 and |Ψ1〉 is small compared with the contribution of all other eigenstates, their time evolution will
be quasi-stable, with a period of evolution τ w 2π/mω∗c being a fraction of the bilayer graphene coherent
states period. Meanwhile, for the MCS where the states |Ψ0〉 and |Ψ1〉 are involved in a non-trivial way,
just an approximate period of evolution can be obtained through Eq. (41).

In this work, the auto-correlation function C(t) was also derived as an additional tool to analyze
the dynamical behavior of the MCS. Through its modulus squared |C(t)|2, also called fidelity, the times
τC at which the revivals of ρα̃(x, t) happen were obtained. Thus, despite the system does not have an
equidistant energy spectrum, in this work two different ways to calculate the approximate period for the
MCS have been implemented, in which the revivals of ρα̃(x, t) arise.

Finally, it seems possible to study similar quantum systems through this alternative approach, as the
2D Dirac materials, and to describe their dynamical behavior through the evolution of the corresponding
MCS. Let us note that evolutions of this kind of systems have been recently addressed working in phase-
space, by calculating the Wigner function for the corresponding coherent states [41, 42] with the aim of
looking for a way to get the first experimental realization of such functions for 2D Dirac materials.
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