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Abstract: We show how both smaller and more reliable p-values can be computed in Bell-type experiments
by using statistical deviations from no-signalling equalities to reduce statistical noise in the estimation
of Bell’s S or Eberhard’s J. Further improvement is obtained by using Wilks’ likelihood ratio test based
on the four tetranomially distributed vectors of counts of the four different outcome combinations, one
4-vector for each of the four setting combinations. The methodology is illustrated by application to the
loophole-free Bell experiments of 2015 and 2016 performed in Delft and Munich, at NIST, and in Vienna
respectively; and also to the earlier Innsbruck experiment of Weihs et al. (1998) and the recent Munich
experiment of Zhang et al. (2022), which investigates use of a loophole-free Bell experiment as part of a
protocol for Device Independent Quantum Key Distribution, DIQKD.
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1. Introduction

In 2015 and 2016, four famous “loophole free Bell experiments” were performed, all of
which produced statistically significant violations of Bell-CHSH (or related) inequalities. Their
results are published in the papers Hensen et al. (2015)[1], Rosenfeld et al. (2017)[2], Giustina
et al. (2015)[3] and Shalm et al. (2015)[4]: the Delft, Munich, Vienna and NIST experiments
respectively. The first two and the second two are strongly related. The last two, Vienna
and NIST, both actually used the Eberhard inequality. The experiments in Delft and Munich
had another special feature, the use of entanglement swapping for heralded entanglement
generation, which we will mention later.

All four experiments have been criticised on various grounds, especially concerning
imperfect randomised choice of settings, and drift of experimental parameters over time. The
experimenters were themselves aware of these issues and used martingale based tests, instead
of the traditional ones, to neutralise some of the problems. Anyway, later experiments have
rectified many claimed defects. Nowadays a loophole-free Bell test is part of the standard
methodology for device independent quantum key distribution (DIQKD). Naturally, such
more complex experiments have many more sore points for sceptics to point their fingers
at; this is clearly just another episode in a never-ending story. In this paper we do not enter
into any of these directions. Rather, we will make the working assumption that each of the
four experiments was performed in a close enough to ideal way that, for each sub-experiment
corresponding to one of the four possible setting pairs, we have data which we may think of as
being made up of independent and identically distributed pairs of outcomes. We assume that
the experiment satisfies the (surface level) no-signalling property, namely that the probabilities
of the two possible outcomes in each wing of the experiment, given the two settings applied in
both wings, only depend on the setting in the wing under consideration.
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This defines a simple statistical problem in which we have just four independent multi-
nomial distributed observations (each of just four categories), where four linear constraints
(non signalling) are known to hold on the four sets of four probabilities parametrizing the
four 4-nomially distributed observations. Moreover, we wish to test a null-hypothesis of a
further 8 linear constraints: the hypothesis of local realism is by Fine’s theorem equivalent to
satisfaction of the 8 one-sided Bell-CHSH inequalities. Now, had the constraints been linear
constraints on the logarithms of the probabilities, statistical estimation and testing would have
been computationally easy. But linear constraints on the probabilities themselves force us to
do more work, and put us in a non-standard situation. Asymptotically optimal estimates and
asymptotically optimal tests of hypotheses cannot be written down in closed-form expressions,
but numerical optimisation turns out to be quite easy. A tricky point is that if the experiment is
a good one, estimates of the parameters assuming the null-hypothesis of local realism to be
true will usually lie on the boundary of the parameter space. Wilks’ statistic (twice the differ-
ence of the maximized log likelihoods) will not have the standard asymptotic null-hypothesis
distribution. Instead of the chi-square (1) distribution, we will have, if the truth is indeed
on the boundary, a 50-50 mixture of chi-square (1) and chi-square (0), because at such points,
asymptotically, the optimal estimate of Bell’s S without assuming local realism would half the
time be larger than 2, half the time smaller than 2.

In this paper we explore the relation between the various possible tests of local realism,
showing that in principle, under the standard assumptions, much better p-values could have
been obtained in all four experiments with little extra computational effort. We will solve the
computational issues, or at least, avoid them, using modern statistical methodology which
physicists generally are not aware of. The p-values obtained with the Wilks’ test turn out to
be smaller than those obtained by comparing an estimate to an estimated standard error, and
there are good reasons to believe that they are actually more accurate, too.

The main point is that statistical deviations from no-signalling equalities are statistically
correlated with statistical variation around the theoretical values of the Bell-CHSH statistic
S or the Eberhard statistic J. Hence one can improve the observed “naive” values of S or J
by subtracting a prediction of the statistical error in the observed value, based on the observed
statistical deviations from the four no-signalling equalities. This is not difficult to do, and
moreover leads on to other ways to improve the accuracy of the statistical estimates and tests.

We go on to look at one older and one much newer experiment: those of Weihs et
al. (1998)[5] and of Zhang et al. (2022)[6]. We show that control of randomisation of setting
choices has reached an unparalleled perfection in the latest experiment. This makes statistical
violations of no-signalling at the manifest level (correlation between Alice’s setting and Bob’s
outcome) a thing of the past. We suggest that it was a spurious correlation caused by the
hidden confounder “time”. The physical parameters both of random setting generators and
of source and transmission lines and of detectors can drift in time. By proper randomisation
of the settings, one is protected against drifts and jumps and correlation over time in the rest
of the experiment. Instead of relying on assumptions which are unlikely to be true, we can
design experiments whose statistical assumptions are guaranteed by the experimenter’s own
procedures.

2. Background: the physics story

For those not familiar with the physics background, here’s a potted history of Bell’s
theorem and the notable experiments on what is now called “quantum non-locality” which led
to the 2022 Nobel prize in physics for John Clauser, Alain Aspect and Anton Zeilinger. John
Bell himself, the star of the story, unfortunately died quite young and unexpectedly in 1990.
The main purpose of this section is to get a number of key papers into the bibliography in
order to help the reader who is blissfully ignorant of this backstory but would like to know
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more to orient themselves. The author has written one survey paper on statistical issues in
Bell experiments, Gill (2014)[7], written shortly before the miraculous year 2015 of the first
successfull loophole-free Bell experiment, immediately followed by three more. I do not
go into any nitty gritty of the quantum mechanics (QM) framework of states, observables,
measurements, time evolution. The point to remember is that QM does not explain what
actually happens when quantum systems are measured. It only tells the physicist what the
statistics will be of repeating the same preparation and measurement many times. Since the
birth of quantum mechanics this has been a deep cause of discomfort, mystery and debate;
still today, some physicists still search for an underlying theory of more classical nature which
would actually explain the randomness in observations of quantum systems as merely the
reflection of deterministic processes with initial conditions which cannot be controlled in
any way. One path to the unification of relativity theory and quantum mechanics would be a
description of quantum mechanics as a collection of emergent phenomena arising from a deeper
hidden level where more classical physical rules are followed. Others believe that determinism
must give way and relativity theory will need adjustment. Many other standpoints are possible.

The story may start with the paper Einstein, Podolsky and Rosen (1935)[8], in which it
was argued that quantum mechanics was either wrong, or incomplete. A thought experiment
involving measurement of either position or of momentum of two particles in a so-called singlet
state showed that each particle possessed definite values of both properties, while according
to quantum mechanics, a particle only got a definite value of either property, after it was
measured in an appropriate measurement set-up. The assumption in the EPR argument was a
locality assumption: measuring one particle couldn’t have any influence on another, distant,
particle. Discussion of the foundations of quantum mechanics subsided, under the influence of
its enormous success and Feynman’s famous dictum “shut up and calculate”. A few stubborn
individuals did continue to think and to question. David Bohm converted the EPR thought
experiment into an experiment concerning the spin of two entangled spin-half particles; one
can measure spin of such particles in any chosen direction but the outcome of the measurement
is binary: the particle as it were chooses either the direction set by the experimenter or the
opposite direction. Then came Bell’s famous (1964)[9] paper, taking the EPR-B model and now
adding a new twist: instead of only the same two possible measurements on each particle, he
considered several different possible measurements on each. EPR had concluded, assuming
local realism, that QM is either wrong or incomplete. Bell’s conclusion was the more shocking:
QM is either wrong or non local.

Bell’s thought experiment was in 1964 far from being experimentally feasible. A few
wild spirits became interested and started working towards experimental testing. Their actual
expectation was that quantum entanglement would rapidly decay as particles moved further
apart. They did not expect to see the signature of quantum entanglement in the measurements
of particles widely separated in space. In order to get closer to experimental test, the EPR-
B model was transposed from the spin of spin-half particles to the polarization of photons
(each offered the choice between two perpendicular 2D orientations, instead of the choice
between two opposite 2D directions). Also Bell’s original inequality was generalised to what is
now called the CHSH inequality, after Clauser, Horne, Shimony and Holt (1969)[10]. A first
experiment in which violation of Bell inequalities was observed was performed by Freedman
and Clauser (1972)[11]. A big defect was that settings of polarizers was kept fixed for many
consecutive photon pairs. Thus each photon had plenty of time to know how both were
going to be measured. In a now world famous experiment, Aspect et al. (1982)[12] managed
to observe a statistically significant violation of Bell-CHSH inequalities while measurement
settings were chosen while the photons were in flight. Further experiments made further
refinements. For a while the most impressive was Weihs et al. (1998)[5]. However a big defect
in all these experiments was what is called the detection loophole. In Weihs’ experiment, it
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appeared that only 1 in 20 photons made it from source to detection, so only 1 in 400 emitted
photon pairs resulted in a measurements of both their polarizations. Already, Pearle (1970)[13]
had shown that quantum correlations could be faked by a classical and local mechanism if
enough particles did not show up at the detectors, and Garg and Mermin (1987)[14] showed
that the critical detection rate is 83% in an Aspect or Weihs type experiment with maximally
entangled photon polarizations. That’s a very long way to go from 5%.

The subsequent decades were spent on working towards so called loophole free Bell
experiments in which statistics were obtained, predicted by QM, and impossible to be explained
by a classical physical mechanism without recourse to superluminal messaging or even more
outlandish explanations. The big breakthrough came in 2015 with four experiments carried out
in Delft, Munich, Vienna and at NIST (Boulder, Colorado). The Delft and Munich experiments
used a novel technology called entanglement swapping, developed by Zeilinger and others
in preceding decennia. These experiments had no “no shows” at all, but rather small sample
sizes. The Vienna and NIST experiments used an alternative to Bell’s inequality called the
Eberhard (1993)[15] inequality, which used the clever device of measuring polarization in
one orientation only, merging all “no shows” with the perpendicular polarization outcome,
thus resulting in guaranteed binary outcomes. Eberhard had discovered paradoxically that
using less than maximally entangled photons one could get away with a 67% detection rate, so
detector efficiency need not be got so high as for the old-style (Aspect, Weihs) experiments.

The 2015 experiments were not perfect and various defects need to be honed away, but
the net impact of four resounding confirmations of Bell’s genial discovery was enough for the
2022 Nobel prize committee. Research continues on using an embedded loophole-free Bell
experiment as part of a protocol for creating shared secret random keys at two distant locations
while communicating over public communication channels. The most promising technology
is that based on the Delft and Munich experiments. Here, two distant “solid state” stationary
qubits are brought into quantum entanglement by having both emit a photon which meet
one another and interfere at a third intermediate location, where a third collaborator Charlie
measures the two photons after they have interfered, and reports his findings to Alice and Bob,
who at the same time were measuring their qubit in one of several ways. Alice and Bob study the
statistics of the measurement outcomes and settings corresponding just to those occasions when
Charlie got a certain measurement outcome. Just as one can generate statistical dependence
between originally independent random variables X and Y by conditioning on a function of X
and Y, it is also possible to generate quantum entanglement between quantum systems which
have never physically interacted with one another by conditioning on a measurement outcome
on two emitted particles which have interacted at a third location.

A complicated protocol now in principle allows them either to determine that there has
been no interference in their communications and to distil some number of secret shared
random bits, or to detect interference or imperfection and abort the process. Input into all these
experiments consists preferably of independent, local, completely random, setting choices. In
many experiments physical random number generators have been used, whose properties
tend to slowly drift as time goes by (the experiment might last several days), and occasionally
moreover jump when shocks occur (e.g., a lorry crosses the campus). At the same time, the
same external processes are causing drifts and jumps in the physics of source, transmission
lines, detectors. The result can be a spurious correlation between, for instance, Alice’s settings
and Bob’s outcome, even though Alice’s setting could not have reached Bob’s apparatus in
time to influence the measurement outcome. Both are influenced by a hidden confounder: time.
Plenty of techniques are available to discount a certain amount of deviation from complete
randomness in setting choices, but this leads to less transparent results, depending moreover
on assumed limits on the amount of bias.
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3. The statistical model

In a standard ideal Bell experiment, two separated experimenters, Alice and Bob, each
repeatedly insert a binary setting into some apparatus and a short time after observe a binary
outcome. Alice and Bob work in a carefully synchronised way, such that each setting of Alice
could not reach Bob’s lab before Bob’s outcome was registered even if travelling at the speed of
light, and vice-versa. Alice and Bob might be inserting settings which were somehow generated
“on demand” by some auxiliary randomisation procedure, whether physical or algorithmic.
Alternatively, they might be reading off settings one at a time from a pre-generated data-base.
All of these possibilities have advantages and disadvantages which we do not discuss here. We
will use the word “trial” to denote one set of four binary outcomes, namely a setting for each
of Alice and Bob, and an outcome for each of Alice and Bob. In first instance, the experiment
generates an N× 4 spreadsheet of settings a, b taking values, say, in the set {1, 2} and outcomes
x, y, taking values, say in the set {−1,+1}.

Given the pair of settings (a, b) used in just one trial, we will consider the pair of outcomes
as being the realisations of two Rademacher (i.e., ±1 valued) random variables with a joint
probability distribution which depends only on (a, b); and given all the settings, we consider
all the pairs of Rademachers as being independent of one another. By sufficiency, we may
reduce the data to the sixteen counts N(x, y | a, b) of trials with outcomes (x, y) and settings
(a, b). Grouping these according to the settings, we have four realisations of four independent
tetranomially distributed random vectors (N(x, y | a, b) : x, y ∈ {−1,+1}), for (a, b) in
{1, 2} × {1, 2}. By definition of the multinomial distribution and by conditioning on the
settings of all the trials, the sums nab = Nab := ∑x,y N(x, y | a, b) are fixed. For each (a, b), the
probability distribution of the 4-vector (N(x, y | a, b) : x, y ∈ {−1,+1}) is the multinomial
distribution with number of cells = 4, number of trials = nab, and multinomial probabilities
pab = (p(xy | ab), x, y = −1,+1); a vector of four probabilities adding to one.

We do expect a number of constraints to hold on the 16 probabilities p(xy | a, b). Obviously,
they add up to +1 in groups of four. These constraints are called the normalisation constraints.
Less obviously, we have the no-signalling constraints. For a well conducted experiment, we be-
lieve and we will moreover assume that given all settings, the marginal probabilty distribution
of Alice’s outcomes doesn’t depend on Bob’s setting, and vice versa. Using a “+” to denote addi-
tion over all values of a given argument, we assume that pa(x) := p(x,+ | a, b) = p(x,+ | a, b′)
for all a and all b 6= b′, and qb(y) := p(+, y | a, b) = p(+, y | a′, b) for all b and all a 6= a′. These
equations are the so-called no-signaling equalities. A little thought shows that because of the
normalisation contraints (probabilities add up to +1) and the no-signalling constraints, our
16 probabilities p(x, y | a, b) depend on just 8 free parameters. We can take them as the four
marginal probabilities of the outcome +1 given the local setting on each side of the experiment
p1(+1), p2(+1), q1(+1), q2(+1), and the four correlations

ρab := p(+1,+1 | a, b) + p(−1,−1 | a, b)− p(+1,−1 | a, b)− p(−1,+1 | a, b).

To be specific

p(x, y | a, b) = 1
4 + 1

2 (pa(x)− 1
2 ) +

1
2 (qb(y)− 1

2 )±
ρab
4

where the ‘±’ sign is ‘+’ if a = b and ‘−’ if a 6= b, and pa(−1) := 1− pa(+1), qb(−1) :=
1− qb(+1). The eight parameters vary freely in the sense that they vary in an eight-dimensional
closed convex polytope with non-empty interior, bounded by the hyperplanes determined
by the non-negativity of the p(x, y | a, b). Another way to say this, is that the vector of all 16
probabilities p(x, y | a, b) lies in a closed convex polytope in an 8-dimensional affine subspace
of R16, with non-empty relative interior. It is called the no-signalling polytope.
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As is well known, according to quantum mechanics, the possibilities are limited to a strictly
smaller closed convex subset called the quantum body, and according to local realism, they are
limited even further to a polytope called the local realism polytope. The two smaller sets are
both full, having a non-empty relative interior relative to the 8-dimensional affine subspace in
which all are constrained to lie. For instance, the point where all sixteen probabilties equal 1

4
lies in all of their relative interiors.

Each of these three convex sets are the convex hull of their boundary, and the boundaries
of the two polytopes are finite sets of points.

This has defined a nice statistical model for four independent tetranomially distributed
random vectors, the only unusual feature (relative to standard statistical theory) is the no-
signalling constraints on the mean vectors of the four observations. A further non-standard
feature is that we are interested in testing the null hypothesis of local realism against the
alternative of quantum mechanics. We have non-standard estimation problems and a non-
standard testing problem.

4. The methodology

As we have seen, a standard Bell-type experiment with

• two parties,
• two measurement settings per party,
• two possible outcomes per measurement setting per party,

generates a vector of 16 = 4× 4 numbers of outcome combinations per setting combination.
As is now well known, this can be applied to two-channel experiments without a detection

loophole, but also to one-channel experiments and (equivalently) to two-channel experiments
with −1 and “no-detection” combined, as long as the experimental units are “time-slots”.
The four sets of four counts can be thought of as four observations each of a multinomially
distributed vector over four categories. This probability distribution is also known as the
tetranomial distribution.

We will rewrite what we discussed in the previous section in a different notation, more
convenient for converting formulas into programming code in the language R, or any other
modern programming language. Write Xij for the number of times outcome combination j was
observed, when setting combination i was in force. Let ni be the total number of trials with
the ith setting combination. The four random vectors ~Xi = (Xi1, Xi2, Xi3, Xi4), i = 1, 2, 3, 4, are
independent each with a Multinomial(ni;~pi) distribution, where ~pi = (pi1, pi2, pi3, pi4).

The 16 probabilities pij can be estimated by relative frequencies p̂ij = Xij/ni which have
the following variances and covariances:

var( p̂ij) = pij(1− pij)/ni,

cov( p̂ij, p̂ij′) = −pij pij′/ni for j 6= j′,

cov( p̂ij, p̂i′ j′) = 0 for i 6= i′.

The variances and covariances can be arranged in a 16× 16 block diagonal matrix Σ of four
4× 4 diagonal blocks of non-zero elements.

Arrange the 16 estimated probabilities and their true values correspondingly in (column)
vectors of length 16. I will denote these simply by p̂ and p respectively. We have E( p̂) = p ∈ R16

and cov( p̂) = Σ ∈ R16×16.
We are interested in the value of one particular linear combination of the pij, let us denote

it by θ = a>p. The vector a might specify the CHSH quantity S, or Eberhard’s J. We know
that four other particular linear combinations are identically equal to zero: the so-called no-
signalling conditions. This can be expressed as B>p = 0 where the 16× 4 matrix B contains, as
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its four columns, the coefficients of the four linear combinations. We can sensibly estimate θ by
θ̂ = a> p̂− c>B> p̂ where c is any vector of dimension 4. For whatever choice we make, Eθ̂ = θ.
We propose to choose c so as to minimise the variance of the estimator. This minimization
problem is an elementary problem from statistics and linear algebra (“least squares”). Define

var(a> p̂) = a>Σa = Σaa,

cov(a> p̂, B> p̂) = a>ΣB = ΣaB,

var(B> p̂) = B>ΣB = ΣBB;

then the optimal choice for c is
copt = ΣaBΣ−1

BB

leading to the optimal variance
Σaa − ΣaBΣ−1

BBΣBa.

In the experimental situation we do not know p in advance, hence also do not know Σ in
advance. However we can estimate it in the obvious way (“plug-in”) and for ni → ∞ we will
have an asymptotic normal distribution for our “approximately best” Bell inequality estimate,
with an asymptotic variance which can be estimated by natural “plug-in” procedure, leading
again to asymptotic confidence intervals, estimated standard errors, and so on. The asymptotic
width of this confidence interval is the smallest possible and correspondingly the number of
standard errors deviation from “local realism” the largest possible. The fact that c is not known
in advance does not harm these results.

The methodology is called “generalized least squares”.
One can go further. It is sensible to use these estimates as the starting point of Newton-

Raphson iterations searching for the maximum over the two polytopes of interest of the
multinomial log likelihood instead of the quadratic loss function. Subsequently we may
compute the Wilk’s generalised log likelihood ratio test, evaluated through its asymptotic chi-
square distribution (actually, because of boundary issues, a mixture of chi-square distributions
with different numbers of degrees of freedom). In fact, as far as asymptotic results are concerned,
just a single Newton-Raphson iteration should produce asymptotically optimal estimates.
Switching from generalised least squares to minimize a variance to one-step Newton-Raphson
on the log likelihood maximum likelihood and then to true maximum likelihood typically
gives a better approximation, at each step, to the asymptotic distribution. Asymptotically all
three are equivalent. We will investigate what happens when we indeed try to obtain more
reliable estimates and tests in this way.

5. The results

We first performed these computations on the data sets of the four famous loophole-free
Bell tests of 2015. The analyses were performed by scripts written in the R language [16], and
published on the website https://rpubs.com/gill1109 using the IDE RStudio. For each of the
four experiments, we did one analysis computing the CHSH quantity S and one computing
Eberhard’s J; we computed standard errors and p-values using the asymptotic normality of the
multinomial distribution; then we computed optimized version of S and J by subtracting the
linear combination of the four observed deviations from the no-signalling equalities, which
maximally reduces the (estimated) variance, thus leading to a maximal p-value. As must be
the case, the optimised S and J are related by the theoretical identify S = 2 + 4J, and the
resulting standard errors differ by a factor of 4; the p-values based on asymptotic normality are
identical. The p-values are all approximate, being based on large sample multivariate normal
approximations to the distribution of the 16 raw counts, and estimated covariance matrices.

https://rpubs.com/gill1109
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After that, we attempt to estimate S and J by maximum likelihood for four independent
tetranomially distributed vectors of counts; tests of the hypotheses of interest are now computed
using the generalised likelihood ratio test and its asymptotic distribution: a 50-50 mixture of chi-
squared (1) and chi-squared (0) distributions. Thus we avoid the initial step of approximation of
multinomials by multivariate normals. In the case of NIST and Vienna, this leads to numerical
problems: the numbers of trials are so large that numerical optimisation starting at the earlier
obtained estimates terminates immediately. From the numerical point of view, the earlier
obtained estimates are already indistinguishable from maximum likelihood estimates. The
numerical problem is in fact a non-problem. Indeed, the sample sizes are so large in these two
experiments that systematic violation of model assumptions is much more important than
statistical variation of observed counts. Our assumptions of constant physical parameters
throughout the whole run are possibly wrong. Time variation in the physics, and in particular,
time drifts in the physical random number generation of settings, means that to a small extent
“no signalling” is violated: from observing her local statistics, Alice could in principle, to a
tiny extent, guess Bob’s settings better than assuming independence and constant probabilities.
This can to a large extent be taken care of by using martingale based tests based on assumptions
about the randomnness of the settings, instead of tests based on assumptions that trials (under
the same pair of settings) are i.i.d. We will return to that option at the end of the paper when
we discuss the Zhang et al. (2022) experiment.

We published the results of running 8 R scripts back in 2019. They can be found on the
following web pages:

https://rpubs.com/gill1109/OptimisedDelft_2
https://rpubs.com/gill1109/OptimizedMunich
https://rpubs.com/gill1109/OptimizedNIST
https://rpubs.com/gill1109/OptimizedVienna
https://rpubs.com/gill1109/AdvancedDelft
https://rpubs.com/gill1109/AdvancedMunich
https://rpubs.com/gill1109/AdvancedNIST
https://rpubs.com/gill1109/AdvancedVienna
The addition of “underscore 2” means that an original document from 2019 has been

improved in 2022 by some minor editing. We will next discuss our findings for the Delft
experiment at some length, and then point out any notable features of the analyses of the other
three experiments.

We also added similar analyses of the Weihs et al. (1998)[5] experiment in Innsbruck and
of the Zhang et al. (2022)citezhang: experiment (on DIQKD) in Munich:

https://rpubs.com/gill1109/OptimizedWeihs
https://rpubs.com/gill1109/AdvancedWeihs
https://rpubs.com/gill1109/OptimizedDIQKD
https://rpubs.com/gill1109/AdvancedDIQKD

6. The experiments
6.1. Delft

We proceed to read off some of the statistical results of our analysis
https://rpubs.com/gill1109/OptimisedDelft_2 of the Delft experiment. The observed fre-
quencies (counts) and relative frequencies are also reproduced in the appendix of this paper.
One observes S = 2.4225 with an estimated standard error of 0.2038266, giving a z-value of
2.07284 and an approximate p-value of 0.0190936. In round numbers, S = 2.42(0.21) giving
us a p-value of 0.02. We can slightly reduce the standard error and the p-value by optimally
subtracting noise, by assuming that in reality no-signalling is true (the probabilities of Alice’s
outcomes do not depend on Bob’s setting and vice-versa). The relative frequencies do vary

https://rpubs.com/gill1109/OptimisedDelft_2
https://rpubs.com/gill1109/OptimizedMunich
https://rpubs.com/gill1109/OptimizedNIST
https://rpubs.com/gill1109/OptimizedVienna
https://rpubs.com/gill1109/AdvancedDelft
https://rpubs.com/gill1109/AdvancedMunich
https://rpubs.com/gill1109/AdvancedNIST
https://rpubs.com/gill1109/AdvancedVienna
https://rpubs.com/gill1109/OptimizedWeihs
https://rpubs.com/gill1109/AdvancedWeihs
https://rpubs.com/gill1109/OptimizedDIQKD
https://rpubs.com/gill1109/AdvancedDIQKD
https://rpubs.com/gill1109/OptimisedDelft_2
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slightly with the setting on the other side. This is (under our model assumptions) pure noise,
but it is pure noise which is correlated with the noise in the estimate of S. The slightly better
estimate (in the sense of lower variance) is S = 2.462658 or in round numbers S = 2.46(0.20)
and the p-value is now 0.01.

All p-values here are approximate: they assume that the asymptotic normal distributions
of the statistics gives a good approximation to the actual distribution, and the asymptotic theory
is conditional on our assumption of four independent tetranomially distributed observed count
vectors.

Lovers of the Eberhard test might prefer to look at Eberhard’s J which takes the value
0.1195162. Under our assumptions E(S) = 2 + 4E(J), so the observed values of J and S do
correspond nicely. However, for this data, J has a much higher estimated variance than S/4. Its
estimated standard error is 0.09475703 leading to a z-value of just larger than 1 and a p-value
of about 10%, terrible compared to that of S, namely, about 1%. When we improve J by the
same noise reduction strategy as we applied to S, we end up with an improved estimate of J
exactly equal to the improved estimate of S, divided by 4; and the same p-value.

In all cases, the experiments all exhibit violation of the one-sided Bell-CHSH inequality
in which three correlations are added and one is subtracted. By recoding of outcome labels if
necessary, we have arranged that the exceptional correlation (large, negative) corresponds to
setting pair (2, 2); the other three correlations are large and positive.

Next we take a look at the script
https://rpubs.com/gill1109/AdvancedDelft. Here we stick to multinomial distributions.
We assume no-signalling and estimate the 16 probabilities corresponding to the 16 relative
frequencies by maximizing the likelihood (a) without any restriction, (b) assuming local realism.

The two numerical optimizations give no problems. We take as initial estimates, the
estimates we obtained before, using approximate normality. Without assuming local realism,
there are 8 free parameters: each of the four tables has its own correlation; then there are the
marginal probabilities of Alice’s outcome + under each of Alice’s settings, and similarly for
Bob. We estimate S as the sum of three of the correlations minus the fourth; J is estimated
by (S− 2)/4. Under local realism, the maximum likelihood estimate of S (corresponding to
adding the first three correlations and subtracting the fourth) exactly equals 2: the data quite
strongly violates the corresponding one-sided CHSH inequalitty. The fourth correlation is an
affine function of the other three. We have to optimize over 7 free parameters, forcing S = 2.

We test the hypothesis of local realism by comparing the maximised log likelihood in
the two situations. Large sample theory (Wilks’ test) tells us that under the null hypothesis,
twice the difference should have a mixture of 50-50 a chi-square distribution with one degree of
freedom, and 50-50 be identically equal to zero. The latter case occurs when the unconstrained
estimate of the 8 parameters is a point inside the null-hypothesis. This means that in our case,
our p-value according to the Wilks test is 0.04704162/2 = 0.02352081, or in round numbers, a
p-value of 2.4%.

This seems less attractive than the previously obtained 1%; however, experience shows
that the p-value obtained from the log likelihood ratio based Wilks test is a better asymptotic
approximation than the p-value based on a z-value based on the approximate normal distri-
bution of an estimator. Certainly, a shorter chain of approximations are being made when
we stick closer to the underlying multinomial distributions. In the asymptotic theory, the
asymptotic chi-square (1) distribution does correspond to squaring an asymptotically standard
normally distributed quantity, so everything is still based on the central limit theorem and the
law of large numbers. Still, there are sound theoretical explanations for the afore-mentioned
practical experience, based on higher order asymptotic theory, where one also looks at the rate
of convergence to asymptotic normal distributions. Essentially, the Wilk’s approach eliminates
a second order term due to skewness. The statistical approach automatically eliminates a

https://rpubs.com/gill1109/AdvancedDelft
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possible asymmetry leading to a nonzero coefficient of skewness in the estimators. The Wilks’
approach is invariant under reparametrization; whereas many unfortunate parametrizations
lead to skewness.

6.2. Munich

In this experiment, the observed value of S was the impressive 2.609047, with estimated
standard error 0.2484456. In round numbers, S = 2.61(0.25). This resulted in a very nice
p-value of 0.007114475, or in a round number, 0.7%. The optimised value of S was 2.582261,
so slightly less. As must be the case, its estimated standard error was slightly smaller too,
resulting in much the same p-value 0.008782296, which one should report in a round number
as 0.9%

Maximum likelihood estimation based on the multinomial likelihood worked without a
hitch. The Wilks test gave a p-value of 0.04104834/2 which we can fairly report as 2%. Again,
theory and experience suggest this is a rather more reliable number than the p-values based on
a z-statistic.

6.3. NIST

Now we find S = 2.000092 with a standard error of 1.572689e− 05. This gives us a z-value
of 92/15.7 = 5.859873. The p-value is astronomically small 2.062969e − 09. Eberhard’s J
would be preferred my many for this situation. It gives a z-value of 4.778576 and a p-value of
8.827054e− 07. Optimizing the variance gives S = 2.000051, so closer to 2, but of course also a
smaller standard error, and in this case a much smaller standard error, resulting in a z-value of
7.637903 and a p-value of 1.110193e− 14. However all these p-values need to be taken with
a very large pinch of salt, since the convergence to asymptotic normality is worse and worse,
in terms of relative error in true and approximated tail values, the further in the tail we are.
But certainly, it would have been nice in the published paper to talk about 7.6 standard errors
deviation from local realism rather than 4.8.

Maximum likelihood based on multinomial distributions resulted in warnings being
issued by the numerical procedure. Essentially, the optimization of the log likelihood over 7 or
8 parameters does not succeed in moving the estimates away from values found by generalised
least squares after switching to multivariate normal distributions, so a standard numerical
optimisation program just gives up after a while, after uttering a lot of complaints: it cannot
improve on the initial estimates by an amount greater than expected numerical accuracy. No
matter. Still, the Wilks’ test provides a perhaps slightly more reliable p-value than the z-tests
we already discussed. The Wilks’ test statistic comes out as 57.19689 corresponding to a z-value
of the square root of that number, 7.562863; so the message is 7.6 standard errors, and a p-value
of 1.971474e− 14.

6.4. Vienna

This experiment had an about 10 times larger sample size than NIST. We find S = 2.000028,
so the difference with the local realism bound of 2 is three times smaller as for NIST. The
standard error is 3.283419e− 06 so the z-value is 8.527696. Optimizing the variance reduces it
by a factor or 2 while leaving the estimate of S essentially unaltered, so finally we get a square
root of 2 times larger z-value of just above 12.

Maximum likelihood using the original multinomial has exactly the same numerical issues
(or if you like – non-issues) as in the case of NIST. It comes up with an even larger z-value than
that obtained in the method based on optimising the estimate of S by minimising its variance,
through using the statistical deviations from no-signalling to reduce the error in S. In fact, we
now get a z-value of 17.5, and experience and theory says this is more reliable than the z-values
mentioned so far.
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6.5. Weihs et al.

Just for fun, we also carried out our analyses for this earlier (1998), and quite famous
experiment. It was for a long time the definitive Bell type experiment, having a large enough
distance between Alice and Bob that the “locality loophole” was closed. However, there
remained a very serious “detection loophole”. Thinking in terms of photon pairs emitted
from the source, only one in 20 of the photons resulted in a detection event, and only 1 in
400 emissions of a photon pair resulted in two detections. In order to conclude that local
realism has been disproved by this experiment, one must make the “fair sampling assumption”
that detection of photons is independent of those hidden variables and independent of the
settings. This experiment has S = 2.73 and estimating it optimally hardly changes it, resulting
in S = 2.71. This is more than z = 25 estimated standard deviations away from the local
realism bound S ≤ 2.

6.6. Zhang et al.

The paper [6] is an attempt to show feasibility of using a loophole-free Bell experiment as
a component in a procedure for “device independent quantum key distribution”. Alice and
Bob actually choose randomly between three settings, in such a way that some of the trials
are performed with equal (or equal and opposite settings). The experiment was actually a
three-party experiment similar to the earlier experiments at Delft and Munich. One studies
correlations between Alice and Bob’s outcomes, conditional on a particular outcome having
been obtained by Charlie. This is sometimes mistaken for post-selection, but it is not. Always
one studied experimental data after the experiment is completed, so if for instance one looks at
the correlation between Alice and Bob’s outcomes when their settings are, say, (1, 1), one is only
looking at selected trials. In order for these three party experiments to be loophole-free there
must be no locality loophole concerning the three parties. In particular, Charlie’s outcomes
must not be able to influence Alice’s or Bob’s measurement apparatus during the pre-allocated
time-slots of the three parties. In the experiment [6] Alice and Charlie shared a lab, in fact, they
shared a lot of the electronics, so this was not actually a loophole-free experiment.

What is rather nice about this experiment, is that it seems that the random generation of
settings has become very stable and close to unbiased. Our procedures for optimising CHSH
led to almost no improvement in p-value. Because of the near perfect experimental symmetry,
and lack of drifts in physical parameters over time, the statistical deviations from no-signalling
are hardly correlated with S at all. The experiment has S = 2.58 with z ≈ 7. That gives of
course a tiny p-value of 3× 10−12 but this should not be taken too seriously. Since 72 = 49 ≈ 50
a conservative but much more reliable p-value would be 0.01.

Now an alternative statistical analysis, if we assume the settings are chosen again and
again by independent fair coin tosses, is based on a so-called martingale test, also known as
the Bell game. One says that Alice and Bob have won each separate trial (in a game they play
against nature) if their outcomes are equal and neither chose setting “2”, or their outcomes
are opposite and both chose “2”. In this experiment, the number of wins was 1357 out of 1649
trials, notice that 1357/1649 ≈ 0.82. Under local realism (per trial, conditional on the past) the
number of wins cannot have larger tail probabilities than those of the binomial distribution
with N = 1649 and p = 0.75. Under quantum mechanics, one could theoretically achieve
p = 0.85, corresponding to Tsirelson’s bound S ≤ 2

√
2. Thus we can also obtain a p-value

which is robust against violation of the independence and identical distributions assumption
needed to reduce the data to multinomial counts. In this case, the Bell game p-value is the
probability that a Bin(1649, 3/4) distributed random variable exceeds 1356; and that turns out
to equal 5× 10−13. (The Bell-game test was used by the experimenters in Delft and Munich;
the Delft group had refined and simplified results found by the present author, 20 years earlier.
See the “supplementary material” of Hensen et al. (2015) [1].
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We find this result rather exciting. Provided one has taken care of really good randomi-
sation of measurement settings, the martingale test is hardly different from the test based
on conventional calculation of z-values using approximate normality. The former provides,
moreover, security again trends or jumps in the physical parameters of detectors. We sug-
gest that past observations of locality violations at the manifest level of apparent correlations
between Alice’s setting and Bob’s outcome, or vice versa, were simply manifestations of the
statistical phenomenon of spurious correlations being caused by hidden confounders; the
hidden confounder simply being time.

7. Conclusion

In a Bell test, if we are confident that there have not been shifts or jumps in the physics
of the systems being studied during the course of the experiment, improved estimates of S or
J are not difficult to obtain, and more reliable p-values can be found without much difficulty
either. This can lead to big improvement of the results of experiments of the 2015 Vienna and
NIST types: the Eberhard inequality is not the best test of local realism, by a long way (though
not surprisingly, it is better than CHSH). Of course, many scientists will be more convinced by
a very simple and very robust estimation method. Rutherford said “if you need statistics you
did the wrong experiment”. Well, some experiments do need statistics anyway. In that case
one should process the data in the most efficient way possible using time honoured methods
completely familiar to applied statisticians working in all fields of science. There is no excuse
for the experimental physicist not to use the best tools available.

We remark that those astronomically small p-values in the Vienna and NIST experiments
need to be taken with more than just a grain of salt. They are meaningless. The absolute error
in the normal approximation must be huge compared to either actual or nominal (according to
the normal distribution) value of these tail probabilities. In fact, we suggest that a meaningful,
probably conservative, p-value is obtained from Chebyshev’s inequality. A z-value of 17.5
would correspond to a p-value of 1/17.52 = 0.0033 or 3 pro mille. On the other hand, the most
recent and clearly best controlled Bell experiment to date, that of Zhang et al. (2022) [6], has
essentially the same p-value independently of whether one uses a conventional estimation of
standard error based on multinomial distributed counts and normal approximation to that
distribution, or uses a martingale based statistic following the idea of the Bell game, which
should insure the user against jumps and trends in the physical systems being studied over
time. The close likeness of all the statistical test results suggests that there were hardly any
shifts in time.
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Appendix

The appendix contains the summary statistics of the 2015 experiments of Delft, Munich
(actually only published in 2017), NIST, Vienna, as well as that of Weihs et al. (1998) at Insbruck,
and Zhang et al. (2022) in Munich again. In each case we present the raw counts and the relative
frequencies, per setting combination. Rows denote Alice’s outcomes, columns denote Bob’s
outcomes; they are conventionally taken to be ±1 in some of the experiments, and “d” and
“n” standing for “detection” and “nondetection” in others. The settings have sometimes been
reordered so that in cases, setting pairs (1,1), (1,2), (2,1) produce large counts (and large relative
frequencies) on the diagonals, small off-diagonal; setting pair (2,2) has large numbers (and
large relative frequencies) off-diagonal, small on the diagonal. In all cases, using a common
notation, the sample value of the one-sided CHSH statistic S = ρ11 + ρ12 + ρ22 − ρ22 exceeds 2.

Appendix A Hensen et al.’s (2015) experiment at Delft [1]

Raw counts

Settings (1,1)

+ −
+ 23 3
− 4 23

Settings (1,2)

+ −
+ 33 11
− 5 30

Settings (2,1)

+ −
+ 22 10
− 6 24

Settings (2,2)

+ −
+ 4 20
− 21 6

Relative frequencies

Settings (1,1)

+ −
+ 0.43 0.06
− 0.08 0.43

Settings (1,2)

+ −
+ 0.42 0.14
− 0.06 0.38

https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.23.880
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.28.938
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.49.1804
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.2.1418
https://doi.org/10.1103/PhysRevLett.49.1220
https://doi.org/10.1103/PhysRevA.47.R747
https://www.R-project.org/
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Settings (2,1)

+ −
+ 0.35 0.16
− 0.10 0.39

Settings (2,2)

+ −
+ 0.08 0.39
− 0.41 0.12

Appendix B Rosenfeld et al.’s (2017) experiment at Munich [2]

Raw counts

Settings (1,1)

+ −
+ 16 4
− 3 13

Settings (1,2)

+ −
+ 11 4
− 2 17

Settings (2,1)

+ −
+ 19 4
− 3 16

Settings (2,2)

+ −
+ 4 22
− 10 2

Relative frequencies

Settings (1,1)

+ −
+ 0.44 0.11
− 0.08 0.36

Settings (1,2)

+ −
+ 0.32 0.12
− 0.06 0.50

Settings (2,1)

+ −
+ 0.45 0.10
− 0.07 0.38

Settings (2,2)

+ −
+ 0.11 0.58
− 0.26 0.05

Appendix C Shalm et al.’s (2015) experiment at NIST (Boulder, Colorado) [4]

Raw counts

Settings (1,1)

d n

d 6378 3282
n 3189 43897356

Settings (1,2)

d n

d 6794 2821
n 23243 43276943
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Settings (2,1)

d n

d 6486 21334
n 2843 43338281

Settings (2,2)

d n

d 106 27539
n 30040 42502788

Relative frequencies×106

The bottom right cell in all four 2× 2 tables is close to 106, the difference is negligeable.

Settings (1,1)

d n

d 145.25 74.74
n 72.63 999707.38

Settings (1,2)

d n

d 156.87 65.14
n 536.67 999241.33

Settings (2,1)

d n

d 149.55 491.92
n 65.55 999292.97

Settings (2,2)

d n

d 2.49 647.06
n 705.82 998644.63

Appendix D Giustina et al.’s (2015) experiment at Vienna [3]

Raw counts

Settings (1,1)

d n

d 141439 73391
n 76224 875392736

Settings (1,2)

d n

d 146831 67941
n 326768 874976534

Settings (2,1)

d n

d 158338 425067
n 58742 875239860

Settings (2,2)

d n

d 8392 576445
n 463985 874651457

Relative frequencies×106

The bottom right cell in all four 2× 2 tables is close to 106, the difference is negligeable.

Settings (1,1)

d n

d 161.52 83.81
n 87.05 999667.63

Settings (1,2)

d n

d 167.71 77.60
n 373.23 999381.46
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Settings (2,1)

d n

d 180.78 485.30
n 67.07 999266.86

Settings (2,2)

d n

d 9.58 658.27
n 529.84 998802.30

Appendix E Weihs et al. (1998) Innsbruck experiment [5]

Raw counts

Settings (1,1)

+ −
+ 1683 418
− 361 1578

Settings (1,2)

+ −
+ 1100 269
− 156 1386

Settings (2,1)

+ −
+ 1728 313
− 351 1978

Settings (2,2)

+ −
+ 179 1636
− 1143 294

Relative frequencies

Settings (1,1)

+ −
+ 0.42 0.10
− 0.09 0.39

Settings (1,2)

+ −
+ 0.38 0.09
− 0.05 0.48

Settings (2,1)

+ −
+ 0.40 0.07
− 0.08 0.45

Settings (2,2)

+ −
+ 0.06 0.50
− 0.35 0.09

Appendix F Zhang et al.’s (2022) experiment at Munich [6]

Raw counts

Settings (1,1)

+ −
+ 178 44
− 29 183

Settings (1,2)

+ −
+ 199 36
− 28 160
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Settings (2,1)

+ −
+ 160 47
− 31 15 1

Settings (2,2)

+ −
+ 38 160
− 166 39

Relative frequencies

Settings (1,1)

+ −
+ 0.41 0.10
− 0.07 0.42

Settings (1,2)

+ −
+ 0.47 0.09
− 0.07 0.38

Settings (2,1)

+ −
+ 0.41 0.12
− 0.08 0.39

Settings (2,2)

+ −
+ 0.09 0.40
− 0.41 0.10
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