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Bosonic and Fermionic Holographic Fluctuation and Dissipation

at finite temperature and density
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In this paper we investigate some general aspects of fluctuation and dissipation in

the holographic scenario at zero and finite density. We model this situation with a

probe string in a diagonal metric representing a black brane. The string stretches

from the black brane to a probe brane thus simulating a stochastic driven particle.

In this scenario, we compute the admittance, the diffusion coefficient, the correlation

functions and the regularized mean square displacement, for bosons and fermions,

all from the metric components. We check these calculations with the fluctuation-

dissipation theorem. Further, we show that at finite temperature and density, the

mean square displacement in the limit of short times reproduces the usual quadratic

(ballistic) behavior, for bosons and fermions. For large times, we find ultraslow

diffusive processes in various cases, except for bosons at zero chemical potential. We

apply this general analysis in two different models: hyperscaling violation at finite

temperature and a charged dilatonic AdS black hole, both for bosons and fermions.

This is important because we found the fermionic diffusion in systems which allow

the appearance of Fermi surfaces and Fermi liquids.
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I. INTRODUCTION

The study of the dynamics of finite temperature and/or finite chemical potential systems

occupies an important part in physical sciences. Of particular interest is how such systems

respond to an external force and its diffusive process. Huge results in this direction can be

made studying the linear regime of those processes and the related quantities obtained from

this analysis. Thus it is interesting to explore methods to get relevant quantities in this

context.

As a tool for this study we can use the framework of AdS/CFT correspondence in its

broader form, applying its dictionary, for example, to analyze and describe aspects of this

kind of phenomenon.

The study of linear response in the context of Brownian motion using holographic models

started in [1] where it was proposed a set up based on an stretched string that goes from

the black hole horizon to a probe brane near the space-time boundary. The presence of a

horizon associated with a black hole allows one to calculate the Hawking temperature and to

obtain some quantities as functions of temperature. One then interpret the string endpoint

as a probe particle in a thermal bath. From the excitation of the string at the boundary

one reads the motion of the particle and finds the diffusion coefficient from the admittance.

They also calculate the mean square displacement, for short and long times reproducing the

ballistic and diffusive regimes, respectively.

This set up was used to study quantum critical points with Lifshitz symmetry in [2] and

with hyperscaling-Lifshitz symmetry in [3]. In [4] a description in terms of a metric written

as monomials of the holographic coordinate was presented and applied to many different

cases encompassing the previous results [1–3] and discussing further cases. In particular, in

Ref. [3] a chemical potential at zero temperature was introduced in the case of the extremal
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black branes. This was also discussed in [5] where a very low temperature compared to the

chemical potential was introduced.

In Ref. [6] an exponential factor was used to deform the AdS-Schwarzschild metric. This

deformation was inspired by the soft-wall model where a quadratic exponential dilaton is

included in the action [7]. This exponential factor was introduced in the metric in Ref. [8]

to guarantee confinement in a quark-antiquark potential. This metric was used in Ref. [6]

to obtain the admittance, the diffusion coefficient, compute the regularized mean square

displacement and verify the fluctuation-dissipation theorem for this set up. In Ref. [9],

this problem was reanalyzed including a backreaction from the exponential factor altering

the horizon function, generalizing the results of Ref. [6]. In Ref. [10], this set up with an

exponential deformation in the metric was further extended to include a non-zero chemical

potential allowing the discussion of bosonic and fermionic mean square displacements and

also to verify the fluctuation-dissipation theorem in both (bosonic and fermionic) cases.

In particular, the long time regime for both cases present a Sinai-like diffusion logarithm

behavior [11].

In this work we extend some finite temperature results [1–4] regarding the linear response

and diffusion in the literature to a general diagonal background metric. It is important to

mention that this previous results are restricted to bosons. We include a non-zero chemical

potential in this general metric allowing us to distinguish between the bosonic and fermionic

cases. Using the corresponding statistical distributions we calculate and present the values

of the mean square displacement for bosonic and fermionic cases. After obtaining closed

expressions, we get the limits of short and long times for zero and non-zero chemical po-

tentials for bosons and fermions. This is important because the diffusion and mean square

displacement were not discussed previously in the fermionic case, as we present here (we

discussed the fermionic case for an exponential deformed metric which is a particular case

of the present discussion).

As an application for these general results we apply our findings on two holographic

models of interest. First, we consider the hyperscaling-Lifshitz model at finite temperature

and zero chemical potential for bosons and fermions. This background was studied as a

holographic dual for a series of condensed matter systems and it was used in the holographic

study of Fermi surfaces [12]. Second, we discuss a charged dilatonic AdS black hole presented

in Ref. [13], as another application of our general results. This is a top-down model with
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finite chemical potential which describes dual Fermi liquids with massless charged fermionic

modes. In this model, the entropy is a linear function of the temperature, for low T . So, our

general results allow us to obtain the diffusion coefficient and mean square displacement of

fermionic systems which are relevant to the study of Fermi surfaces and Fermi liquid in the

holographic set up.

This work is organized as follows. In Section II, we start setting the class of metrics

explored here and calculating the Hawking temperature. From the Nambu-Goto action we

find the general equation of motion in the linear regime. Then we solve it using a patching

method. In Section III, we find a general expression for the linear response function and

for the diffusion coefficient in terms of the general metric elements. In Section IV, we

calculate correlation functions in the bosonic and fermionic cases. In Section V, we check

our results for the admittance and correlation functions with the fluctuation-dissipation

theorem for bosons and fermions. In section VI, our goal is to calculate the regularized

mean square displacement s2reg(t) for multiple scenarios. We begin establishing the boundary

conditions for the solutions and from them we get a general integral representation for s2reg(t).

After that, we specialize to four different cases: bosonic and fermionic at zero and non-zero

chemical potentials. For each of these cases we further obtain the regimes of short and

large times. At the end of this section we present a summary of this results and compare

them. Going ahead, in section VII, we apply the previous results to a hyperscaling violation

d + 2 spacetime metric at finite temperature and zero chemical potential presenting some

interesting cases for particular values of the parameters of the model. In section VIII, we look

at a top-down finite chemical potential model in 2+1 dimensions introduced in [13]. We use

it as an illustration for our general finite chemical results in the bosonic and fermionic cases

presenting interesting properties. Finally in the last Section IX, we show our conclusions

making general comments about the results. Some technical calculations are presented in

three appendices.

II. NAMBU-GOTO ACTION AND EQUATIONS OF MOTION

In this section we study the dynamics of the probe string, finding its equations of motion

and their solutions. The set up we are going to use [1] considers a probe string in bulk with

a black hole. One endpoint of the string interacts with the horizon (IR) and the other to a
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brane near the boundary (UV). The endpoint near the UV behaves as a particle simulating a

stochastic motion. This set up was used to describe Lifshitz as well as hyperscaling violation

[2–4].

We start with a general diagonal metric

ds2 = −gttdt2 + grrdr
2 +

d
∑

i=1

giidx
2
i , (1)

where we defined

gtt ≡ a(r)f(r) ; grr ≡
b(r)

f(r)
; gii ≡ c(r) ; (i = 1, · · · , d). (2)

Note that d is the number of spatial dimensions and r is the holographic coordinate. The

horizon function f(r) of the black hole is assumed to have a simple zero at r = rh and goes

to 1 for r → ∞.

In the particular case of asymptotically AdS spaces, a(r), c(r) and 1/b(r) go to r2 as

r → ∞, where the boundary is located. On the other hand, in the case of hyperscaling

violation, discussed in Sec. VII, the metric coefficients are given by

a(r) = r2(z−θ/d) ; b(r) = r−2(1+θ/d) ; c(r) = r2(1−θ/d) , (3)

which also reduce to the AdS case when z → 1 and θ → 0.

The Hawking temperature for the general metric, Eq. (1), is given by

T =
1

4π

√

a(rh)

b(rh)
[f ′(rh)]2 =

|f ′(rh)|
4π

√

a(rh)

b(rh)
. (4)

Let us now describe the motion of the probe string using the Nambu-Goto action:

SNG = − 1

2πα′

∫

dτdσ
√−γ , (5)

where α′ is the string tension, γ = det(γαβ) and γαβ = gmn∂αX
m∂βX

n is the induced metric

on the worldsheet with m,n = 0, 1, · · · , d+ 1.

We choose the usual static gauge, where t = τ , r = σ and Xm = Xm(τ, σ). By using the

general metric Eq.(1) and expanding the Nambu-Goto action keeping up to quadratic terms

Ẋ2, X ′2, one gets:

SNG ≈ − 1

4πα′

∫

dτdσ

[

Ẋ2 gii(r)
√

gtt(r)grr(r)

gtt(r)
− X ′2 gii(r)

√

gtt(r)grr(r)

grr(r)

]

, (6)
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where Ẋ = ∂τ=tX and X ′ = ∂σ=rX . From this action one obtains the EoM and define

gxx = gii (without sum over i from now on) for any i,

∂

∂r





X ′(t, r)
(

gxx(r)
√

gtt(r)grr(r)
)

grr(r)



+
Ẍ(t, r)

(

gxx(r)
√

gtt(r)grr(r)
)

gtt(r)
= 0 . (7)

Then, by using the decomposition X(t, r) = eiωthω(r), the EoM reads:

∂

∂r

(

h′ω(r)
gxx(r)

√

gtt(r)√
grr(r)

)

+
ω2gxx(r)

√

grr(r)
√

gtt(r)
hω(r) = 0 . (8)

For a general background metric this equation cannot be solved analytically. Then, we

will apply a standard patching method to obtain approximate analytical solutions, to be

presented in the next section.

A. General solution in the hydrodynamic limit

In this section we are going to consider approximate solutions for Eq. (8) considering

three different particular cases, following Refs.[1–4]:

A) Near the horizon (IR);

B) Hydrodynamic limit: ω → 0;

C) Far from the horizon (UV).

Then, we will match these expressions to get an approximate solution for the Eq. (8) near

UV, but keeping essential data from the IR and the hydrodynamic limit. This is useful to

describe the motion of the string endpoint simulating the stochastic behavior.

First, we consider the solution for region A:

hAω(r) =
A1(ω)
√

gxx(rh)

[

1− i
ω

f ′(rh)

√

b(rh)

a(rh)
log

(

r

rh
− 1

)

]

=
A1(ω)
√

gxx(rh)

[

1− i
ω

4πT
log

(

r

rh
− 1

)]

(9)

where A1(ω) is a normalization factor. This solution is obtained in Appendix A.

Now we solve the equation of motion for the hydrodynamic limit which is a general

solution in r but only up to order ω. In this case one can neglect the term proportional to

ω2 in Eq. (8)
d

dr

(

gxx
√
gtt√

grr

dhω
dr

)

= 0, (10)
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which implies that we are considering the condition

ω2 ≪
√

gtt(r)

gxx(r)
√

grr(r)
=

√

a(r)f(r)
√

b(r)c(r)
. (11)

In general, close to the boundary we can take the metric coefficients as monomials

a(r) ∼ rat , b(r) ∼ rar , c(r) ∼ rax .

Using the condition in Eq. (11) in the UV (r → rb) one gets the constraint

at − ar − 2ax ≥ 0 , (12)

which is saturated by the asymptotic AdS case with a(r), c(r) and 1/b(r) going to r2 as

r → ∞. Note that in the IR, r → rh + δ, where δ is a small finite positive quantity

(δ > 0) usually called the “stretched horizon” (see for instance [1] and references therein),

the condition Eq. (11) implies

ω2 ≪ 4πT

gxx(rh)
(r − rh) =

4πT

gxx(rh)
δ . (13)

This is the hydrodynamic limit considered from now on in this work.

Solving Eq. (10), we obtain

hBω (r) = B1(ω)

∫ r √
grr

gxx
√
gtt
dr′ +B2(ω)

= B1(ω)

∫ r
√

b(r′)

gxx(r′)f(r′)
√

a(r′)
dr′ +B2(ω) , (14)

where B1(ω) and B2(ω) are integration constants with respect to r but are functions of ω.

This can be seen as the general solution up to order ω2 of the equation of motion.

One can approximate the integral above in the IR using the fact that f(r) has a simple

zero at the horizon. Then we can write

hBω(IR) ≈
√

b(rh)B1(ω)

gxx(rh)
√

a(rh)

∫ r 1

f(r′)
dr′ +B2(ω)

=
B1(ω)

4πTgxx(rh)
log

(

r

rh
− 1

)

+B2(ω) . (15)

In order to obtain the functions B1(ω) and B2(ω), we compare this expression with the

solution Eq. (9) for the deep IR region:

B1(ω) = −iA1(ω)ω
√

gxx(rh), B2(ω) =
A1(ω)
√

gxx(rh)
, (16)
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where A1(ω) can be determined by a convenient normalization.

For the case far from the horizon (case C: UV region) we use the solution for case B (14)

hCω (r) ≈ hBω(UV)(r) = B1(ω)

∫ r

rh+ǫ

√

b(r′)

gxx(r′)f(r′)
√

a(r′)
dr′ +B2(ω)

=
A1(ω)
√

gxx(rh)

(

1− iωgxx(rh)

∫ r

rh+ǫ

√

b(r′)

gxx(r′)f(r′)
√

a(r′)
dr′

)

. (17)

In the last expression we are interested mainly in the asymptotic behavior of hCω (r) for

large r.

This solution will be used to describe the motion of the string close to the boundary

brane r → rb. Please note that this solution is valid in the regime of small frequencies, in

particular, it can be seen as an expansion for ω/T ≪ 1. This becomes clear when we notice

that the integral in Eq. (17) is dominated by its near horizon part (r = rh) since f(r) has a

simple zero in this region (f(r) ≈ f ′(rh)(r − rh)), while a(r) and b(r) are regular functions

at r = rh. Using these facts one can approximate Eq. (17) by

hBω(UV )(r ∼ rb) ≈ A1(ω)
√

gxx(rh)

[

1− i
ω
√

b(rh)

f ′(rh)
√

a(rh)
log

(

1

ǫ

)

− iΞ− iωΩ(rb)

]

=
A1(ω)
√

gxx(rh)

[

1− i
ω

4πT
log

(

1

ǫ

)

− iΞ− iωΩ(rb)

]

, (18)

where Ξ and Ω(rb) are functions resulting from the integral in Eq. (17), which depends on

geometry. The function Ξ is associated with intermediate values of r which is subdominant

with respect to the log term and therefore will be ignored in the following. On the other

side, Ω(rb) depends on the asymptotic behavior of the metric functions for large r. Close to

the boundary, the metric coefficients behave as a(r) ∼ rat , b(r) ∼ rar , c(r) ∼ rax , so that

the constraint, Eq. (12), implies that Ω(rb) vanishes in the limit rb → ∞. In particular, if

the metric under consideration is asymptotically AdS, then a(r), c(r) and 1/b(r) go to r2 as

r → rb, so that Ω(rb) ∼ 1/r3b , which is very small for large rb.

III. ADMITTANCE AND DIFFUSION COEFFICIENT

In this section we proceed to calculate the admittance from which we find the diffusion

coefficient. The admittance is the linear response of the system to an external force. Thus,

first we need to introduce an small external force acting on the boundary particle. With
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this purpose, we turn on an electromagnetic potential Aµ on the UV brane. This will not

change the bulk dynamics but will introduce an external force to the string endpoint. The

linearized Nambu-Goto action, Eq. (6), then becomes (with unit charge)

S = − 1

4πα′

∫

dtdr

[

Ẋ2gxx
√
grr√
gtt

−X ′2gxx
√
gtt√

grr

]

+

∫

dt
(

At + ~A · ~̇x
) ∣

∣

∣

r=rb
. (19)

From this expression we get a modified equation of motion in the brane position given by

√

gtt(rb)
√

grr(rb)
gxx(rb)X

′|r=rb − 2πα′F = 0 , (20)

with F = ∂xAt−∂tAx. Since X
′ = ∂rX and X(t, r) = eiωthCω (r), we can write from Eq. (17)

F (ω) =
−iωA1(ω)

√

gxx(rh)

2πα′ f(rb) ≈
−iωA1(ω)

√

gxx(rh)

2πα′ . (21)

Note that for this regime of small frequencies and large string energy (large rb, f(rb) ≈ 1) the

force on the particle depends only on the IR structure of the metric. Then, the admittance

can be written as

χ(ω) =
hCω (rb)

F (ω)
= 2πα′

(

1− iωgxx(rh)
∫ rb

√
b(r′)

gxx(r′)f(r′)
√

a(r′)
dr′
)

−iωgxx(rh)
. (22)

So, its imaginary part is

ℑχ(ω) = 2πα′

ω gxx(rh)
. (23)

The results expressed in Eqs. (22)-(23) are valid for any metric in the form of Eq. (1) in

the regime of small frequencies, as proposed in Ref. [4].

From the response function χ(ω), Eq. (22), we can calculate the diffusion coefficient D.

It is given by [2] :

D =
1

β
lim
ω→0

(−iωχ(ω)) = 2πα′

βgxx(rh)
=

2πα′T

gxx(rh)
, (24)

where β = 1/T . We can rewrite this result just in terms of the metric using (4) as

D =
α′|f ′(rh)|
2gxx(rh)

√

a(rh)

b(rh)
. (25)

At this stage we have found the linear response and the diffusion coefficient as functions

of the black hole radius rh. Also we have the temperature as function of the same parameter,
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so in principle we can invert the equations to get results as functions of temperature. On

the other hand, as temperature depends of different parts of the metric compared with for

example admittance we can not write at this point a general expression for it as function of

temperature. We will need then to specialize to some particular model to get such relation.

Before we conclude this section, let us comment that the real part of the admittance

χ(ω), Eq. (22), is given by

ℜχ(ω) = 2πα′
∫ rb

rh+ǫ

√

b(r′)

gxx(r′)f(r′)
√

a(r′)
dr′

≈ α′

2Tgxx(rh)
log

(

1

ǫ

)

, (26)

where we considered the approximation that the integral is dominated by the near horizon

(IR) region, as discussed after Eq. (18). Note that this expression is independent of the

frequencies, at least in the hydrodynamical limit ω → 0. This result is in consonance with

Kramers-Kronig relations such that the real part of the admittance is an even function in ω.

IV. CORRELATION FUNCTIONS

The mean square displacement is a measure of the variance of the random walk of the

particle in the thermal bath from the motion of the probe string. In the following, we are

going to calculate in general grounds this quantity using the results from previous sections.

First, in order to obtain the mean square displacement one needs to impose ingoing and

outgoing boundary conditions near the horizon

hIRω (r) =
A(ω)

√

gxx(rh)

[

eiωr∗ +B(ω)e−iωr∗
]

=
A(ω)

√

gxx(rh)

[

e
i ω

4πT
log

(

r

rh
−1

)

+B(ω)e
−i ω

4πT
log

(

r

rh
−1

)

]

. (27)

In the UV region the solution for small ω considering these modes is

hUV
ω (r) =

A(ω)
√

gxx(rh)

[(

1− iωgxx(rh)

∫ r

rh+ǫ

√

b(r′)

gxx(r′)f(r′)
√

a(r′)
dr′

)

+B(ω)

(

1 + iωgxx(rh)

∫ r

rh+ǫ

√

b(r′)

gxx(r′)f(r′)
√

a(r′)
dr′

)]

. (28)

where the coefficients A(ω) and B(ω) are the same as in the IR region.
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Matching the UV solution with the Neumann boundary condition in r = rb, one obtains

that coefficient the B(ω) is a pure phase eiωθ (see the Appendix B). On the other side

imposing Neumann b.c. at the IR one obtains a discretization of the frequencies as

∆ω =
πf ′(rh)

log
(

1
ǫ

)

√

a(rh)

b(rh)
=

4π2T

log
(

1
ǫ

) , (29)

analogous to the result found in [1]. For details, see the Appendix B.

A. Grand canonical ensemble and correlation functions

In the grand canonical ensemble, the density operator is defined as

ρ0 =
e−β(

∑

ω>0
ωa†ωaω−µa†ωaω)

Tr ( e−β(H−µN))
, (30)

where a†ω and aω are the usual creation and annihilation operators which satisfy

〈a†ωaω〉 =
δωω′

eβ(ω−µ) ± 1
; 〈a†ωn

a†ω〉 = 0; 〈aωaω〉 = 0 . (31)

Note that the plus (minus) sign corresponds to the fermionic (bosonic) case. With these

operators, one can write down the solution for the equation of motion near the boundary

X(t, r) =
∑

ω>0

(

aωh
UV
ω (r)e−iωt + a†ω(h

UV
ω (r))∗eiωt

)

, (32)

where we used explicitly the quantization of the frequencies obtained in the previous section.

Then, the two point function for the string endpoint reads

〈x(t)x(0)〉 ≡ 〈X(t, rb)X(0, rb)〉
=
∑

ω>0

∑

ω′>0

(hUV ∗
ω (rb)h

UV
ω′ (rb)e

iωt + hUV
ω (rb)h

UV ∗
ω′ (rb)e

−iωt

eβ(ω−µ) ± 1

+hUV
ω (rb)h

UV ∗
ω′ (rb)e

−iωt
)

δωω′

=
∑

ω>0

|hUV
ω (rb)|2

( 2 cos(ωt)

eβ(ω−µ) ± 1
+ e−iωt

)

. (33)

Substituting in the above equation the expression for hUV
ω (rb) given by (28), taking into

account the fact that A(ω) ∼ ω−1/2 from Eq. (B11), and disregarding terms of order ω2, we

obtain

〈x(t)x(0)〉 =
4π2α′T

gxx(rh) log
(

1
ǫ

)

∑

ω>0

1

ω

(

2 cos(ωt)

eβ(ω−µ) ± 1
+ e−iωt

)

. (34)
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Considering the approximation

dω ∼ ∆ω =
4π2T

log
(

1
ǫ

) ,

one can rewrite

〈x(t)x(0)〉 =
α′

gxx(rh)

∫ ∞

0

dω

ω

(

2 cos(ωt)

eβ(ω−µ) ± 1
+ e−iωt

)

= 〈x(0)x(t)〉∗ . (35)

Analogously, one can obtain

〈x(t)x(t)〉 = 〈X(t, rb)X(t, rb)〉

=
∑

ω>0

|hUV
ω (rb)|2

( 2

eβ(ω−µ) ± 1
+ 1
)

=
α′

gxx(rh)

∫ ∞

0

dω

ω

(

2

eβ(ω−µ) ± 1
+ 1

)

= 〈x(0)x(0)〉 . (36)

Note that in Eqs. (33)- (36) the sums and integrals span over all positive frequencies

ω. On the other side, the modes present in |hUV
ω (rb)|2 are the first terms of an expansion

for ω/T ≪ 1, as discussed after Eq.(17). As we show in Appendix C, when we substitute

|hUV
ω (rb)|2 by Eq. (28) in the above equations, the frequencies ω ≫ T are exponentially

suppressed. Then, it is a good approximation to keep only the first terms in an expansion

of ω/T for |hUV
ω (rb)|2.

V. FLUCTUATION-DISSIPATION THEOREM

In this Section, we are going to verify the consistency of our results with the fluctuation-

dissipation theorem, using the admittance obtained in Section III and the correlation func-

tions in Section IV.

Starting from the correlation functions 〈x(t)x(0)〉 and 〈x(0)x(t)〉, one can define a sym-

metric Green’s function as:

GSym(t) ≡
1

2
(〈x(t)x(0)〉+ 〈x(0)x(t)〉) . (37)
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The fluctuation-dissipation theorem in the presence of a chemical potential for the bosonic

[14] and fermionic [15] cases, can be written as

GB,F
Sym(t) = F−1 [(1 + 2nB,F )ℑχ(ω)] , (38)

where F−1[· · · ] denotes the inverse Fourier transform, nB,F are the Bose-Einstein and Fermi-

Dirac distributions, and ℑχ(ω) is the imaginary part of the admittance. Note that the

frequencies in this equation are positive physical quantities.

Then, one can rewrite of the r.h.s of equation (38) as Fourier transforms as

F−1 [(1 + 2nB,F )ℑχ(ω)] =
1

2π

∫ ∞

−∞
dω

(

1 +
2

eβ(|ω|−µ) ± 1

)

ℑχ(ω)eiωt

=
α′

gxx(rh)

∫ ∞

−∞

dω

|ω|

(

1 +
2

eβ(|ω|−µ) ± 1

)

eiωt , (39)

where we used the admittance, Eq. (23), and the plus (minis) sign represents fermions

(bosons).

On the other hand, from the correlation functions, Eqs. (35), the l.h.s. of Eq. (37)

becomes

GB,F
Sym(t) =

α′

gxx(rh)

∫ ∞

0

dω

ω

(

4 cos(ωt)

eβ(ω−µ) ± 1
+ e−iωt + eiωt

)

=
α′

gxx(rh)

∫ ∞

0

dω

|ω|

(

2 (e−iωt + eiωt)

eβ(|ω|−µ) ± 1
+ e−iωt + eiωt

)

. (40)

Since
∫ ∞

0

dωf(|ω|)eiωt +
∫ ∞

0

dωf(|ω|)e−iωt =

∫ ∞

−∞
dωf(|ω|)eiωt , (41)

the Eq.(40) becomes

GSym =
α′

gxx(rh)

∫ ∞

−∞

dω

|ω|

(

2

eβ(|ω|−µ) ± 1
+ 1

)

eiωt , (42)

which coincides with Eq. (39). Therefore, it completes the check of our calculations with

the fluctuation-dissipation theorem.

VI. MEAN SQUARE DISPLACEMENTS

From the results of Section IV, one can calculate the regularized expression for the mean

square displacement as:

s2reg(t) = 〈: [x(t)− x(0)]2 :〉 ≡ 〈: [X(t, rb)−X(0, rb)]
2 :〉 , (43)
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where the double dots notation : [· · · ] : means that we are using normal ordering. Explicitly,

s2reg(t) =
α′

gxx(rh)

∫ ∞

0

dω

ω

4(1− cos(ωt))

eβ(ω−µ) ± 1

=
8α′

gxx(rh)

∫ ∞

0

dω

ω

sin2
(

ωt
2

)

eβ(ω−µ) ± 1
. (44)

In the following, we are going to calculate the regularized mean square displacement in

various interesting cases.

A. Zero chemical potential

In this section, we study the particular case of zero chemical potential from previous

results. This is interesting, for instance, in models which describe the superfluid Bose-Mott

insulator transition [16] and massless Dirac fermions in graphene [17, 18].

For zero chemical potential, the mean square displacement, Eq. (44), reads

s2reg(t) =
8α′

gxx(rh)

∫ ∞

0

dω

ω

sin2
(

ωt
2

)

eβω ± 1
. (45)

This expression is valid for the bosonic (−) and fermionic (+) cases. In the following we

discuss separately these two cases.

1. Bosons

To solve the integral (45) for the bosonic case (−), we follow [6] and find

s2reg(t) =
2α′

gxx(rh)
log

(

sinh( tπ
β
)

tπ
β

)

. (46)

For the short time approximation t≪ β, we have

s2reg(t) ≈
π2α′

3gxx(rh)

t2

β2
, (47)

which is the expected result for the ballistic regime. Considering now the approximation for

large times t≫ β, one finds

s2reg(t) ≈
2πα′

gxx(rh)

t

β
, (48)

which is the standard diffusion result.
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2. Fermions

Now, considering the fermionic case (+) corresponding to the integral (45), we have

s2reg(t) =
8α′

gxx(rh)

∫ ∞

0

dω

ω

sin2
(

ωt
2

)

eβω + 1
.

=
2α′

gxx(rh)
log





tπ
2β

tanh
(

πt
2β

)



 . (49)

In the limit t≪ β (short times) one can approximate this expression by

s2reg(t) ≈ π2α′

6gxx(rh)

t2

β2
, (50)

in agreement with the well known result for the ballistic regime.

For large times, or t≫ β, we have that

s2reg(t) ∼ 2α′

gxx(rh)
log

(

πt

2β

)

, (51)

which is a Sinai-like subdiffusive regime [11].

B. Finite chemical potential

In the case of a finite chemical potential the mean square displacement is given by Eq.

(44) which we repeat here for convenience

s2reg(t) =
8α′

gxx(rh)

∫ ∞

0

dω

ω

sin2
(

ωt
2

)

eβ(ω−µ) ± 1
. (52)

In the following, we specialize to the bosonic (−) and fermionic (+) cases.

1. Bosons

In order to calculate the mean square displacement given by the above equation for the

bosonic case, we take µ < 0, and consider the series expansion

1

eβ(ω−µ) − 1
=

e−β(ω−µ)

1− e−β(ω−µ)
=

∞
∑

n=0

e−β(ω−µ)(n+1) . (53)
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Then,

s2Breg(t) =
8α′

gxx(rh)

∞
∑

n=1

∫ ∞

0

dω

ω
e−β(ω−µ)n sin2(

ωt

2
). (54)

Performing the integral, one gets

s2Breg(t) =
2α′

gxx(rh)

∞
∑

n=1

eβµn log

(

1 +
t2

n2β2

)

. (55)

This expression can be rewritten in a formal way as

s2Breg(t) =
2α′

gxx(rh)

{

2Li0
(1,0) (0, eµ)− eµ

[

Φ(0,1,0)

(

eµ, 0, 1 + i
t

β

)

+Φ(0,1,0)

(

eµ, 0, 1− i
t

β

)]}

. (56)

In this equation we used the following notation: Li
(1,0)
n (x, y) is the first derivative of the

polylogarithm function of order n with respect to its first argument x; Φ(0,1,0)(x, y, z) is the

first derivative of the Lerch transcendent function with respect to the second argument y.

First we consider t≪ β, which is the short time approximation, and then from Eq. (55),

we find

s2Breg(t) ≈ 2α′

gxx(rh)

( ∞
∑

n=1

eβµn

n2

)

t2

β2
=

2α′

gxx(rh)
Li2
(

eβµ
) t2

β2
. (57)

In the right hand side of this equation we used the polylogarithm function of order 2,

Li2
(

eβµ
)

. This equation gives the usual ballistic behavior since it goes like t2.

On the other side, in the late time approximation t≫ β the sum in Eq. (55) is dominated

by its first term and we have

s2Breg(t) ≈ 4α′

gxx(rh)
eβµ log

(

t

β

)

. (58)

This equation corresponds to a subdiffusive regime which is due to the presence of the non-

zero chemical potential in this case. This result is analogous to what was found in classical

physical systems in [11] or in Lorentz invariant bosonic theories [10].

2. Fermions

Now, we consider the regularized mean square displacement for the fermionic case. From

Eq. (44), with µ > 0, we have

s2Freg(t) =
8α′

gxx(rh)

∫ ∞

0

dω

ω

(

sin2(ωt
2
)

eβ(ω−µ) + 1

)

. (59)
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In order to evaluate this integral we resort to the Sommerfeld expansion:

∫ ∞

0

dω

ω

(

sin2(ωt
2
)

eβ(ω−µ) + 1

)

=

∫ µ

0

sin2(ωt
2
)

ω
dω + · · ·

=
1

2
(−Ci(tµ) + log(tµ) + γ) + · · · , (60)

where Ci(z) is the Cosine integral function, γ is Euler-Mascheroni constant and we dis-

regarded terms of order 1/µ2β2 and higher, since we are considering the low temperature

regime, µβ = µ
T
≫ 1.

The mean square displacement, Eq. (59), for small times µt ≪ 1, can be approximated

as

s2Freg(t) ≈
α′

gxx(rh)
µ2t2 . (61)

This expression for s2 gives the well known ballistic regime t2.

On the other hand, taking the large time approximation µt≫ 1 in Eq. (59), we obtain

s2Freg(t) ≈
4α′

gxx(rh)
log (tµ) , (62)

which corresponds to a subdiffusive behavior log t, as in the bosonic case discussed above.

Note that this behavior also appears in classical set-ups as in Ref. [11]. In Ref. [10] we

found a similar fermionic behavior for a Lorentz invariant context.

C. Summary and discussions on s2reg

We can now summarize the results of this section on Table I. First, one can note that

for all scenarios we get the usual ballistic regime s2reg ∼ t2 for short times. This is expected

since for this situation the particle do not had completely felt the characteristics of the

environment. Another feature for all these results is the proportionality to the inverse of

gxx(rh), showing the dependence on the IR of the metric in the direction of motion of the

test particle.

For the bosonic case, the short time behavior at zero chemical potential is obtained

directly just taking the µ = 0 limit from the finite chemical potential result. However, at

large times, one can not obtain the zero chemical potential case by taking the above limit.

In this case it is necessary to go back to Eq. (44) and recalculate this quantity. Then

turning on a chemical potential changes the long time behavior of the regularized mean

square displacement for the bosonic scenario.
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Description s2reg(t) short times s2reg(t) large times

Bosonic µ = 0 π2α′

3gxx(rh)
t2

β2

2πα′

gxx(rh)
t
β = Dt

Bosonic µ 6= 0 2α′

gxx(rh)
Li2
(

eβµ
)

t2

β2

4α′

gxx(rh)
eβµ log

(

t
β

)

= 2βD
π eβµ log

(

t
β

)

Fermionic µ = 0 π2α′

6gxx(rh)
t2

β2

2α′

gxx(rh)
log
(

πt
2β

)

= βD
π log

(

πt
2β

)

Fermionic µ 6= 0 α′

gxx(rh)
µ2t2 4α′

gxx(rh)
log (tµ) = 2βD

π log (tµ)

Table I: Mean square displacement for zero and non-zero chemical potential for bosons and

fermions.

In doing the present analysis it is necessary to bear in mind that the term gxx(rh) will

bring a non-trivial dependence on the temperature and on the chemical potential. So, in

general, the temperature behavior of these quantities depends heavily on the particular form

of the metric. In the following sections we apply the results obtained here for two set ups

as a illustration for those aspects.

As a general comment, it is interesting to note that the set up discussed above for bosons

and fermions at zero or non-zero chemical potential verifies the fluctuation-dissipation the-

orem. This is done relating the imaginary part of the admittance with the two point corre-

lation functions calculated above, as discussed in Section V.

VII. HYPERSCALING VIOLATION AT FINITE TEMPERATURE FOR

BOSONS AND FERMIONS

In this section, we apply the general results obtained in the previous parts of the text to

a particular system, the Lifshitz-hyperscaling family of metrics:

ds2 = r−
2θ

d

(

−r2zf(r)dt2 + r2d~x2 +
dr2

f(r)r2

)

, (63)

where z and θ are the Lifshitz (or dynamical) and hyperscaling violation parameters respec-

tively, and d is the spacetime dimension. The horizon function is given by

f(r) = 1−
(rh
r

)d+z−θ

. (64)

This problem was studied by the authors in Refs. [3] and [4] for some particular cases

without fermions. In our presentation we will discuss the Lifschitz-hyperscaling violation
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metrics at finite temperature for fermions and bosons at zero chemical potential.

The constraint in equation (12) applied for the hyperscaling-Lifshitz metric case becomes

2θ

d
+ z + 1 ≥ 0 (65)

It is also important to note as pointed in [19] that the null energy condition imposes addi-

tional constraints in the values of the parameters θ and z, explicitly

(d− θ)(d(z − 1)− θ) ≥ 0,

(z − 1)(d+ z − θ) ≥ 0. (66)

In order to have a positive specific heat we need to impose one more condition [19]

d− θ

z
≥ 0 . (67)

Considering that the number d of spatial dimensions in the boundary is a positive number

and imposing all these conditions results in the parameters assuming the possible values

(i) z ≤ −3, θ ≥ −d
2
(z + 1), (68)

(ii) −3 < z < 0, θ ≥ d, (69)

(iii) 1 ≤ z < 2, −d
2
(z + 1) ≤ θ ≤ d(z − 1), or θ = d, (70)

(iv) z ≥ 2, −d
2
(z + 1) ≤ θ ≤ d. (71)

In this background, we then calculate the response function, the diffusion coefficient, and

the mean square displacement from our general discussion of the previous sections. This

will allow us to understand the independence of the diffusion process on different hyper-

scaling parameters, dynamical exponents, and dimensions for bosons and fermions. Also, it

will be illustrative to explore some particular configurations of those quantities, presenting

some cases in detail. Such Analysis is interesting since those types of gravitational systems

are relevant as holographic duals for some condensed matter systems. In some works, for

example, they are seen as possessing Fermi surfaces in the boundary theory such as strange

metals [12, 16, 19–23]. In other cases, they were used to study the behavior of some (bosonic)

theories close to critical point [2, 3].

The horizon function Eq. (64) implies that the Hawking temperature reads

T =
|d+ z − θ|

4π
rzh . (72)
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Then, we can write the admittance from Eq. (23) as

ℑχ(ω) = 2πα′

ω

(

4π

|d+ z − θ|

)−2(d−θ)/zd

T−2(d−θ)/zd. (73)

Note that the condition (67) implies a negative exponent for the temperature dependence of

the imaginary part of the admittance, which is the usual behavior for holographic systems

such as the ones investigated in Ref. [1].

Now, using Eq. (24), the diffusion coefficient for this model is

D = 2πα′
(

4π

|d+ z − θ|

)−2(d−θ)/zd

T (−2(d−θ)+zd)/zd. (74)

It is interesting to note that this diffusion coefficient could increase or decrease with the

temperature depending on the choice of the parameters z, d, θ.

In the particular case where d = θ one has the usual Einstein diffusion proportional to T .

On the other side, for d− θ = zd one has the diffusion coefficient proportional to T−1. This

behavior was also found in Ref. [1] for pure AdS space. These cases are thermodynamically

stable accordingly to the condition given by Eq. (67).

A. Bosons

The regularized mean square displacement for the bosonic case without chemical potential

(µ = 0), Eq. (46), on a Lifshitz and hyperscaling violation metric reduces to

s2Breg(t) = 2α′
(

4πT

|d+ z − θ|

)−2(d−θ)/zd

log

(

sinh(T tπ)

T tπ

)

. (75)

For short times one reobtains the ballistic regime

s2Breg(t) =
2α′

3

(

4πT

|d+ z − θ|

)−2(d−θ)/zd

(T tπ)2 (76)

and for long times we find

s2Breg(t) = 2α′
(

4πT

|d+ z − θ|

)− 2

d

d−θ

z

(T tπ)

= 2πα′
(

4π

|d+ z − θ|

)− 2

d

d−θ

z

(T )−
2

d

d−θ

z
+1 t (77)

which is the usual diffusive behavior in time.



22

B. Fermions

Now, we are going to analyze the fermionic case with zero chemical potential within

a Lifshitz and hypescaling violation metric. So, here we will calculate the mean square

displacement for this system. We get from Eq. (50) that for short times one has

s2Freg(t) ≈
2α′

gxx(rh)

t2

β2
= 2α′

(

4πT

|d+ z − θ|

)−2(d−θ)/zd
t2

β2
, (78)

which is the typical ballistic behavior while for long times, in turn, from Eq. (51), one finds

s2Freg(t) ∼ 2α′

gxx(rh)
log

(

πt

2β

)

= 2α′
(

4πT

|d+ z − θ|

)−2(d−θ)/zd

log

(

πt

2β

)

, (79)

which corresponds to a fermionic subdiffusive regime analogous to the classical (Boltzmann)

ones found in Ref. [11].

Now, we are going to discuss two special cases: θ = d, which reproduces the Einstein

diffusion coefficient, and θ = d−1, in which the admittance goes with the inverse temperature

as in the pure AdS case, in the next two sections.

C. The particular case θ = d

In this section, we discuss the Lifshitz and hyperscaling violation at zero chemical poten-

tial (µ = 0) presented above for the particular case of θ = d. In this case, the admittance,

Eq. (73), is independent of the temperature

χ(ω)|θ=d =
2πα′

ω
, (80)

and the diffusion coefficient, Eq. (74), becomes

D|θ=d = 2πα′T, (81)

which is the usual expected behavior for Brownian motion, as obtained by Einstein in his

original formulation of the problem.

1. Bosons

The regularized mean square displacement for bosons, Eq. (75), in this case is given by

s2Breg(t)|θ=d = 2α′ log

(

sinh(T tπ)

T tπ

)

. (82)
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Taking this expression in the limit of short times, one finds the usual ballistic regime

s2Breg(t)|θ=d =
2α′

3
(T tπ)2, (83)

while for long times one finds

s2Breg(t)|θ=d = 2πα′T t = Dt , (84)

which is also the usual Einstein diffusive regime.

2. Fermions

In this case (θ = d) the fermionic mean square displacement from (78) for small times

reads the natural ballistic profile

s2Freg(t)|θ=d ≈ 2α′ t
2

β2
. (85)

From the diffusive regime (79), we get

s2Freg(t)|θ=d ≈ 2α′ log

(

πt

2β

)

, (86)

which is also a subdiffusive behavior as the ones found in Ref. [11].

It is interesting to note that in this case θ = d there is no dependence on the dynam-

ical exponent z in the admittance, although the diffusion coefficient and the mean square

displacement depend on the temperature.

In ref. [19] the authors consider d−θ as an effective spatial dimension so that one obtains

a 0 + 1 dimensional system regarding the entropy of the system. However, even for θ = d

one finds non zero spatial correlations, as we found above.

D. The particular case θ = d− 1

The particular case θ = d − 1 is interesting because it can be related to a compressible

state with hidden Fermi surfaces, as discussed in Ref. [12]. In this case without chemical

potential, the imaginary part of the admittance, Eq. (73), gives

ℑχ(ω)|θ=d−1 =
2πα′

ω

(

4πT

|z + 1|

)−2/zd

(87)
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By the condition (67) which keeps the specific heat positive one finds that in this case one

has z > 0, so that the imaginary part of the admittance is proportional to some inverse

power of the temperature. It is also remarkable that for z → ∞ the imaginary part of the

admittance becomes a constant independent of the temperature.

The diffusion coefficient, Eq. (74), will be now

D|θ=d−1 = 2πα′
(

4π

|z + 1|

)−2/zd

T 1−2/zd. (88)

If z → ∞ this diffusion coefficient becomes proportional to T , and if zd = 2 it becomes a

constant.

1. Bosons

From Eq. (75) one finds for θ = d− 1

s2Breg(t) = 2α′
(

4πT

|z + 1|

)−2/zd

log

(

sinh(T tπ)

T tπ

)

. (89)

Then, for short times one has the ballistic regime

s2Breg(t)|θ=d−1 =
2α′

3

(

4

|z + 1|

)−2/zd

(πT )2−2/zd t2 (90)

and for long times the diffusive response

s2Breg(t)|θ=d−1 = 2α′
(

4

|z + 1|

)− 2

dz

(πT )−
2

dz
+1 t. (91)

Note that for z > 2/d the mean square displacement is proportional to T α with α > 0, in

both regimes. If z → ∞, then the ballistic regime goes with T 2 and the diffusion as T .

2. Fermions

For fermions in this special case and for short times the mean square displacement, Eq.

(78), becomes

s2Freg(t)|θ=d−1 ≈ 2α′
(

4πT

|z + 1|

)−2/zd
t2

β2
. (92)

In the diffusive regime (long times) we have, from Eq. (79), that

s2Freg|θ=d−1 = 2α′
(

4πT

|z + 1|

)−2/zd

log

(

πt

2β

)

. (93)
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VIII. CHARGED DILATONIC ADS BLACK HOLES

Our objective here is provide an application of ours findings to a non zero chemical

potential system. As an example, we consider the Gubser-Rocha model [13, 16], which is a

top-down construction from eleven to four spacetime dimensions for a charged dilatonic AdS

black hole. In this model there are fermionic modes which indicate the presence of Fermi

surfaces. The lagrangian in four dimensions is given by

L = R − 1

4
eφ/

√
3F 2

µν −
1

2
(∂µφ)

2 − 6

L2
cosh

(

φ√
3

)

, (94)

and it is a particular case of an Einstein-Maxwell-dilaton system. The solution of the

corresponding equations of motion are [21, 24]

ds2 =
r2

L2

(

Q

r
+ 1

)3/2
(

−f(r)dt2 + d~x2
)

+
L2dr2

r2f(r)

(

Q

r
+ 1

)−3/2

, (95)

At =

√
3Qµ̃

r +Q
−
√

3Qµ̃1/3

L2/3
; φ =

√
3

2
ln

(

1 +
Q

r

)

, f = 1− µ̃L2

(r +Q)3
. (96)

In the above equations, Q is related to the black hole charge, µ̃ > 0 is related to the black hole

mass and L is the AdS radius. The black hole horizon is located at r = (µ̃L2)1/3 −Q ≡ rh.

Defining the new coordinate r̃ = r +Q so that r̃h = rh + Q, then

f = 1− µ̃L2

r̃3
; At = −

√

3Qµ̃1/3

L2/3

[

1− r̃h
r̃

]

, (97)

which is similar to that of a Reissner-Nordstrom charged black hole with chemical potential

given by

µ =

√

3Qµ̃1/3

L2/3
. (98)

The Hawking temperature, using the r coordinate defined in Eq. (95), is then given by

T =
3

4πL2

(

µ̃L2
)1/6√

rh (99)

Then, the imaginary part of the admittance can be written from Eq. (23) as a function of

the temperature as

ℑχ(ω) = 3α′

2ωT

(

µ̃L2
)−1/3

=
9α′Q

2ωTµ2L2
, (100)

while the real part from Eq. (26) is ℜχ ≈ −2πα′/3r3b . Note that the real part of the

admittance is small compared with its imaginary part since the former does not depend on

the frequency ω which is small.
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The diffusion coefficient for this model, from Eq.(24), reads

D =
9Qα′

2µ2L2
, (101)

which is temperature independent and decreasing for a growing chemical potential.

A. Bosons

The bosonic case is characterized by imposing the condition on the chemical potential

µ < 0. Then, for short times t≪ β, Eq. (57) gives

s2Breg(t) ≈ 2α′

gxx(rh)
Li2
(

eβµ
) t2

β2
=

9α′Q

2πµ2L2T
Li2
(

eβµ
) t2

β2
, (102)

which decreases when |µ| increases.
On the other side, for long times, t≫ β, from Eq.(58), one finds

s2Breg(t) ≈ 4α′

gxx(rh)
eβµ log

(

t

β

)

=
9α′Q

πµ2L2T
eβµ log

(

t

β

)

. (103)

Since µ < 0 the diffusion also drops down when |µ| grows.

B. Fermions

The fermionic case is described by µ > 0. So, for short times, from Eq.(61), we obtain:

s2Freg(t) ≈
α′

gxx(rh)
µ2t2 =

9α′Q

2πL2T
t2 . (104)

Note that if one keeps Q fixed, there is no dependence on chemical potential for this result.

On the other hand, for long times we can use the results in Eq. (62) to obtain:

s2Freg(t) ≈
4α′

gxx(rh)
log (tµ) =

9α′Q

πµ2L2T
log (tµ) , (105)

which diminishes for growing µ.

IX. CONCLUSIONS

In this work we presented some results regarding the dynamics of a particle in a thermal

bath at finite density, in the linear regime, using holographic methods. For a general diagonal
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metric, we obtained expressions for linear response function, mean square displacement,

correlations functions and diffusion coefficient, in terms of the metric elements. As we

showed here, the mean square displacement differs for fermions and bosons. Also, we have

verified the fluctuation-dissipation theorem for zero and non-zero chemical potentials for

both statistics. As these results are presented in terms of the metric components, this is a

quite general result.

Since we have a general relation between different metric elements and physical quantities

as the admittance, the regularized mean square displacement and temperature, it is possible

to choose particular backgrounds in order to produce systems with holographic duals that

may have some desired physical behavior.

For all these results we see a dependence on the IR part of the metric in the direction

of the electrical field on the brane, which acts as an external force for the system. This is

quantified by the presence of gxx(rh) in the general expressions.

For the admittance, we have found the hydrodynamic behavior ω−1 of its imaginary part,

in accordance with the literature [1–4]. However, one finds different temperature behaviors

with respect to different choices of the metrical components. Note also that the admittance

does not depend on the statistics.

For the regularized mean square displacement for bosons we found, in the late times limit,

that the effect of turning on the chemical potential makes the diffusion process slower. The

usual behavior s2reg ∼ t then becomes a Sinai-like diffusion, s2reg ∼ log t. On the other hand,

for fermions, we always find s2reg ∼ log t irrespective the value of the chemical potential.

In the first application, we studied the Hyperscaling-Lifshitz background exploring dif-

ferent values for the parameters z and θ for varied number of spatial dimensions d. It

interesting to say that using this freedom of choice it was possible to obtain some interesting

cases without violating the thermodynamic stability. For instance, the usual Einstein linear

dependence of the temperature in the diffusion constant can be found, for a certain choice

of parameters (d = θ).

For the Gubser-Rocha model, Section VIII, our second application, we found that the

diffusion coefficient does not depend on the temperature and it is inversely proportional

to the chemical potential. For bosons, the regularized mean square displacement decreases

when the absolute value of chemical potential increases. Also, this quantity is inversely

proportional to the temperature. As expected, the presence of a non-null chemical potential
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makes the diffusion processes becomes slower. The same behavior is found for the fermionic

case, but now s2reg ∼ log t and it is inversely proportional to the square of temperature.

We presented here calculations allowing us to determine the diffusion coefficient, the

admittance and the mean square distance for fermions which are relevant for systems with

Fermi surfaces and Fermi liquids. We hope that the discussion presented here might help

finding new applications for holographic systems, in particular for fermionic ones.
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Appendix A: Solution for the EoM

Here in this Appendix we are going to find the solution for the EoM, Eq. (8), following

Refs. [1–4]. First we will show how to rewrite the EoM into a convenient form using the

Regge-Wheeler (tortoise) coordinates as a Schrödinger-like equation in Appendix A1. We

then obtain the solution near the horizon in Appendix A2. The solutions for the other

regions are discussed in Section IIA.

1. Regge-Wheeler coordinate and Schrödinger-like equation

First, we assume that the metric elements a(r), b(r) and c(r), defined in Eq.(2), are

regular functions at r = rh and the function f(r), dubbed the horizon function, has the
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following asymptotic values:

lim
r→rh

f(r) ∼ f ′(rh)(r − rh); and lim
r→∞

f(r) = 1. (A1)

The equation of motion, Eq. (8). up to quadratic terms in the Nambu-Goto action reads

∂

∂r

(

gxx
√
gtt√

grr

∂δx

∂r

)

− gxx
√
grr√
gtt

∂2δx

∂t2
= 0. (A2)

Substituting the following Fourier decomposition

δx(t, r) = hω(r)e
−iωt (A3)

into the above equation of motion, one finds

∂

∂r

(

gxx
√
gtt√

grr

∂hω
∂r

)

+ ω2gxx
√
grr√
gtt

hω = 0. (A4)

It is convenient to use the Regge-Wheeler coordinate. It naturally comes if we rewrite the

line element as

ds2 = gtt

(

dt2 − grrdr
2

gtt

)

+ · · · (A5)

Then, the Regge-Wheeler coordinate r∗ is defined by

dr2∗ =
grrdr

2

gtt
⇒ dr∗ =

√
grr√
gtt
dr. (A6)

The boundary conditions in this new coordinate are limr→rh r∗(r) → −∞ and

limr→∞ r∗(r) → 0. So, the equation of motion (A4) can be cast in the form

d2hω
dr2∗

+
d log(gxx)

dr∗

dhω
dr∗

+ ω2hω = 0 . (A7)

We rewrite the above equation as

d2hω
dr2∗

+ α(r∗)
dhω
dr∗

+ β(r∗)hω = 0 (A8)

which can be transformed into Hill’s standard form [25]

d2ψω

dr2∗
+Q(r∗)ψω = 0, (A9)

by putting

hω(r∗) = exp

[

−A(r∗)
2

]

ψω, (A10)

α(r∗) =
dA

dr∗
, (A11)

Q(r∗) = −1

2

dα

dr∗
− 1

4
α2 + β. (A12)
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Comparing Eq. (A7) with (A8) we have:

α(r∗) =
d log gxx
dr∗

e β(r∗) = ω2. (A13)

Equation (A11) gives
d log gxx
dr∗

=
dA

dr∗
⇒ A(r∗) = log gxx. (A14)

Substituting the above result into Eq. (A10) we get

hω(r∗) = exp

[

−A(r∗)
2

]

ψω

= exp

[

− log gxx
2

]

ψω

=
ψω(r∗)√
gxx

(A15)

and Q(r), Eq. (A12), is given by

Q(r) = −1

2

dα

dr∗
− 1

4
α2 + β

= −1

2

dr

dr∗

d

dr

(

dr

dr∗

d log gxx
dr

)

− 1

4

(

dr

dr∗

d log gxx
dr

)2

+ ω2

= −1

2

√
gtt√
grr

d

dr

(√
gtt√
grr

d log gxx
dr

)

− 1

4

gtt
grr

(

d log gxx
dr

)2

+ ω2. (A16)

Then, Hill’s equation (A9), can be written as a Schrödinger-like equation:

d2ψω

dr2∗
+ (ω2 − V (r))ψω = 0, (A17)

where ψω is defined as ψω(r∗) =
√
gxxhω(r∗), and the potential is given by

V (r) =
1

2

√
gtt√
grr

∂

∂r

(√
gtt√
grr

d log(gxx)

dr

)

+
1

4

gtt
grr

(

d log(gxx)

dr

)2

. (A18)

In terms of the metric functions, Eq. (2), this potential reads

V (r) =
f(r)

2

√

a(r)

b(r)

d

dr

(
√

a(r)

b(r)

f(r)

c(r)

dc(r)

dr

)

+
1

4

a(r)

b(r)

f 2(r)

c2(r)

(

dc(r)

dr

)2

. (A19)

Notice that V (rh) = 0 as expected as f(rh) = 0. Furthermore it has units of squared energy.

Now, one can obtain the solution of the Schrödinger-like equation (A17), into two different

regions: near by and far from the horizon.
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2. Region A: Deep IR

The deep IR regime is the near horizon region, defined by

r ∼ rh, V (r) ≪ ω2. (A20)

This happens because V (r) is modulated by f(r), and near the horizon this function becomes

arbitrarily close to zero as can be seen in Eq. (A19).

In this region, the Schrödinger-like equation (A17) is written as

d2ψAω

dr2∗
+ ω2ψAω = 0 ⇒ ψAω = A1e

−iωr∗ + A2e
iωr∗ . (A21)

The tortoise coordinate r∗, Eq. (A6), is given by

dr∗
dr

=

√
grr√
gtt

≈
√

b(rh)

a(rh)

1

f ′(rh)(r − rh)
⇒ r∗ ≈

1

f ′(rh)

√

b(rh)

a(rh)
log

(

r

rh
− 1

)

, (A22)

where Eq. (A1) was used. From Eq. (A15) and considering only the ingoing solution

(A2 = 0) in Eq. (A21), one finds

hAω(r) =
A1e

−iωr∗

√

gxx(rh)
. (A23)

Since one is interested in the long wavelength limit (ω → 0), using (A22), the above equation

reads

hAω(r) =
A1

√

gxx(rh)

[

1− i
ω

f ′(rh)

√

b(rh)

a(rh)
log

(

r

rh
− 1

)

]

. (A24)

Note also that Q(r), Eq. (A12), near the horizon becomes Q(r) ≈ ω2, since r ≈ rh and

using Eq. (2), one gets
√
gtt√
grr

≈
√

a(rh)

b(rh)
lim
r→rh

f(r) = 0. (A25)

Appendix B: Neumann boundary condition and Normalization

1. Neumann boundary condition

The coefficient B from Eq. (28) can be obtained from a Neumann boundary condition

at UV in the position r = rb. At zero order in ω, it is simply

B = 1 . (B1)
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In general, keeping higher orders in ω this coefficient will be a pure phase eiωθ for some θ

real. This will happen because the general solution can always be written as

hUV
ω (r) = A(ω) [g(r) +B(ω)g∗(r)] , (B2)

that implies

B(ω) = − ∂rg(r)

∂rg∗(r)

∣

∣

∣

∣

r=rb

= eiωθ. (B3)

From a Neumann boundary condition near the horizon the coefficient B can obtained

B(ω) = − ∂rh
in(r)

∂rhout(r)

∣

∣

∣

∣

r/rh=1+ǫ

= exp

{

−2i
ω

f ′(rh)

√

b(rh)

a(rh)
log

(

1

ǫ

)

}

, (B4)

which is a pure phase in ω.

2. Normalization

Now we proceed to find the coefficient A in Eq. (28). With this purpose, we write the

Klein Gordon inner product, as

(f, g) = − i

2πα′

∫

Σ

dx
√

|h|nµgxx(f∂µg
∗ − ∂µfg

∗), (B5)

where h is the induced metric on the Cauchy surface Σ, nµ is the normal vector to this

surface, f and g are solutions of the equations of motion.

As a Cauchy surface we take a constant time slice of our worldsheet. Therefore we have

in the present situation

nµ =

(

1√
gtt
, 0

)

, h = grr. (B6)

Thus the Klein-Gordon inner product becomes

(f, g) = − i

2πα′

∫

Σ

dx

√

grr
gtt
gxx(f∂tg

∗ − ∂tfg
∗). (B7)

In order to obtain a proper normalization, we demand that (X(t, r), X(t, r)) = 1. Then,

for X(t, r) = e−iωthω(r) we get

(X(t, r), X(t, r)) =
ω

πα′

∫ rb

rh

dr

√

grr
gtt
gxx|hω(r)|2
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=
ω

πα′ |A(ω)|
2

∫ rb

rh

dr

√

b(r)

a(r)

gxx(r)

f(r)
|hω(r)|2 (B8)

For regular functions b(r) and a(r) this integral will be dominated by the near horizon

region because of the zero in f(r). Therefore, we can approximate this integral by

(X(t, r), X(t, r)) ≈ ω

πα′ |A(ω)|
2

√

b(rh)

a(rh)

gxx(rh)

f ′(rh)

∫ rb

rh

dr

rh

|hω(r)|2
r
rh

− 1

≈ ω

πα′ |A(ω)|
2

√

b(rh)

a(rh)

gxx(rh)

f ′(rh)

∫ rb

rh

dr

rh

1
r
rh

− 1
, (B9)

where we used the near horizon expression for hω(r) Eq.(27), keeping only terms smaller

than O(ω2). The final result is

(X(t, r), X(t, r)) ≈ ω

πα′ |A(ω)|
2

√

b(rh)

a(rh)

gxx(rh)

f ′(rh)

∫ rb

rh

dr

rh

1
r
rh

− 1

∼ ω

πα′ |A(ω)|
2

√

b(rh)

a(rh)

gxx(rh)

f ′(rh)
log

(

1

ǫ

)

, (B10)

where the integral was regularized considering in the lower limit of integration

rh → rh + ǫ. Imposing the normalization condition we obtain

A(ω) =

√

√

√

√

πα′f ′(rh)

4ωgxx(rh) log
(

1
ǫ

)

√

a(rh)

b(rh)
. (B11)

Appendix C: High frequencies suppression

In the text calculations we see integrals in the form
∫ ∞

0

dωh(ω)
g(ωt)

eβω ± 1
(C1)

where g(ωt) is a periodic function such as cos(ωt) or sin(ωt), with maxima and minima for

the arguments equal to nπ with n = 0, 1, 2, ... . Note that this kind of integral is dominated

by the frequencies ω < T , where T = 1/β is the temperature of the system. Making the

change of variables:

ω → x

t

the integral becomes
∫ ∞

0

dx

t
h(x)

g(x)

ekx ± 1
, (C2)
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with k ≡ β/t. The function g(x)
ekx±1

works like a “filter”, each maximum (minimum) chooses

one specific value of x of the function h(x). Those values are given by x = nπ. For the n-th

maximum (minimum) Pn we have:

Pn =
±1

eknπ ± 1
. (C3)

For xn = nπ ≫ 1/k we can approximate:

Pn ≈ ±e−knπ. (C4)

This means that for large values of xn the function h(x) is exponentially suppressed. In

terms of frequencies we can write that:

xn = ωnt≫
1

k
=
t

β
=⇒ ωn ≫ 1

β
= T (C5)

Thus, frequencies higher than the temperature are exponentially suppressed in the integral.

Then, it is a good approximation to take frequencies smaller than the temperature T in

the function h(ω) in the integral. In the case where the chemical potential is non-zero, the

relevant integral is
∫ ∞

0

dωh(ω)
g(ωt)

eβ(ω−µ) ± 1
(C6)

after the change of variables

ω → y = t(ω − µ) (C7)

this integral becomes
∫ ∞

−µt

dy

t
h(y)

g(y)

eky ± 1
(C8)

where k ≡ β/t. Then, in an analogous way we conclude that for

yn = nπ ≫ 1

k
=
t

β
=⇒ ωn − µ ≫ T (C9)

the function h is exponentially suppressed.

Note that in the case of fermions we have µ ≥ 0 and then ωn ≥ ωn − µ making that

frequencies satisfying

ωn ≫ T (C10)
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Become exponentially suppressed as well.

For bosons, in the limit of |µ| ≪ ωn or |µ| ≪ T we have that (C9) implies that frequencies

ωn ≫ T are suppressed too. On the other hand, in the case of |µ| ≫ T , z = e−βµ ≫ 1 and

we can write

∫ ∞

0

dωh(ω)
g(ωt)

eβ(ω−µ) − 1
=

1

z

∫ ∞

0

dωh(ω)
g(ωt)

eβω − 1
z

, (C11)

from this we can use the same argument carried out after Eq. (C1) and conclude that

frequencies

ωn ≫ T , (C12)

are essentially irrelevant for the integral.
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