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Abstract

We consider type-A higher-spin gravity in 4 dimensions, holographically dual to a free O(N)

vector model. In this theory, the cubic correlators of higher-spin boundary currents are reproduced

in the bulk by the Sleight-Taronna cubic vertex. We extend these cubic correlators from local

boundary currents to bilocal boundary operators, which contain the tower of local currents in their

Taylor expansion. In the bulk, these boundary bilocals are represented by linearized Didenko-

Vasiliev (DV) “black holes”. We argue that the cubic correlators are still described by local bulk

structures, which include a new vertex coupling two higher-spin fields to the “worldline” of a DV

solution. As an illustration of the general argument, we analyze numerically the correlator of two

local scalars and one bilocal. We also prove a gauge-invariance property of the Sleight-Taronna

vertex outside its original range of applicability: in the absence of sources, it is invariant not just

within transverse-traceless gauge, but rather in general traceless gauge, which in particular includes

the DV solution away from its “worldline”.
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1. INTRODUCTION

A. Setup and motivation

Higher-spin (HS) gravity [1–3] is the conjectured interacting theory of an infinite tower of

massless gauge fields of all spins. It can be thought of as a “smaller cousin” of string theory.

In its simplest version, the theory lacks a realistic GR limit. However, it has the virtues of

being native to 4 spacetime dimensions, and consistent with both signs of the cosmological

constant. We consider here the “smallest” version of HS gravity in 4d: the so-called minimal

type-A theory, which has a single, parity-even field of every even spin. This theory admits a

particularly simple holographic dual [4–6] via AdS/CFT: a free O(N) vector model on the

3d boundary of AdS4, whose primary single-trace operators form a tower of conserved HS

currents. A major reason to be interested in this particular duality is that it also admits a

positive cosmological constant [7], providing a concrete model of dS4/CFT3. In the present

paper, we stick for simplicity to AdS4, in Euclidean signature.

The biggest outstanding question in HS theory concerns its locality properties. In general,

since the theory involves infinitely many massless fields interacting at all orders in derivatives,

it was always expected to be non-local in some way. Moreover, at the classical level, the

only length scale in the theory is the cosmological curvature radius. Thus, the theory was

expected to be non-local at the cosmological scale. Though exotic, this still implies a positive

expectation of some degree of locality: in particular, at distances much larger than the AdS

radius, one expects the couplings to vanish sufficiently fast.

This expectation was put to the test, by a research program to explicitly reproduce the

theory’s vertices from its holographic boundary correlators. For 3-point correlators, bulk

locality is satisfied automatically: all gauge-invariant cubic vertices for given spins (s1, s2, s3)

can be reduced to a finite set of structures with finitely many derivatives [8]. Nevertheless,

it seems significant that the particular cubic vertex [9] found for the minimal type-A theory

takes a remarkably simple form. However, at the 4-point level, disaster strikes: the spin-0

quartic bulk vertex, derived in [10], turns out [11] to be as non-local as an exchange diagram.

This result was foreshadowed some years before, in the flat-spacetime context [12, 13]. In

particular, the authors of [12] conjectured that some additional degrees of freedom should

be added to make the theory local. A more subtle resolution is being advocated in e.g.
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[14, 15]: to keep the same degrees of freedom, but to extend the ordinary notion of locality

to so-called “spin-locality”.

Our own approach to the locality problem is to try and mimic string theory: interactions

that appear non-local in terms of field theory may become local when viewed in terms

of more appropriate structures, such as the string worldsheet. While HS gravity (in its

simplest version) doesn’t give rise to strings, it does contain an analogous object – the

Didenko-Vasiliev “BPS black hole” solution [16, 17]. The analogy between this solution

and the string is twofold. First, one can view the fundamental string (and all the other

branes of string theory) as BPS solutions of supergravity [18, 19], with the Didenko-Vasiliev

(henceforth, DV) solution playing the analogous role in HS gravity. Second, in AdS/CFT,

one can view the string as the bulk dual of boundary Wilson lines or loops [20, 21], which

contain as a Taylor expansion the whole tower of local single-trace boundary operators

(whose bulk duals are the string’s modes). Similarly, in HS holography, the DV solution is

the bulk dual [22, 23] of the boundary bilocal operator [24–26], which contains as a Taylor

expansion the tower of local boundary HS currents (whose bulk duals are the individual HS

gauge fields). Due to these analogies, we believe that the key to understanding HS theory

lies in the bulk dynamics of not just HS fields, but also DV solutions.

Our focus is on the linearized DV solution [16], which consists simply of linearized HS

fields, sourced by a particle-like singularity located on a geodesic “worldline” in the AdS4

bulk. This particle-like source is charged under the gauge fields of all spins, following a BPS-

like proportionality pattern. In [22, 23], we explored the bulk interaction between two such

solutions, showing that it reproduces the CFT correlator of two boundary bilocals. In that

case, the “interaction” was simply that of charged particles exchanging (an HS multiplet of)

gauge fields, with no self-coupling among the gauge fields themselves. In the present paper,

we extend the analysis to three DV solutions, and ask what kind of bulk interactions can

reproduce the corresponding cubic CFT correlator. Here, the cubic self-interaction of the

HS gauge fields becomes important. In fact, in an appropriate limit, the DV solutions reduce

to usual boundary-bulk propagators [23], and the boundary correlator is then captured fully

by the on-shell cubic vertex found by Sleight and Taronna [9]. Our goal in this paper will

be to step away from this limit, and study the locality and gauge-invariance properties of

the resulting bulk interactions.

Our eventual goal is to reformulate the entirety of HS theory in terms of cubic interactions
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between DV solutions [27], entirely bypassing the need for quartic or higher vertices. It is

this larger project that lends importance to the locality of such cubic interactions.

The formalism we’ll employ is the same as in [9], combining Fronsdal’s “metric-like”

approach to linearized HS fields [28, 29] with the radial-reduction approach to bulk AdS

fields [30], where we choose the scaling weights to match those of the relevant boundary-

bulk propagators (as opposed to the more common choice [8], which simplifies the gauge-

invariance analysis for general vertices).

B. Summary of locality results

We will argue that the cubic correlator of boundary bilocals is reproduced by a set of local

Witten diagrams that couple the corresponding DV solutions and their geodesic “worldlines”.

These diagrams can be divided into three groups:

(a) The Sleight-Taronna vertex [9] coupling the three DV solutions.

(b) Exchange of two HS gauge fields between the three geodesic “worldlines”. This is just a

product of two pairwise interactions between the DV solutions, of the type considered

in [22, 23]. In particular, it doesn’t involve self-interaction of HS fields.

(c) A new vertex, coupling the fields of two DV solutions to the “worldline” of the third.

These different terms (a)-(c) comprising the correlator are depicted in figure 1. Let us now

comment on the extent to which each term is known, and the sense in which it is local.

Term (a) – the on-shell cubic coupling of HS fields – is known explicitly [9], and is local

in the traditional sense, i.e. it involves a finite number of derivatives for each set of spins

(s1, s2, s3). Note, however, that the DV solutions contain all spins. Therefore, the sum over

spins will introduce an infinite tower of derivatives, and with it some degree of non-locality.

Fortunately, as we’ll argue in section 4F, this non-locality is in fact at the scale of ∼ 1 AdS

radius, matching the original expectation for HS theory.

Term (b) consists of simple diagrams whose only “vertices” are the local minimal couplings

[22] between an HS-charged particle and an HS gauge field. As such, it is fully known, and

manifestly local if we agree to view the DV solutions’ worldlines as HS-charged particles. If

one tried instead to express these diagrams as a cubic vertex between HS fields, that vertex

would of course be non-local.
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(a)

(b)

(c)

FIG. 1: Bulk diagrams for the connected correlator 〈O(ℓ1, ℓ′1)O(ℓ2, ℓ′2)O(ℓ3, ℓ′3)〉 of three boundary

bilocals, in terms of bulk DV solutions and their “worldlines”: (a) the Sleight-Taronna cubic vertex;

(b) double exchanges of HS fields between the worldlines; (c) a new vertex, coupling two HS fields

to a worldline.

Now we turn to term (c) – a new vertex, which will be discussed at length in section

4. One may alternatively view it as an “off-shell” correction to the Sleight-Taronna vertex

(i.e. a correction proportional to the free equations of motion), due to the DV fields not

being source-free, and thus possessing Fronsdal curvature, concentrated on the correspond-

ing “worldlines”. Even for fixed spins, this new vertex may include an infinite tower of

derivatives. The question then is whether the resulting non-locality is restricted to ∼ 1 AdS

radius. We will argue that this question can be reframed as a set of proxy criteria, involving
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not the vertex formula itself, but rather its contribution to the correlator in certain limits.

We will then show that our criteria are indeed satisfied, once the other contributions (a)-(b)

to the correlator are taken into account. We won’t evaluate the new vertex explicitly, aside

from a numerical study in one simple case (section 5).

An alternative concise way of introducing the three terms (a)-(c) is as follows:

(a) We draw the most obvious cubic coupling between the three DV solutions, via the

Sleight-Taronna vertex. We find that this doesn’t reproduce the boundary cubic cor-

relator of bilocals.

(b) We add the double-exchange diagrams, still constructed purely from known elements.

We find that the boundary correlator is still not reproduced.

(c) We parameterize the difference between the boundary correlator and terms (a)-(b) in

terms of a new vertex (or, alternatively, an off-shell correction to the Sleight-Taronna

vertex). Our main result is then that this new vertex has appropriate locality proper-

ties.

Finally, note that our terms (a)-(c) don’t include any gauge corrections to the Sleight-

Taronna vertex, i.e. corrections due to the DV solutions not being in transverse-traceless

gauge. The vanishing of such corrections is one of our results, derived in section 3 and

summarized below.

C. Plan of the paper

The rest of the paper is structured as follows. In section 2, we review the formalism of [9]

for HS fields in Euclidean AdS4, along with other relevant ingredients: the free vector model

on the boundary, asymptotics of bulk fields, boundary-bulk propagators, the DV solution

and the Sleight-Taronna vertex.

Section 3 contains our gauge-invariance results for the Sleight-Taronna vertex. We show

that, if one merely symmetrizes the original vertex formula from [9] over permutations of its

3 legs, then the vertex’s gauge invariance is extended from source-free fields in transverse-

traceless gauge (as originally intended in [9]) to source-free fields in general traceless gauge.

In section 3C, we prove that this extended gauge-invariance holds up to boundary terms.
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Then, in section 3D, we show that the boundary terms also vanish under appropriate

assumptions on the fields’ asymptotics, which in particular are satisfied by the DV solution

away from its singular worldline.

In section 4, we present our main argument vis. the locality structure of the general

cubic correlator and the new vertex. In section 5, we illustrate the locality argument by

a numerical analysis in a simple case: a single DV solution coupled to a pair of spin-0

boundary-bulk propagators. In section 6, we outline an alternative technique for calculating

the relevant bulk diagram, using a new non-traceless gauge [23] for the DV solution. Section

7 is devoted to discussion and outlook.

We note that section 3’s gauge-invariance result for the Sleight-Taronna vertex is not

essential for the abstract locality argument in section 4. However, the existence of this nice

result reinforces our sense that the paper’s main idea – of combining the DV solution with

the Sleight-Taronna vertex – is on the right track.

2. PRELIMINARIES

A. Bulk geometry

To write the Sleight-Taronna vertex in a simple form, one must use an embedding-space

formalism, and in particular the radial reduction approach of [30]. Thus, we describe Eu-

clidean AdS4 as the hyperboloid of unit timelike radius within 5d flat spacetime R
1,4:

EAdS4 =
{

xµ ∈ R
1,4 | xµxµ = −1, x0 > 0

}

. (1)

Here, indices (µ, ν, . . . ) are 5-dimensional, and are raised and lowered with the Minkowski

metric ηµν = diag(−1, 1, 1, 1, 1). 4d vectors at a point xµ ∈ EAdS4 are simply 5d vectors vµ

that satisfy v ·x ≡ vµx
µ = 0. Covariant derivatives in EAdS4 are simply flat R1,4 derivatives,

followed by a projection of all indices back into the EAdS4 tangent space:

∇µvν = P ρ
µ (x)P

σ
ν (x)

∂vσ
∂xρ

; (2)

P ν
µ (x) ≡ δνµ −

xµx
ν

x · x . (3)

With lowered indices, the projector P ν
µ (x) becomes the 4d metric of EAdS4 at x:

gµν(x) ≡ Pµν(x) = ηµν −
xµxν
x · x . (4)
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Our use of different letters for P ν
µ and gµν is purely cosmetic.

Since HS fields carry many symmetrized tensor indices, it is convenient to package them

as functions of an auxiliary “polarization vector” uµ ∈ R
1,4. Thus, we encode a rank-p

symmetric tensor by a function of the form:

f(x, u) =
1

p!
uµ1 . . . uµpfµ1...µp

(x) . (5)

We denote flat R1,4 derivatives w.r.t. xµ and uµ as ∂µx and ∂µu , respectively. The tensor rank

of fµ1...µp
, and the fact that it’s tangential to the EAdS4 hyperboloid, can be expressed as

constraints on f(x, u):

(u · ∂u)f = pf ; (x · ∂u)f = 0 . (6)

Tracing a pair of indices on fµ1...µp
is encoded by acting on f(x, u) with the operator ∂u · ∂u.

A factor of the metric EAdS4 metric (4) can be encoded as:

gµνu
µuν = u · u− (u · x)2

x · x . (7)

It is convenient to introduce a notation for the traceless part of a symmetric EAdS4 tensor

t̂µ1 . . . t̂µs at a point x. This traceless part can be encoded by the function:

T (p)(x, t̂, u) ≡ 1

p!
uµ1 . . . uµpTµ1...µp

(x, t̂) =
(t̂ · u)p
p!

− traces

=
1

p!

⌊p/2⌋
∑

n=0

(

p− n
n

)(

−1
4
(t̂ · t̂)(gµν(x)uµuν)

)n

(t̂ · u)p−2n

=
1

2pp!

⌊p/2⌋
∑

n=0

(

p+ 1

2n+ 1

)

(

−(t̂ · t̂)(qµν(x, t̂)uµuν)
)n
(t̂ · u)p−2n ,

(8)

where, in the third line, we introduced the 3d metric qµν = gµν − t̂µ t̂ν
t̂·t̂ of the subspace

orthogonal to both xµ and t̂µ.

So far, everything was defined on the EAdS4 hyperboloid x · x = −1. The idea of the

radial reduction approach [30] is to define our functions f(x, u) also away from x · x = −1,
by introducing a scaling law of the form (x · ∂x)f = −∆f with some weight ∆, usually

chosen to match the conformal weight of relevant boundary data. This gives meaning to

the 5d flat derivative ∂µx in all directions, which can lead to substantial simplifications, in

particular for the Sleight-Taronna vertex. Within this formalism, the EAdS4 symmetrized
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gradient, divergence and Laplacian take the form:

u · ∇ = u · ∂x +
u · x
x · x(u · ∂u − x · ∂x) ; (9)

∂u · ∇ = ∂u · ∂x +
u · x
x · x(∂u · ∂u) ; (10)

∇ · ∇ = ∂x · ∂x + 2
u · x
x · x(∂u · ∂x) +

(u · x
x · x

)2

(∂u · ∂u)

− 1

x · x
(

(x · ∂x)2 + 3(x · ∂x)− u · ∂u
)

.
(11)

In these expressions, we see two kinds of correction terms:

• The ∼ u · x terms serve to project the 5d derivatives back into EAdS4.

• The terms on the bottom line of (11) are just a constant multiple ∆(∆ − 3) − p of

the EAdS4 curvature - 1
x·x (which we set equal to 1 in (1)). The 4d Laplacian ∇ ·∇ is

then the EAdS4 projection of the 5d d’Alembertian ∂x · ∂x, shifted by this constant.

B. Fronsdal fields in the bulk

Let us review the form of Fronsdal’s field equations for linearized HS fields [29] in the

above framework. In Fronsdal’s formalism, a spin-s field (more precisely, gauge potential)

is a totally symmetric rank-s tensor with vanishing double trace. This can be encoded by

a scalar function h(s)(x, u), as in (5). For its scaling weight, we choose ∆ = 1 + s – the

conformal weight of the dual boundary currents. This is the choice of [9], which brings the

Sleight-Taronna vertex into a simple form. Note that this weight is different from that in

the general literature on HS cubic vertices [8], where the dual weight choice ∆ = 2 − s is

used. Overall, the constraints on the field h(s)(x, u) read:

(u · ∂u)h(s) = sh(s) ; (x · ∂u)h(s) = 0 ; (12)

(x · ∂x)h(s) = −(s + 1)h(s) ; (∂u · ∂u)2h(s) = 0 . (13)

Gauge transformations take the form:

h(s) → h(s) + (u · ∇x) Λ
(s) = h(s) +

(

u · ∂x + (2s− 1)
u · x
x · x

)

Λ(s) , (14)
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where Λ(s) represents a traceless gauge parameter with s−1 tensor indices and weight ∆ = s,

i.e.:

(u · ∂u)Λ(s) = (s− 1)Λ(s) ; (x · ∂u)Λ(s) = 0 ; (15)

(x · ∂x)Λ(s) = −sΛ(s) ; (∂u · ∂u)Λ(s) = 0 . (16)

Out of the field h(s), we can construct a gauge-invariant curvature, which generalizes the

s = 2 linearized Ricci tensor to all spins. This is the Fronsdal tensor Fh(s), where the

operator F is given by:

F = −∇ · ∇+
2 + 2s− s2

x · x + (u · ∇)(∂u · ∇)−
(

1

2
(u · ∇)2 + gµνu

µuν

x · x

)

(∂u · ∂u)

= − ∂x · ∂x +
(

u · ∂x + (2s− 1)
u · x
x · x

)

(∂u · ∂x)

−
(

u · u
x · x +

1

2

(

u · ∂x + (2s+ 1)
u · x
x · x

)(

u · ∂x + (2s− 3)
u · x
x · x

)

)

(∂u · ∂u) .

(17)

F is a second-order differential operator with respect to x. The Fronsdal tensor Fh(s) has
the same tensor properties as the potential h(s), but with scaling weight increased by 2:

(u · ∂u)Fh(s) = sFh(s) ; (x · ∂u)Fh(s) = 0 ; (18)

(x · ∂x)Fh(s) = −(s + 3)Fh(s) ; (∂u · ∂u)2Fh(s) = 0 . (19)

In analogy with GR, we can rearrange the trace of Fh(s) to obtain the Einstein tensor:

Gh(s) =
(

1− 1

4
(gµνu

µuν)(∂u · ∂u)
)

Fh(s) . (20)

This has the same tensor properties (18)-(19), but also satisfies a conservation law of the

form:

(∂u · ∇)Gh(s) = (gµνu
µuν)(. . . ) , (21)

i.e. the EAdS4 divergence of Gh(s) vanishes up to trace terms. This allows us to write a

gauge-invariant quadratic action for linearized HS fields:

Ss =

∫

EAdS4

d4x s! h(s)(x, ∂u)

(

1

2
Gh(s)(x, u)− J (s)(x, u)

)

. (22)

Here, J (s)(x, u) is an external HS current, which must be conserved in the same sense (21)

as Gh(s). The field equations for the action (22) read simply:

Gh(s)(x, u) = J (s)(x, u) . (23)
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This formalism for HS theory is substantially simplified in a traceless gauge (which can also

be viewed as a framework in its own right [31, 32]). In this gauge, the double-traceless

condition (∂u · ∂u)2h(s) = 0 is strengthened into ordinary tracelessness (∂u · ∂u)h(s) = 0. The

remaining gauge freedom is parameterized by (14)-(16), with the further constraint:

(∂u · ∇)Λ(s) = 0 . (24)

Since Λ(s) is traceless, we see from (10) that its 4d divergence (∂u · ∇)Λ(s) is equal to the 5d

one (∂u · ∂x)Λ(s). Thus, the constraint (24) can also be written as:

(∂u · ∂x)Λ(s) = 0 . (25)

In this gauge, the Fronsdal operator (17) simplifies into:

F = −∇ · ∇ +
2 + 2s− s2

x · x + (u · ∇)(∂u · ∇)

= −∂x · ∂x +
(

u · ∂x + (2s− 1)
u · x
x · x

)

(∂u · ∂x) .
(26)

Note also that the trace of the Fronsdal tensor now reads simply:

(∂u · ∂u)Fh(s) = 2(∂u · ∇)2h(s) = 2(∂u · ∂x)2h(s) . (27)

With the exception of section 6, we will work in traceless gauge throughout. For source-free

fields, one can specialize further to transverse-traceless gauge, by imposing also the zero-

divergence condition (∂u · ∇)h(s) = 0, or, equivalently, (∂u · ∂x)h(s) = 0. A gauge parameter

that preserves traceless gauge, i.e. that satisfies (24)-(25), will shift the divergence of h(s)

as:

(∂u · ∇)h(s) → (∂u · ∇)h(s) +
(

∇ · ∇+
s2 − 1

x · x

)

Λ(s) , (28)

or, equivalently:

(∂u · ∂x)h(s) → (∂u · ∂x)h(s) +
(

∂x · ∂x +
2(2s− 1)

x · x

)

Λ(s) . (29)

C. Boundary theory

The 3d boundary of EAdS4 is given by the projective lightcone in R
1,4, i.e. by null vectors

ℓµ ∈ R
1,4, ℓ · ℓ = 0, modulo rescalings ℓµ ∼= ρℓµ. Boundary quantities will transform under
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such rescalings as (ℓ · ∂ℓ)f = −∆f , according to their conformal weights ∆. We describe

3d vectors at a boundary point ℓµ as 5d vectors λµ that satisfy λ · ℓ = 0, modulo shifts

λµ ∼= λµ +αℓµ. For a boundary scalar f(ℓ) with weight ∆ = 1
2
, we can define the conformal

Laplacian �ℓf . In the embedding-space language, this is the same as the 5d d’Alambertian

(∂ℓ ·∂ℓ)f , provided that f is extended away from the ℓ·ℓ = 0 lightcone in a way that preserves

the scaling law (ℓ · ∂ℓ)f = −1
2
f . The operator �ℓ itself has conformal weight 2.

The CFT that lives on our 3d boundary is a free O(N) vector model. It is convenient

to assume that N is even, and package the vector model’s N real fields as N
2
complex fields

χI(ℓ) with complex conjugates χ̄I(ℓ), where I = 1, . . . , N
2
is a color index. The theory then

takes the form of a U(N/2) vector model, whose action reads simply:

SCFT = −
∫

d3ℓ χ̄I(ℓ)�ℓχ
I(ℓ) , (30)

where χI and χ̄I each have conformal weight ∆ = 1
2
. The propagator for these fundamental

fields reads:

GCFT(ℓ, ℓ
′) =

1

4π
√
−2ℓ · ℓ′

; �ℓGCFT(ℓ, ℓ
′) = −δ 5

2
, 1
2 (ℓ, ℓ′) , (31)

where the superscripts on the boundary delta function δ(ℓ, ℓ′) denote its conformal weight

with respect to each argument.

The fundamental single-trace operators in the theory (30) are the bilocals :

O(ℓ, ℓ′) ≡ 2χI(ℓ)χ̄I(ℓ
′)

G(ℓ, ℓ′)
. (32)

Here, we made an unconventional normalization choice, which makes O(ℓ, ℓ′) invariant under
rescalings of ℓ, ℓ′. Thus, our O(ℓ, ℓ′) depends only on the actual choice of two boundary

points, which will allow a cleaner interpretation of the bulk dual. The numerical factor in

(32) is chosen to ensure the proper relative normalization of the first and second terms in

eq. (119) below.

By Taylor-expanding the bilocals (32) around ℓ = ℓ′, we obtain the local single-trace

primaries, i.e. the tower of HS currents [33–35] (including the honorary spin-0 “current”

χ̄I(ℓ)χ
I(ℓ)). These local currents can be encoded conveniently by contracting their indices

with a null polarization vector λµ at ℓµ, satisfying λ · λ = λ · ℓ = 0:

j(s)(ℓ, λ) = λµ1 . . . λµsjµ1...µs
(ℓ) . (33)
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FIG. 2: Boundary Feynman diagram for a quartic correlator of bilocals O(ℓi, ℓ′i). From the point

of view of the operator O(ℓ1, ℓ′1) in the shaded region, the other operators couple to it as a single

bilocal, in this case as O(ℓ2, ℓ′4).

The currents’ relation to the bilocal (32) is then expressed compactly via a differential

operator D(s), as:

j(s)(ℓ, λ) = D(s)(∂ℓ, ∂ℓ′, λ)
[

χI(ℓ)χ̄I(ℓ
′)
]

∣

∣

∣

ℓ=ℓ′

=
1

2
D(s)(∂ℓ, ∂ℓ′, λ)

[

G(ℓ, ℓ′)O(ℓ, ℓ′)
]

∣

∣

∣

ℓ=ℓ′
;

(34)

D(s)(∂ℓ, ∂ℓ′, λ) = is
s
∑

m=0

(−1)m
(

2s

2m

)

(λ · ∂ℓ)m(λ · ∂ℓ′)s−m . (35)

The connected correlators of bilocals (32) are given by simple 1-loop Feynman diagrams

composed of propagators (31) (see figure 2), with the normalization factor in (32) simply

along for the ride:

〈O(ℓ1, ℓ′1) . . .O(ℓn, ℓ′n)〉 =
2n

∏n
p=1G(ℓp, ℓ

′
p)
× N

2

(

n
∏

p=1

G(ℓ′p, ℓp+1) + permutations

)

, (36)

where the product in the numerator is cyclic, i.e. ℓn+1 ≡ ℓ1, and the sum is over cyclically

inequivalent permutations of (1, . . . , n). From these bilocal correlators, one can derive the

correlators of local currents j(s), via the Taylor expansion (34).

Up to the boundary field equation �ℓχ
I(ℓ) = �ℓ′χI(ℓ

′) = 0, the local currents (34) span

the full space of single-trace operators. This means in particular that, given two points ℓ, ℓ′

and a compact boundary region B that includes them, the bilocal O(ℓ, ℓ′) is equivalent to

some superposition of local currents (34) inside B:

O(ℓ, ℓ′) ∼=
∞
∑

s=0

∫

B

d3LA
(s)
ℓ,ℓ′(L, ∂λ) j

(s)(L, λ) , (37)
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where A
(s)
ℓ,ℓ′(L, λ) is some configuration of traceless spin-s sources at the boundary point L:

(λ · ∂λ)A(s) = sA(s) ; (L · ∂L)A(s) = (s− 2)A(s) ; (∂λ · ∂λ)A(s) = (L · ∂λ)A(s) = 0 . (38)

The sense in which the equivalence (37) holds is that the LHS and RHS have the same

correlators with any number of operators O or j(s) with support in the complement B̄ of B.

On the other hand, to check that some configuration of local sources A(s) in B satisfies (37),

it is sufficient to check just the quadratic correlators with local currents j(s) in B̄. This can

be seen in two steps. First, in any correlator of one single-trace operator in B and (n − 1)

such operators in B̄, the diagrams (36) are always arranged such that the operator in B

effectively couples to a single bilocal in B̄ (see figure 2). Thus, it’s enough to match the

quadratic correlators with bilocals in B̄. But, using now the equivalence (37) for B̄, we see

that these can be reconstructed from the quadratic correlators with local currents.

Again, the theory described above is not quite the O(N) vector model, but the U(N/2)

one. However, we can obtain the O(N) model by simply truncating the single-trace operators

(32),(34) from all those invariant under U(N/2) to those invariant under the larger group

O(N). For the bilocals (32), this requires symmetrizing over ℓ↔ ℓ′:

O+(ℓ, ℓ′) =
1

2

(

O(ℓ, ℓ′) +O(ℓ′, ℓ)
)

, (39)

whereas for the local currents (34), it requires restricting to even spins s. It’s easy to see that

the even-spin currents j(s) can indeed be constructed from the symmetrized bilocal (39). For

odd N , the above construction starting from U(N/2) doesn’t directly apply. However, the

end results for the correlators are the same, with N simply an overall prefactor, as in (36).

D. Boundary asymptotics of bulk fields

In this subsection, we set up a framework for discussing the asymptotic behavior of fields

in EAdS4. For this purpose, it’s convenient to use Poincare coordinates (z, ya) for EAdS4:

xµ(z, ya) =
1

z

(

1 + z2 + y2

2
,
1− z2 − y2

2
, ya
)

; dx · dx =
dz2 + dy2

z2
, (40)

where y2 ≡ δaby
ayb. The boundary of EAdS4 can be similarly parameterized as:

ℓµ(ya) =

(

1 + y2

2
,
1− y2

2
, ya
)

; dℓ · dℓ = dy2 . (41)
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The parameterization (41) chooses a flat section of the R1,4 lightcone, defined by ℓ ·n = −1
2
,

where nµ =
(

1
2
,−1

2
,~0
)

. The bulk and boundary coordinates (40)-(41) are related by:

xµ(z, ya) =
1

z
ℓµ(ya) + znµ . (42)

In the limit z → 0, the bulk point x(z, ya) asymptotes to the boundary point ℓ(ya), in the

precise manner defined by (42).

To study the asymptotics of tensor fields, it is convenient to use an orthonormal basis

(e0, ea) along the (z, ya) coordinate axes:

eµ0 (z, y
a) = −z∂x

µ

∂z
; eµa(y

a) = z
∂xµ

∂ya
. (43)

In the boundary limit z → 0, the R
1,4 components of the “tangential” basis vectors eµa are

z-independent, while those of the “radial” vector eµ0 behave as:

eµ0 (z, y
a) = xµ(z, ya) +O(z) =

1

z
ℓµ(ya) +O(z) . (44)

We can now discuss the asymptotics of symmetric bulk tensor fields (5) by describing the

z → 0 scaling of their different components in the orthonormal (e0, ea) basis. For a rank-p

field f(x, u), we’ll use the compact notation [f ]q,p−q to refer to its components with q indices

along e0 and p− q indices along ea.

E. Boundary-bulk propagator

The boundary-bulk propagators dual to the boundary HS currents (34) read [36]:

Π(s)(x, u; ℓ, λ) = − (
√
2)s(m · u)s

16π2(ℓ · x)2s+1
; mµ(x; ℓ, λ) ≡ (λ · x)ℓµ − (ℓ · x)λµ , (45)

where we chose a non-standard normalization for later convenience. With respect to its

bulk arguments (x, u), the propagator Π(s) satisfies the standard constraints (12)-(13) for

a Fronsdal field, as well as the traceless and transverse gauge conditions (∂u · ∂u)Π(s) =

(∂u ·∇)Π(s) = 0. With respect to its boundary arguments (ℓ, λ), Π(s) has the same conformal

weight (ℓ·∂ℓ)Π(s) = −(s+1)Π(s) and tensor rank (λ·∂λ)Π(s) = sΠ(s) as the boundary currents

(34), and is invariant under the shift symmetry λµ → λµ + αℓµ.

The propagator (45) is a special case (p, w) = (s, s+ 1) of the general formula:

f(x, u; ℓ, λ) ∼ (m · u)p
(ℓ · x)p+w

, (46)
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which spans the solution space of the free field equations for rank-p symmetric, transverse-

traceless fields with arbitrary mass parameterized by w:

(∂u · ∂u)f = (∂u · ∇)f =

(

∇ · ∇ − w(3− w) + p

x · x

)

f = 0 . (47)

Let’s now apply the formalism of section 2D to discuss the asymptotic behavior of the general

propagator (46). Let us choose Poincare coordinates (40)-(41) such that the boundary source

point ℓµ in (46) is at ya = 0, i.e. ℓµ =
(

1
2
, 1
2
,~0
)

. We can also choose the polarization vector

λµ as λµ = (0, 0, λa), which becomes λµ = λaeµa in terms of the orthonormal basis at ya = 0.

The ingredients of the tensor field (46) at an arbitrary bulk point xµ(z, ya) now read:

ℓ · x = −z
2 + y2

2z
; mµ = (λ · y)eµ0 +

1

z

(

z2 + y2

2
λa − (λ · y)ya

)

eµa , (48)

where λ · y ≡ δabλ
ayb. Assuming ya 6= 0, we see that in the small-z limit ℓ · x scales as z−1,

while mµ has ∼ z−1 components along eµa and a ∼ z0 component along eµ0 . Thus, at y
a 6= 0,

the various components of f scale at small z as:

ya 6= 0 : [f ]q,p−q ∼ zw+q . (49)

Now, note that under w → 3 − w, the field equations (47) do not change. Therefore, the

same field equations must also support the asymptotics [f ]q,p−q ∼ z3−w+q. In a neighborhood

of the boundary, the two asymptotics ∼ zw+q and ∼ z3−w+q constitute a pair of independent

boundary data (more precisely, within each set, it is the q = 0 data that’s independent,

with the q > 0 data determined from it). For a regular solution in all of EAdS4, these

two boundary data cease to be independent, i.e. one becomes linearly determined by the

other. In particular, a closer inspection of the solution (46) reveals that it also contains

the “other” asymptotics ∼ z3−w+q, as a delta-function-like distribution with support at

ya = 0. Rotational invariance and the dilatation symmetry (z, ya) → (ρz, ρya) fix this

delta-function-like piece to take the form:

ya = 0 : [f ]q,p−q ∼ z3−w+q(e0 · u)q(λ · u)p−q(λ · ∂y)q δ3(y) , (50)

where λ · ∂y ≡ λa ∂
∂ya

. Specializing back to (p, w) = (s, s + 1), we obtain, for our original

propagator (45):

ya 6= 0 : [Π(s)]q,s−q ∼ zs+1+q ; (51)

ya = 0 : [Π(s)]q,s−q ∼ z2−s+q(e0 · u)q(λ · u)s−q(λ · ∂y)q δ3(y) . (52)
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F. Bulk geodesics

The Didenko-Vasiliev solution is the field of an HS-charged source concentrated on a

bulk geodesic. Before describing the solution and its properties, it is useful to discuss bulk

geodesics in their own right.

A geodesic in EAdS4 is a hyperbola in the R
1,4 embedding space. The hyperbola’s

asymptotes are two lightrays through the origin in R
1,4, or, equivalently, two points on

the conformal boundary of EAdS4. In fact, (oriented) bulk geodesics are in one-to-one

correspondence with (ordered) pairs of boundary points. We can parameterize a geodesic’s

boundary endpoints by two lightlike vectors ℓµ, ℓ′µ, keeping in mind the usual redundancy

of such vectors under rescalings. The geodesic itself can then be parameterized as:

γ(ℓ, ℓ′) : xµ(τ ; ℓ, ℓ′) =
eτℓµ + e−τℓ′µ√
−2ℓ · ℓ′

, (53)

where τ is a proper-length parameter. If we allow rescalings of xµ away from the EAdS4

hyperboloid x·x = −1, then the geodesic (53) becomes just a 2d plane in the R1,4 embedding

space – the plane spanned by ℓµ, ℓ′µ.

The distance of a bulk point x ∈ EAdS4 from a geodesic γ(ℓ, ℓ′) can be parameterized

by the function:

R(x; ℓ, ℓ′) =

√

2(ℓ · x)(ℓ′ · x)
(ℓ · ℓ′)(x · x) − 1 . (54)

This has weight 0 (i.e. is invariant) under rescalings of ℓµ, ℓ′µ, as well as rescalings of xµ.

For xµ on the x ·x = −1 hyperboloid, R(x; ℓ, ℓ′) is just the flat R1,4 distance between xµ and

the (ℓ, ℓ′) plane. This is related to the geodesic EAdS4 distance χ as R = sinhχ.

We can define a delta function that localizes x ∈ EAdS4 on the geodesic γ(ℓ, ℓ′), i.e. at

R = 0, as:

δ3(x; ℓ, ℓ′) =

∫ ∞

−∞
dτ δ4(x, x(τ ; ℓ, ℓ′)) , (55)

where δ4 is the delta function on EAdS4, and x(τ ; ℓ, ℓ
′) is the proper-length parameterization

(53) of the geodesic. The formula (55) assumes that xµ lies on the x ·x = −1 hyperboloid. If

we allow rescalings of xµ away from x ·x = −1, an even simpler definition becomes possible:

we can define δ3(x; ℓ, ℓ′) as just the standard flat 3d delta function in R
1,4 with support on
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the (ℓ, ℓ′) plane. With this definition, δ3(x; ℓ, ℓ′) has weight ∆ = 3 with respect to xµ (and

weight 0 with respect to ℓµ, ℓ′µ).

Given a geodesic γ(ℓ, ℓ′) and a bulk point xµ that doesn’t necessarily lie on it, one can

define at x the following pair of EAdS4 vectors:

tµ(x; ℓ, ℓ
′) =

1

2

(

ℓ′µ
ℓ′ · x −

ℓµ
ℓ · x

)

; (56)

rµ(x; ℓ, ℓ
′) = − xµ

x · x +
1

2

(

ℓµ
ℓ · x +

ℓ′µ
ℓ′ · x

)

, (57)

Here, rµ(x; ℓ, ℓ′) points radially away from the γ(ℓ, ℓ′) geodesic, while tµ(x; ℓ, ℓ′) points “par-

allel to” γ(ℓ, ℓ′), in the sense of parallel transport along rµ. These vectors satisfy:

t · x = r · x = t · r = 0 ; t · t = − 1

x · x ·
1

1 +R2
; r · r = − 1

x · x ·
R2

1 +R2
. (58)

We can then construct a complex null vector in the (t, r) plane:

kµ(x; ℓ, ℓ
′) =

1

2

(

tµ +
irµ
R

)

; k · k = 0 ; (k · ∇)kµ = 0 . (59)

In Lorentzian signature, kµ would be a real, affine tangent to radial lightrays emanating

from γ(ℓ, ℓ′). The distance function R and the null vector kµ will be the main ingredients

of the Didenko-Vasiliev solution below.

G. Linearized DV solution

The Didenko-Vasiliev solution [17] is a solution of the non-linear Vasiliev equations, struc-

turally similar to supergravity’s BPS black holes. We will be interested here in the solution’s

linearized version [16], which consists of a multiplet of Fronsdal fields (one for each spin),

satisfying the Fronsdal field equation (23) with a particle-like source concentrated on a bulk

geodesic γ(ℓ, ℓ′).

In terms of the building blocks from section 2F above, the DV solution is described by

the following multiplet of Fronsdal fields:

φ(s)(x, u; ℓ, ℓ′) =
1

πR
√
−x · x ×







1 s = 0
2

s!
(i
√
2)s(u · k)s s ≥ 1

. (60)

Here, the spin-dependent normalization factors come from the master-field expression in

[17], which was translated into canonically normalized Fronsdal fields in [22], by matching
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the normalizations of 2-point functions
〈

j(s)j(s)
〉

in both languages. In its bulk arguments

(x, u), φ(s) satisfies the standard constraints (12)-(13) for a Fronsdal field, as well as the

traceless gauge condition (∂u · ∂u)φ(s) = 0. In the minimal HS theory, we include only even

spins in (60). While the potentials (60) are complex, their gauge-invariant curvatures are

always real, i.e. the imaginary part of (60) is pure gauge. For odd spins, these reality

properties are reversed.

The Einstein curvature of the DV solution (60), i.e. the bulk source in its Fronsdal

equation (23), is given by a delta function at R = 0, as:

Gφ(s)(x; ℓ, ℓ′) =
4

s!
(i
√
2)s δ3(x; ℓ, ℓ′)

[

(u · t)s − double traces
]

. (61)

Here, δ3(x; ℓ, ℓ′) is the geodesic delta function (55), with support on R = 0; tµ is the vector

(56), which at R = 0 becomes just the tangent to γ(ℓ, ℓ′), normalized as t · t = − 1
x·x ; and

“ − double traces” means that we subtract ∼ (gµνu
µuν)2 pieces so as to satisfy the double-

tracelessness condition (∂u · ∂u)2Gφ(s) = 0. Eq. (61) shows explicitly the HS charges carried

by the geodesic. In particular, the factor of (i
√
2)s encodes the BPS-like proportionality

between the HS charges of different spins. In terms of the traceless structure (8), the

Einstein curvature (61) and the corresponding Fronsdal curvature can be written as:

Gφ(s) = 4(i
√
2)s δ3(x; ℓ, ℓ′)

(

T (s)(x, t, u)− θ(s− 2)(gµνu
µuν)

4s(x · x) T (s−2)(x, t, u)

)

; (62)

Fφ(s) = 4(i
√
2)s δ3(x; ℓ, ℓ′)

(

T (s)(x, t, u) +
θ(s− 2)(gµνu

µuν)

4s(s− 1)(x · x) T
(s−2)(x, t, u)

)

, (63)

where θ is the step function:

θ(p) =







1 p ≥ 0

0 p < 0
, (64)

and we assume the convention that θ(p) for negative p vanishes “stronger than anything

else”, so that e.g. θ(s−2)
s(s−1)

is zero for s = 0.

It was recently understood [22, 23] that the DV solution (60) is the bulk dual of the bilocal

boundary operator O(ℓ, ℓ′) from (32), in the same way that the boundary-bulk propagators

(45) are the bulk duals of the local boundary currents (34). The main aspect of this cor-

respondence is an agreement between the on-shell bulk action (22) for a pair of interacting

DV solutions, and the CFT correlator of the corresponding boundary bilocals. The relevant

Feynman/Witten diagrams are shown in figure 3. The bulk action (22) in this case (for
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FIG. 3: Bulk and boundary diagrams for the correlator of two boundary bilocals. On the left, each

bilocal is represented in the bulk by a Didenko-Vasiliev solution. The solid lines represent each

solution’s central geodesic “worldline”, where its Fronsdal curvature is concentrated. The wavy

line represents the multiplet of HS gauge fields exchanged between the two worldlines. On the

right, each bilocal is represented by a dashed line, while the solid lines represent propagators (31)

of the fundamental boundary fields χI , χ̄I . Upon restricting to even spins, one should average the

boundary diagram under ℓ1 ↔ ℓ′1.

each spin channel) can be expressed as an integral Ss[φ
(s)
1 , γ2] of the first DV solution’s field

φ(s)(x, u; ℓ1, ℓ
′
1) ≡ φ1 over the second DV solution’s worldline γ(ℓ2, ℓ

′
2) ≡ γ2. The explicit

formula for this action, with a general field h
(s)
1 (x, u) in place of φ

(s)
1 , reads:

Ss[h
(s)
1 , γ2] = −4(i

√
2)ss!

∫ ∞

−∞
dτ h

(s)
1

(

x(τ ; ℓ2, ℓ
′
2), ẋ(τ ; ℓ2, ℓ

′
2)
)

. (65)

Note that, despite the apparent asymmetry, Ss[φ
(s)
1 , γ2] is the same as Ss[φ

(s)
2 , γ1] (this is

obvious from the Witten diagram in figure 3).

The holographic duality between the bulk action and the boundary correlator now takes

the form:

−N
∞
∑

s=0

Ss[φ
(s)
1 , γ2] = 〈O(ℓ1, ℓ′1)O(ℓ2, ℓ′2)〉 , (66)

where the sum is over all spins, and the correlator on the RHS is from the U(N/2) vector

model. The restriction to even spins and the O(N) vector model is immediate:

−N
∑

even s

Ss[φ
(s)
1 , γ2] =

〈

O+(ℓ1, ℓ
′
1)O+(ℓ2, ℓ

′
2)
〉

. (67)

The prefactor N on the LHS can be thought of as an inverse Planck’s constant, converting
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a classical bulk action into a proper quantum correlator:

N ≡ 1

~
. (68)

Our aim in the present paper is to study the extension of eq. (67) from the quadratic to the

cubic level.

Another aspect of the DV-solution/boundary-bilocal correspondence is that in the

bilocal→local limit (34), the DV solution simply reduces to the boundary-bulk propaga-

tors [23]:

1

2
D(s̃)

[

G(ℓ, ℓ′)φ(s)
]

∣

∣

∣

ℓ,ℓ′
= δs,s̃Π

(s)(x, u; ℓ, λ) , (69)

where, on the LHS, we act on G(ℓ, ℓ′)φ(s)(x, u; ℓ, ℓ′) with the differential operator

D(s̃)(∂ℓ, ∂ℓ′, λ) from (35), and then set ℓ = ℓ′. On the RHS, δs,s̃ is a Kronecker symbol

imposing s = s̃, and Π(s) is the boundary-bulk propagator (45). One application of the limit

(69) is to impose it on the DV solution φ
(s)
1 in (66), making a boundary-bulk propagator

Π(s)(x, u; ℓ1, λ1) ≡ Π
(s)
1 (with a single spin s picked out of the HS multiplet). This produces

a bulk calculation for the CFT correlator of a bilocal with a local current, as:

−NSs[Π
(s)
1 , γ2] =

〈

j(s)(ℓ1, λ1)O(ℓ2, ℓ′2)
〉

, (70)

where, for even s, we can replace O → O+. An alternative bulk calculation of the same

correlator is to evaluate the asymptotic electric field strength (or, in the s = 0 case, the

boundary data with weight ∆ = 1) of the DV field φ(s)(x, u; ℓ2, ℓ
′
2) at ℓ1. This calculation

was carried out in [37].

H. Relation to geodesic Witten diagrams

The holographic relation (66) for the quadratic correlator of bilocals, as depicted in

figure 3, is closely related to the literature on geodesic Witten diagrams [38, 39]. There,

the contribution of a particular OPE block to a quartic correlator is computed by a Witten

diagram much like figure 3, with two geodesics exchanging a bulk field that corresponds to

the conformal block in question. Our eq. (66) can be seen as a special case of this general

relation.

To see this in detail, let us (for the sake of this discussion) lift the restriction of the

boundary vector model (30) to color-singlet operators. The fundamental colored fields
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χI then become primaries in their own right, and we can consider the quartic correlator
〈

χI(ℓ1)χ̄I(ℓ
′
1)χ

J(ℓ2)χ̄J(ℓ
′
2)
〉

. Expanding this in an OPE in the (11′|22′) channel, we find that

two kinds of primaries contribute: the identity, and the tower of single-trace HS currents

(34). In this decomposition, the single-trace blocks precisely describe the connected cor-

relator 〈O(ℓ1, ℓ′1)O(ℓ2, ℓ′2)〉, while the identity block describes its disconnected counterpart

〈O(ℓ1, ℓ′1)〉〈O(ℓ2, ℓ′2)〉. Thus, the connected correlator 〈O(ℓ1, ℓ′1)O(ℓ2, ℓ′2)〉 can be computed

by summing over the single-trace blocks, which, in the language of geodesic Witten diagrams,

becomes the sum over exchanged spins in figure 3.

Finally, we should comment on a cosmetic difference between figure 3 and the original

construction of geodesic Witten diagrams [38]. In the original construction, there are ad-

ditional boundary-bulk propagators (corresponding in our case to the boundary operators

χI), which connect the endpoints of each geodesic to the vertex that emits/absorbs the

exchanged field. In figure 3, such propagators are absent. In fact, these propagators don’t

affect the mathematical structure of the diagram, because their product ∼ 1/
√

(ℓ · x)(ℓ′ · x)
for x on the geodesic, i.e. at R = 0, is just a constant (c.f. (54)).

I. Alternative non-traceless gauge for the DV solution

In [23], we found expressions for the DV solution in a set of alternative, non-traceless

gauges. We will use one of these in section 6. The HS potentials in these new gauges,

denoted in [23] as Φ(s), Φ′(s) and Φ
(s)
symm, read:

Φ(s) =
(i
√
2)s

πR
√
−x · x

(

T (s)(x, t + r, u) +
θ(s− 2)(gµνu

µuν)

4s(s− 1)(x · x) T
(s−2)(x, t+ r, u)

)

; (71)

Φ′(s) =
(i
√
2)s

πR
√
−x · x

(

T (s)(x, t− r, u) + θ(s− 2)(gµνu
µuν)

4s(s− 1)(x · x) T
(s−2)(x, t− r, u)

)

; (72)

Φ(s)
symm =

1

2

(

Φ(s) + Φ′(s)) , (73)

featuring the same tensor structure as the Fronsdal curvature (63). The virtue of the gauges

(71)-(73) is their simple behavior when applying the boundary field equation, i.e. the bound-
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ary conformal Laplacian, at one or both of ℓ and ℓ′:

�ℓ
Φ(s)

√
−ℓ · ℓ′

= − (ℓ′ · x)2
(−ℓ · ℓ′)5/2 Fφ

(s) ; (74)

�ℓ′
Φ′(s)
√
−ℓ · ℓ′

= − (ℓ · x)2
(−ℓ · ℓ′)5/2 Fφ

(s) ; (75)

�ℓ�ℓ′
Φ

(s)
symm√
−ℓ · ℓ′

= −(i
√
2)s(x · x)2

(−ℓ · ℓ′)5/2
[

Q(s) +
θ(s− 2)(gµνu

µuν)

4s(s− 1)(x · x) Q(s−2)

]

. (76)

Here, Fφ(s) are the gauge-independent Fronsdal tensors (63), proportional to the geodesic

delta function, while Q(p) is a traceless tensor involving the geodesic delta function and its

bulk Laplacian:

Q(p)(x, u; ℓ, ℓ′) ≡ 1

p!
uµ1 . . . uµpQµ1...µp

= T (p)(x, t, u)

(

∇ · ∇ +
p(p− 1)

x · x

)

δ3(x; ℓ, ℓ′) . (77)

We see that the RHS of (74)-(76) are all delta-function-like distributions which vanish away

from the geodesic γ(ℓ, ℓ′). This can be viewed as a bulk version of the free field equation

�ℓχ
I(ℓ) = �ℓ′χ̄I(ℓ

′) = 0 on the boundary, which becomes �ℓ
O(ℓ,ℓ′)√
−ℓ·ℓ′ = �ℓ′

O(ℓ,ℓ′)√
−ℓ·ℓ′ = 0 in terms

of bilocals.

J. Sleight-Taronna on-shell cubic vertex

Let us now review the Sleight-Taronna cubic vertex [9] for on-shell HS fields. In general,

a cubic vertex is a symmetric scalar function of three HS fields h
(si)
i (i = 1, 2, 3) and their

spacetime derivatives. To keep track of which field the derivatives act on, it’s convenient to

use a “point-split” formalism. This means that the three fields are temporarily associated

with different spacetime points xµi , which we set equal after acting as needed with derivatives

∂µxi
. Similarly, the vertex’s tensor structure can be encoded by using a different polarization

vector uµi to package each field’s indices as in (5). The vertex will then contain derivatives ∂µui
,

which “expose” the fields’ tensor indices before contracting them appropriately into a scalar.

Thus, a general cubic vertex is a differential operator V (s1,s2,s3)(∂x1 , ∂u1; ∂x2 , ∂u2 ; ∂x2 , ∂u3),

which must contain si factors of ∂ui
for each i = 1, 2, 3. Overall, the bulk action from

coupling the three HS fields h
(si)
i via the vertex V (s1,s2,s3) evaluates to:

Ss1,s2,s3[V ; h1, h2, h3] = −
∫

EAdS4

d4xV (s1,s2,s3)(∂x1 , ∂u1 ; ∂x2 , ∂u2; ∂x3 , ∂u3)

× h(s1)1 (x1, u1)h
(s2)
2 (x2, u2)h

(s3)
3 (x3, u3)

∣

∣

∣

x1=x2=x3=x
.

(78)
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The specific on-shell vertex discovered in [9] is given by the simple formula:

V
(s1,s2,s3)
ST (∂x1 , ∂u1; ∂x2 , ∂u2 ; ∂x3, ∂u3) =

8
(

i
√
2
)s1+s2+s3

Γ(s1 + s2 + s3)

×
[

(∂u1 · ∂x2)
s1(∂u2 · ∂x3)

s2(∂u3 · ∂x1)
s3 + (∂u1 · ∂x3)

s1(∂u2 · ∂x1)
s2(∂u3 · ∂x2)

s3
]

.

(79)

We wrote the vertex (79) as a sum of two tensor structures, each corresponding to a cyclic or-

dering of the 3 legs. Taking the average over both orderings makes (79) completely symmetric

under permutations. The 3-point function calculation of [9] did not require this averaging,

but it will prove important for gauge invariance beyond transverse-traceless gauge. Note

that the vertex (79) doesn’t carry on overall factor of∼ 1√
N
, due to our normalization choices

(32)-(35) for the boundary operators and our decision in (66)-(68) to separate a factor of N

from the N -independent “classical” action. The factor of is1+s2+s3 in (79) does not appear

in [9], and is due to the factor of (−i)s in our definition (34)-(35) of the boundary currents.

The cubic-scalar case s1 = s2 = s3 = 0 has a well-known singularity: the coupling in (79)

vanishes, but the bulk integral in (78) diverges. Through dimensional regularization, upon

inserting the appropriate dimension-dependence in (79), one can show that the answer is

given by a boundary integral:

S0,0,0[VST; h1, h2, h3] = − lim
D→4

V
(0,0,0)
ST

∫

EAdSD

dDxh
(0)
1 (x)h

(0)
2 (x)h

(0)
3 (x)

= −8
∫

d3ℓ h
(0)
1 (ℓ)h

(0)
2 (ℓ)h

(0)
3 (ℓ) ,

(80)

where h(0)(ℓ) is the analytic continuation of the bulk field h(0)(x) onto the R
1,4 lightcone.

Since h(0)(x) has scaling weight ∆ = 1, this is the same as evaluating its weight-1 boundary

data.

Now, the main result of [9] is that the simple vertex formula (79), acting on three

boundary-bulk propagators Π(si)(x, u; ℓi, λi) ≡ Πi, reproduces the CFT correlator of the

corresponding boundary HS currents j(si)(ℓi, λi) ≡ j
(si)
i :

−NSs1,s2,s3[VST; Π1,Π2,Π3] =
〈

j
(s1)
1 j

(s2)
2 j

(s3)
3

〉

, (81)

where N again plays the role of an inverse Planck constant, as in (66)-(68). Abstractly, eq.

(81) defines the action of the vertex VST on a certain class of field configurations, spanned

by the boundary-bulk propagators. This class of field configurations is defined by three

constraints:
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• Source-free, i.e. vanishing Fronsdal curvature.

• Transverse-traceless, i.e. vanishing divergence and trace.

• Decaying with weight ∆ = s + 1 as x approaches the boundary, except near the

insertion points ℓi.

3. GAUGE INVARIANCE OF SLEIGHT-TARONNA VERTEX FOR TRACELESS

SOURCE-FREE FIELDS

In this section, we prove that the Sleight-Taronna vertex (79) is gauge-invariant up to

boundary terms, when restricted to source-free, traceless fields. This extends the original

statement in [9], which was that each of the two cyclic terms in (79) is gauge-invariant when

further restricted to source-free, transverse-traceless fields. We will use the techniques of

[8] for manipulating a cubic vertex in the radial-reduction formalism (see also [40]), while

adjusting for the fact that our bulk fields have scaling weight ∆ = s+1 rather than ∆ = 2−s.
Finally, in section 3D, we identify a class of field asymptotics for which the gauge invariance

is complete, i.e. the boundary terms in the gauge transformation also vanish.

A. Notations and method

First, we introduce compact notations for various contracted derivatives (note that the

field labels i, j = 1, 2, 3 aren’t subject to the Einstein summation convention):

�i ≡ ∂xi
· ∂xi

; Di ≡ ∂ui
· ∂xi

; Yij ≡ ∂ui
· ∂xj

; Zij = ∂ui
· ∂uj

. (82)

With this notation, the Sleight-Taronna vertex (79) becomes:

V
(s1,s2,s3)
ST =

8
(

i
√
2
)s1+s2+s3

Γ(s1 + s2 + s3)

[

Y s1
12 Y

s2
23 Y

s3
31 + Y s1

13 Y
s2
21 Y

s3
32

]

. (83)

Now, consider a gauge transformation (14) of e.g. the field h3 (where we suppress the spin

superscripts to reduce clutter):

δh3(x3, u3) =

(

u3 · ∂x3 + (2s− 1)
u3 · x3
x3 · x3

)

Λ3(x3, u3) . (84)

Our statement is that, for source-free traceless fields, the cubic action (78) changes under

this transformation by at most boundary terms. To make the calculation tractable, we
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follow [8] in writing the bulk integral (78) as a 5d integral over R
1,4 with a delta function

inserted:

Ss1,s2,s3 = 2

∫

d5x δ(x · x+ 1)

× V (∂x1 , ∂u1; ∂x2 , ∂u2 ; ∂x3 , ∂u3)h1(x1, u1)h2(x2, u2)h3(x3, u3)
∣

∣

∣

xi=x
.

(85)

Thus, the gauge-invariance statement that we wish to prove takes the form:

∫

d5x δ(x · x+ 1)
[

Y s1
12 Y

s2
23 Y

s3
31 + Y s1

13 Y
s2
21 Y

s3
32

]

(

u3 · ∂x3 + (2s3 − 1)
u3 · x3
x3 · x3

)

h1h2Λ3

∣

∣

∣

∣

xi=x

= boundary terms , (86)

where h1, h2 are subject to the constraints for traceless Fronsdal fields on EAdS4 with

vanishing Fronsdal tensor:

(xi · ∂ui
)hi = (∂ui

· ∂ui
)hi = 0 ; (xi · ∂xi

)hi = −(s+ 1)hi ; (87)

(∂xi
· ∂xi

)hi =

(

ui · ∂xi
+ (2s− 1)

ui · xi
xi · xi

)

Dihi , (88)

and Λ3 is subject to the constraints for a traceless, divergence-free gauge parameter:

(x3 · ∂u3)Λ3 = (∂u3 · ∂u3)Λ3 = 0 ; (x3 · ∂x3)Λ3 = −sΛ3 ; D3Λ3 = 0 . (89)

Our method of proof will be to manipulate the differential operator inserted between δ(x ·
x + 1) and h1h2Λ3 in (86). We will use the “weak equality” sign “≈” to denote that two

operators are equal when sandwiched between δ(x · x+ 1) and h1h2Λ3 and integrated as in

(86), up to boundary terms. The main strategy is to commute various factors within the

operator to the left or to the right, where they can vanish or simplify. When on the right,

we can use the fields’ properties (87)-(89) as:

(. . . )(xi · ∂ui
) ≈ (. . . )(∂ui

· ∂ui
) ≈ 0 ; (90)

(. . . )(xi · ∂xi
) ≈ −(si + 1)(. . . ) [for i = 1, 2] ; (. . . )(x3 · ∂x3) ≈ −s3(. . . ) ; (91)

(. . . )(∂xi
· ∂xi

) = (. . . )

(

ui · ∂xi
+ (2s− 1)

ui · xi
xi · xi

)

Di [for i = 1, 2] ; (92)

(. . . )D2
i = 0 [for i = 1, 2] ; (. . . )D3 = 0 , (93)

where the D2
i identity comes from the Fronsdal tensor’s trace (27).
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When on the left, we can use the coincidence relation xµi = xµ and the EAdS4 condition

x · x = −1:

xi · (. . . ) ≈ x · (. . . ) ; (x · x)(. . . ) ≈ −(. . . ) . (94)

Also, a factor of uµi on the left always vanishes, because it implies that there are more ∂ui

derivatives than factors of ui to its right:

ui · (. . . ) = 0 . (95)

Finally, a total derivative ∂µx = ∂µx1
+ ∂µx2

+ ∂µx3
on the left can be integrated by parts, as:

∂x · (. . . ) ≈ −(3 + x · ∂x) x · (. . . ) . (96)

This arises from acting with ∂x on the delta function δ(x ·x+1) that always implicitly stands

to the left of our operator. In more detail, for any vector fµ, we have:
∫

d5x δ(x · x+ 1)(∂x · f) = −2
∫

d5x δ′(x · x+ 1)(x · f) + boundary terms . (97)

Denoting ρ ≡
√
−x · x, the radial part of the integral (97) can now be written as:

2

∫

ρ4dρ δ′(ρ2 − 1)(x · f) = −
∫

dρ δ(ρ2 − 1)
d

dρ

(

ρ3(x · f)
)

. (98)

Identifying d
dρ

with x · ∂x, this yields the desired prescription (96).

B. Two Lemmas

Before proving (86), let us establish two useful identities, or Lemmas. The first one

concerns the commutation of a factor of xi · xi + 1 from the right of a differential operator

to the left (where it becomes simply zero).

Lemma 1. Assuming only the tangential and traceless properties (90), the following identity

holds:

Y p1
12 Y

p2
23 Y

p3
31 Dn1

1 Dn2
2 Dn3

3 (x3 · x3 + 1) ≈ −2p1p2Z12Y
p1−1
12 Y p2−1

23 Y p3
31 Dn1

1 Dn2
2 Dn3

3 . (99)

To prove this, let us start from the LHS of (99), and commute one of the xµ3 factors to

the left:

Y p1
12 Y

p2
23 Y

p3
31 Dn1

1 Dn2
2 Dn3

3 (x3 · x3) = x3µY
p1
12 Y

p2
23 Y

p3
31 Dn1

1 Dn2
2 Dn3

3 x
µ
3

+ n3Y
p1
12 Y

p2
23 Y

p3
31 Dn1

1 Dn2
2 Dn3−1

3 (x3 · ∂u3) + p2Y
p1
12 Y

p2−1
23 Y p3

31 Dn1
1 Dn2

2 Dn3
3 (x3 · ∂u2) .

(100)
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The second term vanishes due to (90). In the first and third terms, we commute xµ3 to the

left again (omitting a vanishing term ∼ ∂u2 · ∂u2):

Y p1
12 Y

p2
23 Y

p3
31 Dn1

1 Dn2
2 Dn3

3 (x3 · x3 + 1) = n3(x3 · ∂u3)Y
p1
12 Y

p2
23 Y

p3
31 Dn1

1 Dn2
2 Dn3−1

3

+ 2p2(x3 · ∂u2)Y
p1
12 Y

p2−1
23 Y p3

31 Dn1
1 Dn2

2 Dn3
3 + p2n3Z23Y

p1
12 Y

p2−1
23 Y p3

31 Dn1
1 Dn2

2 Dn3−1
3 .

(101)

Now, in the first term of (101), we commute x3 · ∂u3 to the right, where it vanishes. The

commutator with Dn3−1
3 gives ∂u3 ·∂u3 which vanishes, while the commutator with Y p2

23 cancels

the third term in (101). We are thus left with only the second term, in which we can trade

the x3 on the left for x2:

Y p1
12 Y

p2
23 Y

p3
31 Dn1

1 Dn2
2 Dn3

3 (x3 · x3 + 1) = 2p2(x2 · ∂u2)Y
p1
12 Y

p2
23 Y

p3−1
31 Dn1

1 Dn2
2 Dn3

3 . (102)

We now commute x2 ·∂u2 to the right, where it vanishes. The only non-vanishing contribution

comes from commuting with Y p1
12 , which yields the desired result (99).

Our second Lemma presents a particular situation in which integration by parts works

just like in flat spacetime, where total-derivative terms of the form ∂x · f can be simply

discarded.

Lemma 2. Assuming only the tangential and traceless properties (90), a scaling property of

the form (91) with arbitrary scaling weights (. . . )(xi · ∂xi
) = −∆i(. . . ), and the integration-

by-parts property (96), the following identity holds:

(Y12 − ∂u1 · ∂x)p1(Y23 − ∂u2 · ∂x)p2(Y31 − ∂u3 · ∂x)p3 ≈ Y p1
12 Y

p2
23 Y

p3
31 . (103)

Equivalently (expanding ∂µx = ∂µx1
+ ∂µx2

+ ∂µx3
in the parentheses and reshuffling the field

labels):

Y p1
13 Y

p2
21 Y

p3
32 ≈ (−1)p1+p2+p3(Y12 +D1)

p1(Y23 +D2)
p2(Y31 +D3)

p3 . (104)

As an aside, eq. (104) is closely related to the fact that for boundary-bulk propagators in

transverse-traceless gauge, the two terms in the vertex (79) yield the same result (i.e. that

in this gauge, there’s no need to write both terms).

Let us now prove the Lemma’s statement, in the form (103). First, we apply the

integration-by-parts prescription (96) to all the factors of ∂u1 · ∂x. This yields factors of

x · ∂x and x · ∂u1 . The former simply yield some multiplicative constants due to the scaling

weights; the latter can be written as x1 · ∂u1 , and then commuted from the left to the right,

where it vanishes. The commutation yields:
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• Zero from commuting with Y12, Y23 or Y31 − ∂u3 · ∂x.

• ∂u1 · ∂u1 ≈ 0 from commuting with ∂u1 · ∂x.

• Z12 from commuting with ∂u2 · ∂x.

After these manipulations, we are left with a polynomial in Y12, Y23, ∂u2 · ∂x, Y31 − ∂u3 · ∂x
and Z12. The next step is then to integrate by parts all the factors of ∂u2 · ∂x. Analogously
to the previous step, this yields factors of x2 · ∂u2 , which we proceed to commute from the

left to the right. The commutation yields:

• Zero from commuting with Y23, Y31 or Z12.

• ∂u2 · ∂u2 ≈ 0 from commuting with ∂u2 · ∂x.

• Z12 from commuting with Y12.

• Z23 from commuting with ∂u3 · ∂x.

We are now left with a polynomial in Y12, Y23, Y31, ∂u3 ·∂x, Z12 and Z23. Finally, we integrate

by parts the factors of ∂u3 ·∂x. Commuting the resulting factors of x3 ·∂u3 from left to right,

we get:

• Zero from commuting with Y12, Y31, Z12 or Z23.

• ∂u3 · ∂u3 ≈ 0 from commuting with ∂u3 · ∂x.

• Z23 from commuting with Y23.

We finally end up with a polynomial in Y12, Y23, Y31, Z12, Z23. But this is an artifact of

the particular order 1 → 2 → 3 in which we chose to integrate by parts the factors of

∂ui
· ∂x. By choosing 2 → 3 → 1 or 3 → 1 → 2 instead, we’d end up with polynomials

in Y12, Y23, Y31, Z23, Z31 or Y12, Y23, Y31, Z31, Z12, respectively. This is consistent only if the

answer doesn’t depend on the Zij’s at all, i.e. if the nonzero ∼ Zij commutators in our

manipulations above all cancel. Therefore, the answer simply consists of the original factors

of Y12, Y23, Y31, as claimed in (103).
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C. Proof of gauge invariance up to boundary terms

We are now ready to prove eq. (86), i.e.:

[

Y s1
12 Y

s2
23 Y

s3
31 + Y s1

13 Y
s2
21 Y

s3
32

]

(

u3 · ∂x3 + (2s3 − 1)
u3 · x3
x3 · x3

)

≈ 0 . (105)

We begin by manipulating the first term in (105), namely

Y s1
12 Y

s2
23 Y

s3
31

(

u3 · ∂x3 + (2s3 − 1)u3·x3

x3·x3

)

. The calculation is lengthy, and consists of iter-

ating the following steps:

• Commute any factors of uµi to the left, where they vanish.

• Rewrite any factor of ∂xi
· ∂xj

with i 6= j as e.g. ∂x1 · ∂x2 = 1
2

(

∂x · (∂x1 + ∂x2 − ∂x3)−
�1 −�2 +�3

)

, and integrate the first term by parts.

• Evaluate any factor of x ·∂x or xi ·∂xi
according to the scaling weight of the expression

to its right.

• Rewrite any factor of x · ∂xi
on the left as xi · ∂xi

, so it can be evaluated as above.

• Commute any factor of xi · ∂xj
with i 6= j to the left, where it can become xj · ∂xj

and

be evaluated as above.

• Rewrite any factor of x · ∂ui
on the left as xi · ∂ui

, and commute it to the right, where

it vanishes.

• Convert any factor of Y13, Y21, Y32 back into factors of Y12, Y23, Y31 by writing e.g.

Y13 = ∂u1 · ∂x −D1 − Y12, and integrate the first term by parts.

• Use eq. (99) (Lemma 1) to convert any term with a factor of Zij into terms without

it.

• Rewrite any factor of �1 or �2 on the right using the source-free condition (92), unless

it occurs in the combination D1�1 or D2�2, in which case the rewriting results in a

closed loop.

• Use eq. (93) to discard any terms with D2
1 or D3 on the right.
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The result of this procedure reads:

Y s1
12 Y

s2
23 Y

s3
31

(

u3 · ∂x3 + (2s3 − 1)
u3 · x3
x3 · x3

)

≈ −s3Y s1
12 Y

s2
23 Y

s3−1
31

(

�3

2
+

2s3 − 1

x3 · x3

)

+ s1s3Y
s1−1
12 Y s2

23 Y
s3−1
31 D1

(

s1 + s2 + s3 − 1 +
�1 −�3

4

)

(106)

− s2s3Y s1
12 Y

s2−1
23 Y s3−1

31 D2

(

s1 + s2 + s3 − 1 +
�2 +�3

4
+

2s3 − 1

x3 · x3

)

− s1s2s3Y s1−1
12 Y s2−1

23 Y s3−1
31 D1D2

(

s1 + s2 + s3 − 1 +
1

4

(

�2 +
2s1 − 1

x1 · x1
+

2s2 − 1

x2 · x2

))

.

In transverse-traceless gauge, the fields h1, h2 and the gauge parameter Λ3 would satisfy

D1 ≈ D2 ≈ �3 +
2(2s3−1)
x3·x3

≈ 0 (c.f. (29)), making the variation (106) simply vanish. In

general traceless gauge, we must work a bit harder. To proceed, let us apply analogous

manipulations to the second term in (105), namely to Y s1
13 Y

s2
21 Y

s3
32

(

u3 · ∂x3 + (2s3 − 1)u3·x3

x3·x3

)

.

The result can be directly read off from (106), by interchanging the field labels 1↔ 2:

Y s1
13 Y

s2
21 Y

s3
32

(

u3 · ∂x3 + (2s3 − 1)
u3 · x3
x3 · x3

)

≈ −s3Y s1
13 Y

s2
21 Y

s3−1
32

(

�3

2
+

2s3 − 1

x3 · x3

)

− s1s3Y s1−1
13 Y s2

21 Y
s3−1
32 D1

(

s1 + s2 + s3 − 1 +
�1 +�3

4
+

2s3 − 1

x3 · x3

)

(107)

+ s2s3Y
s1
13 Y

s2−1
21 Y s3−1

32 D2

(

s1 + s2 + s3 − 1 +
�2 −�3

4

)

− s1s2s3Y s1−1
13 Y s2−1

21 Y s3−1
32 D1D2

(

s1 + s2 + s3 − 1 +
1

4

(

�1 +
2s1 − 1

x1 · x1
+

2s2 − 1

x2 · x2

))

.

Now, let us apply eq. (104) (Lemma 2) to each term on the RHS of (107). We get:

Y s1
13 Y

s2
21 Y

s3
32

(

u3 · ∂x3 + (2s3 − 1)
u3 · x3
x3 · x3

)

≈ s3(Y12 +D1)
s1(Y23 +D2)

s2Y s3−1
31

(

�3

2
+

2s3 − 1

x3 · x3

)

(108)

− s1s3Y s1−1
12 (Y23 +D2)

s2Y s3−1
31 D1

(

s1 + s2 + s3 − 1 +
�1 +�3

4
+

2s3 − 1

x3 · x3

)

+ s2s3(Y12 +D1)
s1Y s2−1

23 Y s3−1
31 D2

(

s1 + s2 + s3 − 1 +
�2 −�3

4

)

+ s1s2s3Y
s1−1
12 Y s2−1

23 Y s3−1
31 D1D2

(

s1 + s2 + s3 − 1 +
1

4

(

�1 +
2s1 − 1

x1 · x1
+

2s2 − 1

x2 · x2

))

,

where we fixed the sign factors in (104) using the fact that s1 + s2 + s3 is even, and used

(93) to discard any terms proportional to D2
1, D2

2 or D3. The last step is to expand the RHS

of (108) in powers of D1,D2, again discarding terms proportional to D2
1 or D2

2. The result

is precisely minus the RHS of (106), thus proving the desired relation (105).
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D. Constraining the boundary contribution

So far in this section, we’ve been evaluating gauge variations up to boundary terms. Let

us now tackle the question of boundary terms, under a certain assumption on the fields’

asymptotics. Specifically, consider a traceless (not necessarily transverse) spin-s pure-gauge

field, whose components in an orthonormal Poincare basis (see section 2D) decay towards

the boundary as zs+1 or faster:

h̃(s)(x, u) = (u · ∇)Λ(s)(x, u) ; (∂u · ∂u)h̃(s) = 0 ; (109)

[h̃(s)]q,s−q = O(zs+1) . (110)

Our claim is that the on-shell cubic correlator formula (81) continues to hold when the

boundary-bulk propagators Π(s) are shifted by such pure-gauge fields:

−NSs1,s2,s3[VST; Π1 + h̃1,Π2 + h̃2,Π3 + h̃3] =
〈

j
(s1)
1 j

(s2)
2 j

(s3)
3

〉

. (111)

This is equivalent to saying that a gauge transformation of the form (109)-(110) has no effect

on correlators of the form (111):

Ss1,s2,s3[VST; Π1 + h̃1,Π2 + h̃2, h̃3] = 0 . (112)

From our previous result (86), we already know that (112) is true up to boundary terms.

Our goal now is to show that the boundary terms also vanish. Unfortunately, it’s difficult

to track all the specific boundary terms that arise from the various integrations by parts

in sections 3B-3C, especially the ones that occur in the proof of Lemma 2. Instead, we

will simply consider all possible boundary terms, and show that they all vanish by power

counting.

To perform this asymptotic power counting, we invoke the formalism of Poincare coordi-

nates with a normalized basis from section 2D. Near the boundary z → 0, derivatives with

respect to the “radial” coordinate z and the “tangential” coordinates ya scale as:

∂

∂z
= O(z−1) ;

∂

∂ya
= O(1) . (113)

Switching to normalized derivatives, i.e. derivatives along unit vectors, this becomes:

e0 · ∇ = O(1) ; ea · ∇ = O(z) . (114)
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Now, a key difficulty in our analysis is that the boundary terms in the gauge transformation

(112) involve not the pure-gauge field h̃3 itself, but rather its gauge parameter Λ3. We

therefore need to understand how the condition (110) on h̃(s) constrains the asymptotics of

Λ(s). To do this, we note that Λ(s) satisfies (c.f. (28)):

(∂u · ∂u)Λ(s) = (∂u · ∇)Λ(s) = 0 ; (115)
(

∇ · ∇+
s2 − 1

x · x

)

Λ(s) = (∂u · ∇)h̃(s) . (116)

This is nothing but an inhomogeneous version of the transverse-traceless field equations (47)

for the rank-(s − 1) “field” Λ(s), with weight w = s + 2 (or, equivalently, w = 1 − s), and
with the divergence (∂u · ∇)h̃(s) in the role of a source term. We quickly see from (114) that

the z scaling of this source term is the same as that of h̃(s) itself, namely:

[

(∂u · ∇)h̃(s)
]

q,s−1−q
= O(zs+1) . (117)

Note that (∂u·∇)h̃(s) is a divergence-free symmetric rank-(s−1) tensor (the second divergence

of h̃(s) vanishes due to (27)), and that (117) is the natural scaling for such divergence-free

(i.e. conserved) quantities.

Now, eqs. (115)-(116) determine the gauge parameter Λ(s) up to boundary conditions,

which are governed in turn by the source-free version of (115)-(116). As we saw in section

2E, these boundary conditions are associated with two possible z scalings for the normalized

Poincare components [Λ(s)]q,s−1−q, namely ∼ zs+2+q and ∼ z1−s+q. Our claim is then that

the correct solution of eqs. (115)-(116) is the one with the ∼ z1−s+q boundary data vanishing.

To see that this is the case, note that the dominant z scaling of this solution is:

[Λ(s)]q,s−1−q = O(zs+1) , (118)

since the remaining ∼ zs+2+q boundary data is dominated by the O(zs+1) source term. This

then implies the desired scaling (110) for the pure-gauge field h̃(s) = (u · ∇)Λ(s) itself. Any

other solution of (115)-(116) will differ from this one by a solution Λ′(s) to the homogeneous

equations, corresponding to a transverse-traceless pure-gauge (and thus source-free) field

h̃′(s). But, by the analysis of section 2E, any such nonzero field would contain [h̃′(s)]q,s−q ∼
z2−s+q boundary data, in contradiction with our assumption (110). And if h̃′(s) is zero, then

we can simply throw away the contribution Λ′(s) to the gauge parameter, and return to the

original solution Λ(s) with vanishing ∼ z1−s+q boundary data. The upshot of this analysis is
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that our pure-gauge field h̃(s) can be described by a gauge parameter Λ(s) that scales near

the boundary as (118).

We are now ready to assemble the subsection’s main claim (112). The most general

boundary contribution from turning on the pure-gauge field h̃3 is a boundary integral over

some function of the fields Π1 + h̃1 and Π2 + h̃2, the gauge parameter Λ3, and their EAdS4

derivatives. Since volume measure scales as ∼ z−3, the integral will vanish if the integrand

vanishes faster than z3. Let us now show that this is the case. Away from the source points

ℓ1 and ℓ2, we see from (51),(114),(118) that the fields and the gauge parameter scale as

O(zs1+1), O(zs2+1) and O(zs3+1) respectively, while the EAdS4 derivatives scale as O(1).

Since at least s3 is greater than zero (otherwise, there’s no gauge transformation to speak

of), we conclude that the overall power of z is greater than 3, as required.

It remains to consider the contributions from the source points ℓ1 and ℓ2, where Π1 and

Π2 have the delta-function-like contributions (52). Let us focus e.g. on the contribution from

ℓ1. We can integrate by parts to remove any boundary derivatives ea · ∇ from Π1, moving

them onto Π2 + h̃2 and Λ3. Now, consider separately the different components [Π1]q1,s1−q1

of Π1. These scale as ∼ z2−s1+q1, while Π2 + h̃2 and Λ3 still scale as O(zs2+1) and O(zs3+1)

respectively. The overall power of z thus appears to be 4 − s1 + q1 + s2 + s3, which is a

problem if s1 − q1 > s2 + s3. However, in that case, a new consideration comes into play.

Recall that s1 − q1 is the number of indices on Π1 that are tangential to the boundary. By

rotational invariance, these must be contracted with indices on Π2 + h̃2, Λ3, or derivatives.

But Π2 + h̃2 and Λ3 have only s2 and s3− 1 indices respectively, which implies that at least

s1 − q1 − s2 − s3 + 1 indices must be contracted with tangential derivatives ea · ∇, each of

which contributes an extra power of z, according to (114). Overall, we conclude that the

delta-function-like contributions to the boundary integrand scale as O(z5), and thus their

integral also vanishes.

This concludes our derivation of the invariance relation (112). We’ve thus shown that the

Sleight-Taronna vertex correctly computes the cubic correlator (111) in a general traceless

gauge with the asymptotic behavior (110).
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4. BULK LOCALITY STRUCTURE OF GENERAL CUBIC CORRELATOR

In this section, we state and argue our main claims vis. the bulk locality struc-

ture of the cubic correlator 〈O+(ℓ1, ℓ
′
1)O+(ℓ2, ℓ

′
2)O+(ℓ3, ℓ

′
3)〉 of boundary bilocals. We

begin in section 4A by laying out the structure of the bilocal-local-local correlator

〈j(s1)(ℓ1, λ1)j(s2)(ℓ2, λ2)O+(ℓ3, ℓ
′
3)〉, which involves a new interaction vertex between the DV

geodesic “worldline” γ3 and the fields h1, h2. In section 4B, we describe a general ansatz

for this new vertex. In sections 4C and 4D, we state and verify locality criteria for the new

vertex, in the directions perpendicular and parallel to γ3, respectively. In section 4E, we

extend the new vertex beyond transverse-traceless gauge. Finally, in section 4F, we show

how the bulk diagrams for the general bilocal3 correlator can be “stitched together” from

bilocal-local-local ones.

A. Bulk structure of (local,local,bilocal) correlator

Consider the cubic correlator between two local currents j(s1)(ℓ1, λ1) ≡ j
(s1)
1 and

j(s2)(ℓ2, λ2) ≡ j
(s2)
2 , and one bilocal operator O+(ℓ3, ℓ

′
3). For even s1 and s2, the CFT

correlator is automatically symmetric under ℓ3 ↔ ℓ′3. This allows us to replace the sym-

metrized bilocal O+(ℓ3, ℓ
′
3) by the unsymmetrized one O(ℓ3, ℓ′3) ≡ O3, which will slightly

simplify the analysis.

At the linearized level, the operators j
(s1)
1 , j

(s2)
2 ,O3 are dual in the bulk to a pair of

boundary-bulk propagators Π(s1)(x, u; ℓ1, λ1) ≡ Π1 and Π(s2)(x, u; ℓ2, λ2) ≡ Π2, and a DV

solution φ(s)(x, u; ℓ3, ℓ
′
3) ≡ φ3 associated with a worldline geodesic γ(ℓ3, ℓ

′
3) ≡ γ3. Our

statement is that the cubic correlator can be constructed from these bulk objects as:

〈

j
(s1)
1 j

(s2)
2 O3

〉

= −N
(

∑

s3

Ss1,s2,s3[VST; Π1,Π2, φ3]

− Ss1[Π1, γ3]Ss2[Π2, γ3] + Ss1,s2[Vnew,TT; Π1,Π2, γ3]

)

.

(119)

We will also consider the case where Π1,Π2 are shifted by traceless pure-gauge fields h̃1, h̃2,

as in section 3D, subject to the asymptotic condition (110). For this case, we claim that a
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FIG. 4: The bulk diagrams that describe the correlator 〈j1j2O3〉 of two local boundary currents

and one bilocal. VST is the Sleight-Taronna cubic vertex, while Vnew is a new vertex that couples

two HS fields to a DV particle’s worldline. We argue that the non-localities in Vnew are confined

to ∼ 1 AdS radius.

relation of the form (119) will hold again, as:

〈

j
(s1)
1 j

(s2)
2 O3

〉

= −N
(

∑

s3

Ss1,s2,s3[VST; Π1 + h̃1,Π2 + h̃2, φ3]

− Ss1 [Π1 + h̃1, γ3]Ss2[Π2 + h̃2, γ3] + Ss1,s2[Vnew; Π1 + h̃1,Π2 + h̃2, γ3]

)

.

(120)

Each term in (119)-(120) describes a different bulk diagram, as depicted in figure 4. The

meaning of each term is as follows (referring to the input fields Πi or Πi + h̃i with i = 1, 2

as simply hi):

• The Ss1,s2,s3[VST; h1, h2, φ3] term describes the three fields h1, h2, φ3 coupled by the

Sleight-Taronna cubic vertex, just like in the standard 〈jjj〉 correlator (81). To support
our replacement of the symmetrized O+(ℓ3, ℓ

′
3) by the unsymmetrized O(ℓ3, ℓ′3), we

simply define VST to vanish for odd s3.

• The Ss1[h1, γ3]Ss2[h2, γ3] term is a product of two quadratic actions of the form

(65),(70). It describes a diagram where each of the fields h1, h2 couples indepen-

dently to the geodesic γ3. Such a term is natural if we consider γ3 as not just a source

for the DV solution φ3, but as the physical worldline of a (infinitely heavy) particle.

• Finally, the Ss1,s2[Vnew; h1, h2, γ3] term describes a new cubic vertex coupling both fields

h1, h2 to the γ3 worldline. The additional “TT” subscript in (119) refers to the fact

that the vertex in that formula couples transverse-traceless fields, as opposed to (120),

where transversality is dropped.
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The new interaction term Ss1,s2[Vnew; h1, h2, γ3] can be written a bit more explicitly as:

Ss1,s2[Vnew; h1, h2, γ3] = −
∫ ∞

−∞
dτ V (s1,s2)

new

(

∂x1 , ∂u1 ; ∂x2 , ∂u2; ẋ(τ ; ℓ3, ℓ
′
3)
)

× h(s1)1 (x1, u1)h
(s2)
2 (x2, u2)

∣

∣

∣

x1=x2=x(τ ;ℓ3,ℓ′3)
.

(121)

This is similar to a usual cubic diagram formula (78), except the integral is over γ3 instead

of the entire EAdS4, and the vertex V
(s1,s2)
new is allowed to depend on the geodesic’s tangent

vector ẋµ. The different powers of ẋµ in the vertex can be viewed as couplings to the different

spins s3 of the HS multiplet carried by the DV “particle” on γ3. It is worth emphasizing

that any cubic quantity can be reproduced by an action (121) with a sufficiently general

vertex V
(s1,s2)
new . The non-trivial part of our statement is that this vertex satisfies appropriate

locality criteria, which we’ll describe below.

B. Ansatz for Vnew,TT

Let us now describe a general ansatz for Vnew,TT – the new vertex that reproduces the

correct cubic correlator as in (119), when coupling two boundary-bulk propagators Π1,Π2 to

a geodesic worldline γ3. These propagators span the space of source-free, transverse-traceless

fields h(s), and we’ll consider the vertex as acting on such fields.

A source-free field h(s) in transverse-traceless gauge is completely determined by boundary

data – for instance, in the language of sections 2D-2E, by the coefficient of z2−s in its

tangential components [h(s)]0,s in the asymptotic limit z → 0. Assuming analyticity, one can

equally well formulate such boundary data on a geodesic γ, via a tower of spatial derivatives

at each proper “time” τ . To construct a basis of such derivatives, we decompose the field

into components along the geodesic’s “time” direction ẋµ = tµ vs. the “spatial” directions

perpendicular to it, spanned by the 3d metric qµν ≡ gµν − tµtν . We then take either zero

or one 3d curls, followed by an arbitrary number of 3d gradients, and extract the totally

symmetric & traceless part with respect to the 3d metric qµν . Thus, a basis of boundary

data on a geodesic γ for a source-free, transverse-traceless field h(s)(x, u) is given by the

following 3d tensors, encoded as usual through a “polarization vector” uµ, at each point
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xµ(τ) on γ:

{

h(s)(τ, u)
}n

l,+
= (qµνu

µ∇ν)l−s+n(qµνu
µ∂νu)

s−n(t · ∂u)nh(s)(x, u)
∣

∣

∣

x=x(τ)
− 3d traces ; (122)

{

h(s)(τ, u)
}n

l,− = (qµνu
µ∇ν)l−s+n(ǫµνρu

µ∇ν∂ρu)(qµνu
µ∂νu)

s−n(t · ∂u)nh(s)(x, u)
∣

∣

∣

x=x(τ)

− 3d traces .

(123)

Here, l denotes the tensors’ 3d rank (i.e. their angular momentum number), and the ±
superscript denotes their spatial parity. Tensors with the same 3d structure (l,±) are dis-

tinguished by the superscript n, which denotes the number of indices on h(s) taken along the

time direction. ǫµνρ ≡ ǫµνρσλtσxλ is the 3d “spatial” Levi-Civita tensor, and “− 3d traces”

means subtracting ∼ qµνu
µuν terms so as to make the result traceless. n runs from 0 to s

for the even tensors (122), and from 0 to s− 1 for the odd tensors (123). l runs from s− n
to ∞ in both cases.

The general ansatz for the vertex Vnew,TT can now be assembled by constructing the

data (122)-(123) for the fields h1, h2 on the worldline γ3, and then coupling the pieces with

matching parity η = ± and angular momentum l:

Ss1,s2[Vnew,TT; h1, h2, γ3] = −
∫ ∞

−∞
dτ
∑

l,η

∑

n1,n2

{

h
(s1)
1 (τ, ∂u)

}n1

l,η
Kn1,n2

s1,s2,l,η
(∂τ )

{

h
(s2)
2 (τ, u)

}n2

l,η
,

(124)

where
{

h
(s1)
1 (τ, ∂u)

}n1

l,η
refers to computing

{

h
(s1)
1 (τ, u)

}n1

l,η
as in (122)-(123) and then substi-

tuting uµ → ∂µu , in order to contract the tensor indices with those of
{

h
(s2)
2 (τ, u)

}n2

l,η
.

The non-trivial information about the vertex is now contained in the kernel Kn1,n2

s1,s2,l,η
(∂τ ).

Once again, a sufficiently general K can describe any cubic quantity with the prescribed

spacetime symmetries. In particular, there exists a K that reproduces the cubic CFT cor-

relator as in (119). Our task will be to show that this K is sufficiently local, i.e. that its

non-locality is constrained to ∼ 1 AdS curvature radius. With respect to the geodesic γ3,

this locality statement can be split into two parts. First, we can speak of “radial local-

ity”, transverse to γ3. This amounts to Kn1,n2

s1,s2,l,η
(∂τ ) vanishing fast enough as the numbers

l − s1 + n1, l − s2 + n2 of “spatial” derivatives increase. Second, we can speak of “time

locality”, along γ3. This amounts to Kn1,n2

s1,s2,l,η
(∂τ ) being analytic in time derivatives ∂τ , and

its Taylor coefficients vanishing fast enough with increasing powers of ∂τ . In this paper, we

will not calculate Kn1,n2

s1,s2,l,η
(∂τ ), and thus we won’t be able to check these locality properties
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directly. Instead, we will formulate proxy criteria for them in terms of the behavior of the

diagram Ss1,s2[Vnew,TT; Π1,Π2, γ3] in certain limits, and then demonstrate that these criteria

hold.

C. Radial locality of Vnew,TT

1. Formulating the criterion

Our proxy criterion for radial locality is as follows.

Radial locality criterion. A vertex Vnew,TT coupling two boundary-bulk propagators Π1,Π2

to a geodesic worldline γ3 is radially local, if its action Ss1,s2[Vnew,TT; Π1,Π2, γ3] as a function

of the source points ℓ1, ℓ2 is analytic at ℓ1 = ℓ2.

The motivation for this criterion is depicted in figure 5. A radially local vertex should

only involve the fields Π1,Π2 near (i.e. within ∼ 1 AdS radius from) the γ3 worldline. In

that situation, depicted in figure 5(b), the diagram is analytic near ℓ1 = ℓ2, because it never

involves “short” propagators that would go singular in the limit. In contrast, in figure 5(a),

we see a “vertex” that couples Π1 and Π2 far from γ3. This allows for “short” propagators

from ℓ1, ℓ2, which cause a singularity at ℓ1 = ℓ2, i.e. an infinity in the diagram itself or in its

derivatives with respect to ℓ1, ℓ2. There is no third possibility, in the sense that the vertex

cannot depend on only one of Π1,Π2 at points distant from the geodesic. This is clear from

the ansatz (124), where the number of “spatial” derivatives acting on Π1,Π2 can grow only

together, governed by the angular momentum number l.

Note the similarity between figure 5(a) and the VST diagram from figure 4. Indeed, if

we were to foolishly express the “field-field-field” diagram
∑

s3
Ss1,s2,s3[VST; Π1,Π2, φ3] as a

“field-field-worldline” diagram Ss1,s2[ṼST; Π1,Π2, γ3], then ṼST would constitute an example

of a radially non-local vertex. It’s easy to see that this is consistent with our criterion above,

by noting e.g. that the diagram diverges at ℓ1 = ℓ2. To see this in detail, note that the

ℓ1 → ℓ2 limit is conformal to the ℓ3 → ℓ′3 limit, where the dominant contribution to the DV

field φ3 is a spin-0 boundary-bulk propagator, φ
(0)
3 ∼

√

−ℓ3 · ℓ′3Π
(0)
3 . Thus, the dominant

piece of
∑

s3
Ss1,s2,s3[VST; Π1,Π2, φ3] behaves at ℓ3 → ℓ′3 like a standard cubic diagram ∼

√

−ℓ3 · ℓ′3 Ss1,s2,0[VST; Π1,Π2,Π3] computing the cubic correlator∼
√

−ℓ3 · ℓ′3
〈

j
(s1)
1 j

(s2)
2 j

(0)
3

〉

,

which diverges at ℓ1 = ℓ2. Since we were careful to keep track of the conformal weights, it’s
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(a) (b)

FIG. 5: Illustration of our radial locality criterion. In panel (a), we see an interaction that is not

localized near the geodesic, i.e. that involves the fields Π1,Π2 arbitrarily far from it. In the limit

of nearby source points ℓ1, ℓ2, this creates contributions with “short” propagators, which become

singular at ℓ1 = ℓ2. In panel (b), we see an interaction that is localized near the geodesic. The

propagators from ℓ1, ℓ2 are now “long”, and the ℓ1 = ℓ2 limit has no singularities.

clear that the divergence at ℓ1 = ℓ2 holds also in the original conformal frame, where ℓ3, ℓ
′
3

are not necessarily close.

Moreover, the radial non-locality depicted in figure 5(a) is similar in nature to the infa-

mous non-locality of HS theory’s quartic scalar vertex in [11]. Indeed, the problem with the

quartic vertex is that it hides within it the structure of a bulk-bulk propagator, giving the

would-be contact diagram the structure of an exchange diagram. Again consistently with

our criterion, this diagram is indeed singular at ℓ1 = ℓ2, reproducing (up to a numerical

coefficient) the short-distance singularity of the quartic CFT correlator.

2. Verifying that the criterion holds

Having established and motivated our radial locality criterion, let us now demonstrate

that it holds for the vertex Vnew,TT that satisfies eq. (119). First, let us notice that the

ℓ1 → ℓ2 limit can be characterized as the limit of large bulk distance between the geodesic

γ(ℓ1, ℓ2) and the geodesic worldline γ3. Now, let us draw a bulk hypersurface Σ that splits

EAdS4 into two regions: a region Ω12 containing γ(ℓ1, ℓ2), and a region Ω3 containing γ3.

This splitting of EAdS4 is depicted as a dashed line in figure 6. The asymptotic boundary

is also split into two regions by Σ, which we’ll denote as B12 and B3. Crucially, we assume

that Σ, like γ3, is very far from γ(ℓ1, ℓ2).
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FIG. 6: An intermediate step in the radial locality argument. To the left of the dashed hypersurface

Σ, the DV field of γ3 is source-free, and can be written (up to gauge) as a superposition of boundary-

bulk propagators.

Now, consider the restriction to Ω12 of the DV field φ3. Within this region, φ3 is a solution

to the source-free Fronsdal equation. From [37], we know the following about its Weyl field

strength at boundary points L12 belonging to the region B12:

• The magnetic field strength (in the spin-0 case, the boundary data with weight ∆ = 2)

vanishes.

• The electric field strength (in the spin-0 case, the boundary data with weight ∆ = 1)

matches the bilocal-local correlators
〈

O(ℓ3, ℓ′3) j(s)(L12, λ12)
〉

.

Now, since it is source-free with vanishing magnetic boundary data on B12, the restriction

of φ3 to Ω12 must be, up to gauge, a superposition of boundary-bulk propagators Π3 with

source points in B3 (see figure 6):

φ(s3)(x, u; ℓ3, ℓ
′
3)
∣

∣

∣

x∈Ω12

=

∫

B3

d3L3A
(s3)
ℓ3,ℓ′3

(L3, ∂λ) Π
(s3)(x, u;L3, λ) + h̃

(s3)
3 (x, u) . (125)

Here, the coefficients A
(s3)
ℓ3,ℓ′3

describe some traceless boundary sources as in (37), while h̃3 is

a pure-gauge field. Furthermore, since the RHS of (125) has the same electric field strength

on B12 as the original field φ3, we conclude that the corresponding boundary currents in B3

have the same quadratic correlators with currents in B12 as the original bilocal O(ℓ3, ℓ′3):
∫

B3

d3L3A
(s)
ℓ3,ℓ′3

(L3, ∂λ)
〈

j(s)(L3, λ) j
(s)(L12, λ12)

〉

=
〈

O(ℓ3, ℓ′3) j(s)(L12, λ12)
〉

(126)

for all L12 ∈ B12 .

43



From the discussion in section 2C, it then follows that
∫

B3
d3L3A

(s)
ℓ3,ℓ′3

(L3, ∂λ) j
(s)(L3, λ) and

O(ℓ3, ℓ′3) have the same correlators with any operators in B12. In particular, they have the

same cubic correlators with our original local currents j
(s1)
1 and j

(s2)
2 :

∫

B3

d3L3

∑

s3

A
(s3)

ℓ3,ℓ′3
(L3, ∂λ)

〈

j
(s1)
1 j

(s2)
2 j(s3)(L3, λ)

〉

=
〈

j
(s1)
1 j

(s2)
2 O3

〉

. (127)

Now, consider the behavior of φ3 at the asymptotic boundary B12, by examining the formula

(59)-(60) for the DV solution. Since we’re away from the worldline endpoints ℓ3, ℓ
′
3, the

asymptotic boundary is a large-R regime. R itself scales asymptotically as R ∼ z−1, implying

that the norms (58) of tµ and rµ scale as
√
t · t ∼ z and

√
r · r ∼ 1. It is now easy to see

that φ
(s3)
3 satisfies the condition (110) at B12, i.e. its components in a normalized Poincare

basis scale as O(zs3+1). Since this is true of the propagators Π3 in (125), we conclude that

it must be true of the pure-gauge field h̃3 as well.

We are now ready for the main part of the radial-locality argument. Consider the field φ̂3,

defined by the RHS of (125) throughout the bulk, i.e. in Ω3 as well as Ω12. Thus, φ̂3 agrees

with φ3 in Ω12, but is source-free in the entire bulk. We assume that the pure-gauge field h̃3

is extended in such a way that it continues to satisfy the scaling condition (110) at B3 as

well as B12. This is easy to arrange: by the logic of section 3D, it is sufficient to ensure that

the divergence (∂u ·∇)h̃3 satisfies (117) – the natural scaling for a divergence-free symmetric

tensor – and then choose the solution of eqs. (115)-(116) with vanishing ∼ z1−s+q boundary

conditions.

Now, consider the bulk analogue of the correlator equation (127). The RHS of (127) is

calculated by the three diagrams of (119), whereas the LHS is calculated by the standard

Sleight-Taronna cubic diagram Ss1,s2,s3[VST; Π1,Π2,Π3], with the appropriate sum over s3

and integral over L3. By the results of section 3, this diagram stays unchanged when we

shift the propagators Π3 by the pure-gauge field h̃3 as in (125). Thus, the bulk analogue of

(127) can be written as:

∑

s3

Ss1,s2,s3[VST; Π1,Π2, φ̂3] =
∑

s3

Ss1,s2,s3[VST; Π1,Π2, φ3]− Ss1[Π1, γ3]Ss2[Π2, γ3]

+ Ss1,s2[Vnew,TT; Π1,Π2, γ3] .

(128)

Each of the two VST diagrams in (128) contains a bulk integral over the position x of the

Sleight-Taronna vertex. The Ω12 portion of this integral cancels between the LHS and RHS,

44



FIG. 7: The main step in the radial locality argument. The Vnew,TT diagram is expressed as a

combination of terms that are manifestly analytic at ℓ1 = ℓ2.

because φ3 and φ̂3 are equal there. We conclude that Ss1,s2[Vnew,TT; Π1,Π2, γ3] is given by

the difference between the Ω3 portions of the two VST diagrams, plus the double-exchange

term Ss1 [Π1, γ3]Ss2[Π2, γ3]; this situation is depicted in figure 7. Now, notice that all of

these terms involve “long” propagators stretching from ℓ1 and ℓ2 into the distant region Ω3.

Thus, the three terms are all analytic at ℓ1 = ℓ2, and therefore so is the Vnew,TT diagram.

This concludes our argument for the radial locality of Vnew,TT.

D. Time locality of Vnew,TT

1. Formulating the criterion

We now turn to our proxy criterion for “time” locality of the new vertex. First, let us

notice that the geodesic γ3 induces a coordinate system on EAdS4 and its boundary. Setting

ℓµ3 = (1
2
, 1
2
,~0) and ℓ′µ3 = (1

2
,−1

2
,~0), this coordinate system reads:

xµ(τ, R,n) =
√
1 +R2 (cosh τ, sinh τ,~0) +R (0, 0,n) ; (129)

ℓµ(τ,n) = (cosh τ, sinh τ,n) , (130)
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where R is the distance function (54) from γ3, and n ∈ S2 is a 3d unit vector. In particular,

the length parameter τ along γ3 extends into a “time” coordinate τ throughout the bulk and

boundary, with “time translations” τ → τ + c being a spacetime symmetry (in embedding

space, these are just boosts in the (ℓ3, ℓ
′
3) plane). Our time locality criterion now reads:

Time locality criterion. A vertex Vnew,TT coupling two boundary-bulk propagators Π1,Π2

to a geodesic worldline γ3 is time-local, if its action Ss1,s2[Vnew,TT; Π1,Π2, γ3] vanishes expo-

nentially at large time difference |τ1 − τ2| between the source points ℓ1 and ℓ2.

Let us explain the reasoning behind this criterion. We assume that radial locality is

satisfied, so that Vnew,TT couples the fields Π1,Π2 only in the vicinity of γ3. Then, our

desired time-locality property is for this coupling to vanish exponentially for points separated

by large distances ∆τ along γ3. The premise of our criterion is that exponential decay

at large |τ1 − τ2| on the boundary is a good proxy for the desired exponential decay in

∆τ on the geodesic. To become convinced of this, let us consider in detail the diagram

Ss1,s2[Vnew,TT; Π1,Π2, γ3] at large |τ1 − τ2| (see figure 8).

If the vertex couples Π1 and Π2 at approximately the same point x(τ) on the geodesic

with ∆τ = O(1), the diagram will appear as in figure 8(b). This features boundary-bulk

propagators that stretch across long intervals |τ1 − τ | and |τ − τ2|. Let us examine the

behavior of such “long” propagators. We focus on e.g. the Π1 propagator, with source point

ℓµ1 = (cosh τ1, sinh τ1,n1) at τ1 ≫ 1, and assume that the polarization vector λµ1 has O(1)

components (λτ1,λ1) along the τ axis and the 2-sphere:

λµ1 = (λτ1 sinh τ1, λ
τ
1 cosh τ1,λ1) . (131)

The building blocks of the propagator (45) then read:

ℓ1 · x = − cosh(τ1 − τ) ≈ −
e|τ1−τ |

2
;

mµ
1 =

(

0, λτ1,λ1 cosh(τ1 − τ)− λτ1n1 sinh(τ1 − τ)
)

= O
(

e|τ1−τ |) .

(132)

We conclude that the “long” propagator Π1 scales as O
(

e−(s1+1)|τ1−τ |), and similarly for Π2.

The product of the two propagators at the geodesic therefore scales as:

Π1Π2 = O
(

e−(min(s1,s2)+1)|τ1−τ2|) = O
(

e−|τ1−τ2|) . (133)

Thus, if the vertex couples Π1 and Π2 at distances ∆τ = O(1), the diagram decays exponen-

tially at large |τ1 − τ2|, consistently with our criterion. Now, consider the complementary
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(a) (b)

FIG. 8: Illustration of our “time” locality criterion. We consider a field-field-worldline interaction

in the limit of large “time” separation |τ1 − τ2| between ℓ1 and ℓ2. If the interaction is local,

i.e. decays exponentially with the distance ∆τ along the geodesic, the diagram will exponentially

decay with |τ1− τ2|. This can happen through some combination of the scenarios in panels (a),(b).

In panel (a), the diagram is dominated by contributions with ∆τ ≈ |τ1 − τ2|, and is governed by

the interaction’s decay with ∆τ . In panel (b), the diagram is dominated by contributions with

∆τ = O(1), and its exponential decay in |τ1− τ2| is due to the “long” boundary-bulk propagators.

If the interaction is not time-local, the dominant contribution will always be panel (a), and its

failure to decay exponentially in |τ1 − τ2| will be governed by the interaction’s failure to decay in

∆τ .

situation, depicted in figure 8(a): “short” O(1) boundary-bulk propagators, followed by a

coupling of fields at distance ∆τ ≈ |τ1−τ2| along the geodesic. In this case, the large-|τ1−τ2|
behavior of the diagram is directly dictated by the large-∆τ behavior of the vertex, again

in agreement with our criterion. For a non-local vertex, the interaction of figure 8(a) will

always dominate; for a local vertex, the interaction may be dominated by figure 8(a) or

8(b), or some combination of the two. In any case, we see that exponential decay of the

diagram as a function of |τ1 − τ2| on the boundary is a faithful proxy for exponential decay

of the vertex as a function of ∆τ on the geodesic.

As with radial locality, it is easy to find an example of a vertex that isn’t time-local.

Such a vertex can be obtained by foolishly writing the product term Ss1[Π1, γ3]Ss2[Π2, γ3]

in (119) in terms of a single field-field-worldline vertex, as Ss1,s2[Vprod; Π1,Π2, γ3]. This is

immediately non-local by our criterion, since the diagram doesn’t depend on τ1 − τ2 at all.

Finally, note that our radial and time locality criteria have different relationships with
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the holographic UV/IR inversion. In the bulk, both criteria are concerned with the vertex’s

IR behavior. In the case of radial locality, this translates into the UV limit ℓ1 = ℓ2 on the

boundary: as expected, the radial direction behaves holographically. On the other hand, for

time locality, IR in the bulk stays IR on the boundary: the “time” coordinate τ is common

to both, and does not get inverted.

2. Verifying that the criterion holds

Having established and motivated our “time” locality criterion, let us now demonstrate

that it holds for the vertex Vnew,TT that satisfies eq. (119). As in section 4D 1, we set:

ℓµi = (cosh τi, sinh τi,ni) ; λµi = (λτi sinh τi, λ
τ
i cosh τi,λi) ; (134)

ℓµ3 =

(

1

2
,
1

2
,~0

)

; ℓ′µ3 =

(

1

2
,−1

2
,~0

)

, (135)

with i = 1, 2. Again, we are interested in the limit of large |τ1 − τ2|, and assume that the

polarization components λτi ,λi are O(1).

We begin by examining the CFT correlator
〈

j
(s1)
1 j

(s2)
2 O3

〉

in the large |τ1 − τ2| limit. To

simplify the analysis, we point-split the currents j
(s1)
1 and j

(s2)
2 into bilocals O(ℓ1, ℓ′1) and

O(ℓ2, ℓ′2), where:

ℓ′µi = (cosh τ ′i , sinh τ
′
i ,n

′
i) ; τ ′i − τi = O(1) , (136)

again with i = 1, 2. We can revert back to the local currents by taking derivatives at

ℓ′µi = ℓµi , as in (34). These translate simply into derivatives (with O(1) coefficients) with

respect to the coordinates (τi,ni) and (τ ′i ,n
′
i) at (τ

′
i ,n

′
i) = (τi,ni). Thus, we consider the

CFT correlator:

〈O1O2O3〉 = 4N × G(ℓ′3, ℓ1)G(ℓ
′
1, ℓ2)G(ℓ

′
2, ℓ3) +G(ℓ′3, ℓ2)G(ℓ

′
2, ℓ1)G(ℓ

′
1, ℓ3)

G(ℓ1, ℓ′1)G(ℓ2, ℓ
′
2)G(ℓ3, ℓ

′
3)

, (137)

where G(ℓ, ℓ′) is the boundary propagator (31). The factor of G(ℓ1, ℓ
′
1)G(ℓ2, ℓ

′
2) is just an

artifact of the normalization in our point-splitting procedure j
(si)
i → Oi, and we leave it as-is.

The other boundary propagators in (137) can be constructed from the scalar products:

ℓ3 · ℓ′3 = −
1

2
; ℓ3 · ℓi = −

1

2
e−τi ; ℓ′3 · ℓi = −

1

2
eτi ; ℓ1 · ℓ2 = − cosh(τ1 − τ2) + n1 · n2 ,

(138)
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and similarly for ℓ1 → ℓ′1 and/or ℓ2 → ℓ′2. For τ1−τ2 large and positive (negative), the second

(first) term in (137) dominates. Overall, the result is an O(1) term with an O
(

e−|τ1−τ2|
)

correction:

〈O1O2O3〉 =
N

4π2G(ℓ1, ℓ′1)G(ℓ2, ℓ
′
2)

(

e(τ
′

1−τ1+τ ′2−τ2)/2 +O
(

e−|τ1−τ2|)
)

. (139)

Now, the key observation is that the O(1) term in (139) is precisely reproduced by the

double-exchange term in our bulk formula (119). Indeed, upon extending the point-splitting

procedure j
(si)
i → Oi to the bulk fields Πi → φi, the double-exchange term becomes:

N
∑

s1,s2

Ss1 [φ1, γ3]Ss2[φ2, γ3] =
1

N
〈O1O3〉〈O2O3〉

= 4N × G(ℓ′3, ℓ1)G(ℓ
′
1, ℓ3)

G(ℓ1, ℓ′1)G(ℓ3, ℓ
′
3)
× G(ℓ′3, ℓ2)G(ℓ

′
2, ℓ3)

G(ℓ2, ℓ′2)G(ℓ3, ℓ
′
3)

=
Ne(τ

′

1−τ1+τ ′2−τ2)/2

4π2G(ℓ1, ℓ
′
1)G(ℓ2, ℓ

′
2)
.

(140)

Thus, the difference between (139) and (140) is O
(

e−|τ1−τ2|
)

. Reverting back to local currents

j
(si)
i , this becomes:

〈

j
(s1)
1 j

(s2)
2 O3

〉

−NSs1 [Π1, γ3]Ss2 [Π2, γ3] = O
(

e−|τ1−τ2|) . (141)

The Sleight-Taronna contribution
∑

s3
Ss1,s2,s3[VST,Π1,Π2, φ3] also decays at large “time”

separation as e−|τ1−τ2|. This is easy to see by extending our analysis of Π1,Π2 in section

4D 1 above, away from the γ3 geodesic. Setting the bulk position x of the Sleight-Taronna

vertex at an arbitrary point (129), we see that the building blocks of e.g. Π1 have essentially

the same large-|τ1 − τ | behavior as in (132):

ℓ1 · x = −
√
1 +R2 cosh(τ1 − τ) +R (n1 · n) ≈ −

e|τ1−τ |

2

√
1 + R2 ;

mµ
1 =
√
1 +R2

(

0, λτ1,λ1 cosh(τ1 − τ)− λτ1n1 sinh(τ1 − τ)
)

+R
(

(λ1 · n)
(

cosh(τ1 − τ), sinh(τ1 − τ),n1

)

− (n1 · n)
(

λτ1 sinh(τ1 − τ), λτ1 cosh(τ1 − τ),λ1

)

)

= O
(

e|τ1−τ2|) .

(142)

Therefore, the R
1,4 components of Π1 scale as O

(

e−(s1+1)|τ1−τ |), and likewise for Π2. As a

result, similarly to (133), the Sleight-Taronna diagram vanishes as O
(

e−|τ1−τ2|
)

at large time

separation. Together with (141), this implies that the Ss1,s2[Vnew,TT; Π1,Π2, γ3] contribution

to the correlator (119) also vanishes as O
(

e−|τ1−τ2|
)

, i.e. that Vnew,TT satisfies our time

locality criterion.
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E. Vnew beyond transverse-traceless gauge

Let’s now consider shifting the boundary-bulk propagators Πi (i = 1, 2) by traceless

pure-gauge fields h̃i subject to the asymptotic condition (110). The field-field-worldline

vertex Vnew,TT from (119) must then be generalized into the vertex Vnew from (120). Let us

discuss the necessary corrections Vnew − Vnew,TT to the vertex, and show that they preserve

the locality properties established above for Vnew,TT. Following section 3D, we denote the

gauge parameters corresponding to h̃i as Λi, recalling that these can be chosen so that their

components in an orthonormal Poincare basis vanish asymptotically as (118).

We now proceed in two steps. First, we will show that under the gauge shift Πi → Πi+h̃i,

the variation of the bulk diagrams in (119) is a local functional of the fields Πi and gauge

parameters Λi in the vicinity of the worldline γ3. Second, we’ll show that this variation can

be subsumed into a local vertex correction Vnew − Vnew,TT.

1. Gauge variation of uncorrected bulk diagrams

Let’s now go over the bulk diagrams (119), and discuss their variation under the gauge

shift Πi → Πi + h̃i. For the Vnew,TT diagram, we already established the ansatz (124), and

argued that it’s local on γ3. Thus, Ss1,s2[Vnew,TT; Π1,Π2, γ3] is a local functional of Πi on

γ3, and similarly Ss1,s2[Vnew,TT; Π1 + h̃1,Π2 + h̃2, γ3] is a local functional of Πi + h̃i on γ3.

Therefore, the difference between the two is also a local functional of Πi and h̃i on γ3.

The double-exchange diagram Ss1[Π1, γ3]Ss2[Π2, γ3] is not affected by the gauge shift at

all. Indeed, the effect of a gauge transformation on the field-worldline action (65) consists

of evaluating the gauge parameter at the worldline’s endpoints, its indices contracted with

the worldline’s unit tangent [23]:

Ssi[h̃i, γ3] = −4(i
√
2)sisi! Λ

(si)
i

(

x(τ ; ℓ3, ℓ
′
3), ẋ(τ ; ℓ3, ℓ

′
3)
)

∣

∣

∣

∞

τ=−∞
. (143)

For each of the endpoints, we can choose a Poincare frame such that ẋµ becomes the unit

vector eµ0 in the z direction at z → 0. The scaling (118) of Λi then tells us that the gauge

transformation (143) indeed vanishes.

Finally, the Sleight-Taronna diagram
∑

s3
Ss1,s2,s3[VST; Π1,Π2, γ3] will be affected by the

gauge shift, but in a controlled way. In section 3, we showed that VST is invariant under

such gauge transformations, but that was in the absence of a γ3 worldline carrying Fronsdal
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curvature. Thus, in the present setup, VST will get a gauge variation proportional to the

Fronsdal curvatures Fφ(s3)
3 , i.e. localized on γ3. The local nature of this gauge variation

is somewhat disrupted by the sum over s3. However, we can show that it remains local

within ∼ 1 AdS radius. Indeed, the potential source of non-locality is in derivatives of Πi

or Λi contracted with the indices of Fφ(s3)
3 . The question is then how the coefficients of

such derivatives behave with increasing spin. The spin-dependence (63) of Fφ(s3)
3 itself is ∼

(
√
2)s3, while the coupling constant in (79) goes as ∼ (

√
2)s3/Γ(s1+s2+s3) = O

(

(
√
2)s3/s3!

)

(remembering that gauge transformations require s1 or s2 to be greater than 0). Thus,

derivatives of order s3 come with O(2s3/s3!) coefficients. This is a special case a = 2 of

the scaling as3/s3!, which governs the Taylor expansion
∑

n
an

n!
∇n of a shift by distance a.

Therefore, the point at which Πi or Λi are evaluated is effectively shifted by O(1) AdS radii,

as desired.

2. Locality of the vertex corrections

So far, we established that the gauge shift Πi → Πi + h̃i induces variations in the bulk

diagrams of (119) that are local, in the sense that they involve the fields Π1,Π2 and gauge

parameters Λ1,Λ2 within ∼ 1 AdS radius of each other and of the worldline γ3. What

remains is to show that these variations can be incorporated as new local terms in the

vertex Vnew, which only sees the fields Πi + h̃i and not the gauge parameters Λi. To do

this, we can follow the same logic as with ordinary cubic vertices: we’ll first show that the

variation strictly vanishes for transverse-traceless h̃i, and then conclude that in the general

traceless case, it’s local not only in Λi, but in the h̃i themselves.

We thus begin by considering transverse-traceless pure-gauge fields h̃i (for this purpose,

we lift the asymptotic condition (110), which would have forced such fields to vanish). For

such pure-gauge fields, the asymptotic value limz→0 z
si−2[h̃i]0,si defines a pure-gauge field

on the boundary, derived from the gauge parameter limz→0 z
si−1[Λi]0,si−1. The shifted bulk

fields Πi + h̃i in this setup remain in the space spanned by boundary-bulk propagators

Π(si), with coefficients shifted by this boundary gauge transformation. We assume that the

boundary gauge shift limz→0 z
s1−2[h̃1]0,s1 vanishes at the points ℓ2, ℓ3, ℓ

′
3, and likewise for

1↔ 2. Such a gauge shift leaves us within the domain of applicability of eq. (119), with the

CFT correlator unchanged. Therefore, the gauge variation of the sum of bulk diagrams in
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this case must also vanish. Since we already established that this gauge variation is local, we

conclude that it vanishes for any transverse-traceless shift h̃i, regardless of its asymptotic

behavior.

The upshot of the preceding paragraph is that, in our original context of traceless shifts h̃i

subject to the asymptotic condition (110), the gauge variation of the bulk diagrams must be

proportional to the deviation (116) from transverse-traceless gauge. This makes the gauge

variation local not only in Λi, but in the fields h̃i themselves, specifically through their

divergences (∂u · ∇)h̃i. This variation can then be canceled by adding to the vertex Vnew,TT

corrections proportional to (∂u · ∇)h̃i. In this way, we are able to construct a local vertex

Vnew that satisfies the correlator formula (120) in the more general gauge defined by Πi+ h̃i.

F. Stitching together the correlator of three bilocals

We are now ready to graduate from the bilocal-local-local correlator
〈

j
(s1)
1 j

(s2)
2 O3

〉

to the

general correlator
〈

O+
1 O+

2 O+
3

〉

of three (even-spin) bilocals. Our claim is that this can be

expressed in the bulk as a straightforward sum of interactions between the three DV fields

φi and their worldlines γi (i = 1, 2, 3), constructed from the same building blocks that we

established in (119)-(120) (see figure 1 for the corresponding diagrams):

〈O+
1 O+

2 O+
3 〉 = −N

(

∑

s1,s2,s3

Ss1,s2,s3[VST;φ1, φ2, φ3] (144)

−
∑

s1,s2

Ss1[φ1, γ3]Ss2[φ2, γ3]−
∑

s2,s3

Ss2[φ2, γ1]Ss3[φ3, γ1]−
∑

s3,s1

Ss3[φ3, γ2]Ss1[φ1, γ2]

+
∑

s1,s2

Ss1,s2[Vnew;φ1, φ2, γ3] +
∑

s2,s3

Ss2,s3[Vnew;φ2, φ3, γ1] +
∑

s3,s1

Ss3,s1[Vnew;φ3, φ1, γ2]

)

.

Similarly, we claim that local-bilocal-bilocal correlators are given by:

〈

j
(s1)
1 O+

2 O+
3

〉

= −N
(

∑

s2,s3

Ss1,s2,s3[VST; Π1, φ2, φ3]

− Ss1 [Π1, γ3]
∑

s2

Ss2 [φ2, γ3]− Ss1 [Π1, γ2]
∑

s3

Ss3 [φ3, γ2]

+
∑

s2

Ss1,s2[Vnew; Π1, φ2, γ3] +
∑

s3

Ss3[Vnew; Π1, φ3, γ2]

)

.

(145)

We will focus below on the more general case (144); the arguments can be adapted trivially

to (145) as well.
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To demonstrate the relation (144), we divide the bulk into regions, much like we did in

section 4C2; see figure 9. Each region contains one of the geodesics γi. We denote the

regions as Ωi, and their asymptotic boundaries as Bi. By the same logic as in section 4C2,

the DV field φ1 in the regions Ω2,Ω3 can be expressed as a superposition of boundary-bulk

propagators Π1 with boundary sources on B1, shifted by a pure-gauge field h̃1 that satisfies

the asymptotic condition (110). Again as in section 4C2, we can continue this expression

for φ1 back into region Ω1, making a bulk field φ̂1 which is everywhere a superposition

of Π1’s gauge-shifted by h̃1, which agrees with φ1 in Ω1,Ω2, and whose boundary data is a

superposition of local currents on B1 that have the same correlators with anything supported

on B2, B3 as the original bilocal O1. In the same way, we can construct source-free fields

φ̂2, φ̂3 out of the other DV fields φ2, φ3. We can then use the already established 〈jjj〉 and
〈jjO〉 formulas (111),(120) to write 〈O1O2O3〉 in four different ways:

〈O+
1 O+

2 O+
3 〉 = −N

∑

s1,s2,s3

Ss1,s2,s3[VST; φ̂1, φ̂2, φ̂3] (146)

= −N
(

∑

s1,s2,s3

Ss1,s2,s3[VST; φ̂1, φ̂2, φ3] +
∑

s1,s2

(

Ss1,s2[Vnew; φ̂1, φ̂2, γ3]− Ss1[φ̂1, γ3]Ss2[φ̂2, γ3]
)

)

= −N
(

∑

s1,s2,s3

Ss1,s2,s3[VST;φ1, φ̂2, φ̂3] +
∑

s2,s3

(

Ss2,s3[Vnew; φ̂2, φ̂3, γ1]− Ss2[φ̂2, γ1]Ss3[φ̂3, γ1]
)

)

= −N
(

∑

s1,s2,s3

Ss1,s2,s3[VST; φ̂1, φ2, φ̂3] +
∑

s3,s1

(

Ss3,s1[Vnew; φ̂3, φ̂1, γ2]− Ss3[φ̂3, γ2]Ss1[φ̂1, γ2]
)

)

.

Now, recall that the VST diagrams consist of a standard local integral (78) over EAdS4, which

can be decomposed into a sum of integrals over the regions Ωi. We can then use the fact that

φi and φ̂i are equal outside of Ωi to write e.g. Ss1,s2,s3[VST; φ̂1, φ̂2, φ3] as the Ω1 ∪Ω2 portion

of Ss1,s2,s3[VST; φ̂1, φ̂2, φ̂3], plus the Ω3 portion of Ss1,s2,s3[VST;φ1, φ2, φ3]. Similarly, we can

replace e.g. Ss1,s2[Vnew; φ̂1, φ̂2, γ3] with Ss1,s2[Vnew;φ1, φ2, γ3], and Ss1[φ̂1, γ3] with Ss1[φ1, γ3],

since the value and derivatives of φ̂1, φ̂2 on γ3 are the same as those of φ1, φ2. With these

substitutions, when we add the last three lines of (146) and subtract twice the first line, we

obtain the desired formula (144).

There remain two subtleties worth addressing. First, are e.g. φ1 and φ̂1 really inter-

changeable inside Ss1,s2[Vnew;φ1, φ2, γ3], or in the Ω2 ∪Ω3 portion of Ss1,s2,s3[VST;φ1, φ2, φ3]?

One may worry that the answer is sensitive to the order of operations. For each spin, and at

each order in derivatives, φ1 and φ̂1 are indeed the same within Ω2∪Ω3, and in particular on

53



FIG. 9: The different terms in our procedure to “stitch together” the correlator of three bilocals

out of bilocal-local-local correlators. In the regions that do not contain its worldline, each DV field

can be viewed as a gauge-transformed superposition of boundary-bulk propagators.

the worldlines γ2, γ3. Thus, if we evaluate the derivatives before performing the sums over

spins and angular momenta in (124) and (144)-(146), our logic will hold. But what if we

perform the sums first? Might they lead to φ̂1 being effectively evaluated inside Ω1, and thus

“noticing” its difference from the original φ1? This seems especially pertinent given that the

worldlines γi can lie arbitrarily close to each other, and thus to the boundaries between the

regions Ωi.

Our claim is that such a problem will not occur. This is because our construction only

involves infinite towers of traceless derivatives:
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• In the Sleight-Taronna vertex VST from (79), the derivatives are traceless in EAdS4,

since their indices are always contracted with traceless HS fields.

• In the new vertex Vnew,TT in transverse-traceless gauge, our ansatz (122)-(124) implies

that all derivatives are traceless in the 3d space transverse to the worldline.

• The vertex corrections Vnew − Vnew,TT from section 4E are constructed from gauge

variations of VST and Vnew,TT, and thus also inherit their traceless-derivatives structure.

Now, towers of traceless derivatives can define initial data for a source-free field, and they can

generate translations along lightrays in Lorentzian signature. However, they can’t generate

translations over any finite distance in Euclidean signature, nor can they “tell the difference”

between a field that’s source-free everywhere and one that is merely source-free in a finite

neighborhood. Thus, we are safe from the vertices “noticing” the difference between e.g. φ1

and φ̂1 outside of Ω1.

The last subtlety we’d like to address is the effect of the sums over spins in (144) on the

locality of the bulk diagrams. For fixed spins, we already know that VST is strictly local, and

that Vnew is non-local at most within ∼ 1 AdS radius. How do the sums over spins affect

these properties? For VST, the sum over spins introduces an infinite tower of derivatives,

which indeed leads to some non-locality (we’ll see this explicitly on an example in section

5). However, we’ll now argue that this non-locality is confined within ∼ 1 AdS radius. This

stems from a series of observations:

• The powers of derivatives in the vertex formula (79) are just the spins si themselves.

• Their coefficients are the coupling constants in (79). As one or more spins grow large,

these scale as ∼ (
√
2)s1+s2+s3

(s1+s2+s3−1)!
= O

(

(
√
2)s1+s2+s3

(s1−1)!(s2−1)!(s3−1)!

)

.

• The derivatives in (79) are contracted with DV fields (60), whose spin-dependence

amounts to an extra factor of
√
2 kµ whenever the spin is raised by 1.

• The real and imaginary parts of kµ = 1
2
(tµ + irµ/R) both have norms between 0 and

1
2
: tµ goes from unit norm on the worldline to zero norm an infinity, while rµ/R does

the reverse.

Overall, we see that the tower of derivatives in the VST diagram is bounded by a product

of Taylor series of the form
∏

i

∑

si
2si

(si−1)!
(ki · ∇)si, which (up to a shift by one derivative)
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describe translations by the vectors 2kµi , whose real and imaginary parts have norm bounded

by 1. The non-locality is therefore indeed confined to ∼ 1 AdS radius.

Finally, for Vnew, our claim is that the sum over spins in (144) does not extend its non-

locality beyond ∼ 1 AdS radius. To see this, one can rerun the locality arguments from

sections 4C-4D, with boundary bilocals O+
1 ,O+

2 in place of the currents j
(s1)
1 , j

(s2)
2 , and with

DV fields φ1, φ2 (involving all even spins) in place of the boundary-bulk propagators Π1,Π2.

5. EXAMPLE: LOCALITY IN THE (0,0,BILOCAL) CORRELATOR

In this section, we perform a (partially numerical) study of the
〈

j
(0)
1 j

(0)
2 O3

〉

correlator,

between two spin-0 boundary “currents” and one bilocal. This will serve as a concrete

example for several of the features discussed in section 4.

A. Bulk scalar modes

As in section 4D, we fix the bilocal’s endpoints at ℓµ3 = (1
2
, 1
2
,~0) and ℓ′µ3 = (1

2
,−1

2
,~0), and

use these to induce a coordinate system (129)-(130) on the bulk and boundary. We then use

these coordinates’ R× SO(3) symmetry to arrange the scalar fields h1, h2 into modes with

“time” frequency ω and angular momentum numbers l, m. Since the bilocal is invariant

under the R× SO(3), we can only have coupling between modes of h1, h2 with equal l, and

equal & opposite ω and m. Moreover, by SO(3) symmetry, it’s sufficient to study the m = 0

modes. Thus, we are interested in modes of the form:

hω,l(x) = eiωτψω,l(R)Pl(n · n0) , (147)

where Pl is a Legendre polynomial, and n0 is some fixed 3d unit vector. The modes’ radial

dependence ψω,l(R) is found by solving the field equation (∇·∇+2)h(0) = 0 in EAdS4. This

can be simplified by using the equation’s conformal invariance, and the conformal relation

between EAdS4 and R× (half-S3):

dx · dx = (1 +R2)dτ 2 +
dR2

1 +R2
+R2dΩ2 = (1 +R2)

(

dτ 2 + dα2 + sin2 α dΩ2
)

, (148)

where dΩ2 is the 2-sphere metric. The S3 angle α is defined as α ≡ arctanR, and the

asymptotic boundary R =∞ becomes the S3 equator α = π
2
. The problem now reduces to
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solving the Laplacian equation (∇ · ∇ − ω2 − 1)ψ̂ = 0 on the half-S3. The solution that is

regular at R = 0 (i.e. at α = 0) is an S3 spherical harmonic (see e.g. [41]) with complex

angular momentum number (this is allowed because our S3 doesn’t continue beyond α = π
2
):

ψ̂ =
1√
sinα

P
− 1

2
−l

− 1
2
+iω

(cosα)Pl(n · n0) , (149)

where Pm
l is the associated Legendre function. Note that despite the appearance of a

complex parameter, P
− 1

2
−l

− 1
2
+iω

= P
− 1

2
−l

− 1
2
−iω

is a real function. Converting back from α to R, and

multiplying by the conformal factor 1√
1+R2 , we obtain the radial dependence of our modes

(147) as:

ψω,l(R) =
1

√

R
√
1 +R2

P
− 1

2
−l

− 1
2
+iω

(

1√
1 +R2

)

. (150)

In the asymptotic analysis of the modes (147), we can use R−1 as the holographic coordinate

z. Thus, the asymptotic data of the modes (147) with weights ∆ = 1, 2 can be extracted as

the coefficients of R−1 and R−2 respectively in the boundary limit xµ(τ, R,n) → R ℓµ(τ,n)

at R→∞:

hω,l(x) −→
xµ→Rℓµ

ϕω,l(ℓ)

R
+
πω,l(ℓ)

R2
+O

(

1

R3

)

; (151)

ϕω,l(ℓ) = eiωτPl(n · n0)P
− 1

2
−l

− 1
2
+iω

(0) ; (152)

πω,l(ℓ) = eiωτPl(n · n0)
(

P
− 1

2
−l

− 1
2
+iω

)′
(0) = −eiωτPl(cos θ)P

1
2
−l

− 1
2
+iω

(0) , (153)

where the value and derivative of the Legendre functions at zero can be found in e.g. [42].

The ∆ = 2 boundary data (153) can be used to decompose our modes (147) in terms of the

boundary-bulk propagators Π(0)(x; ℓ) (45), whose own boundary data reads (see e.g. [22]):

Π(0)(x; ℓ̂) = − 1

16π2(x · ℓ̂)
−→

xµ→Rℓµ
− 1

16π2(ℓ · ℓ̂)R
− δ3(ℓ, ℓ̂)

4R2
+O

(

1

R3

)

. (154)

Comparing (153) with (154) and denoting the boundary coordinates of ℓ̂ as (τ̂ , n̂), we get

the decomposition:

hω,l(x) = 4P
1
2
−l

− 1
2
+iω

(0)

∫

dτ̂ eiωτ̂
∫

d2n̂Pl(n̂ · n0) Π
(0)(x; τ̂ , n̂) . (155)

From this, we read off the boundary dual of the bulk modes (147) as a superposition of

spin-0 “currents”:

j
(0)
ω,l = 4P

1
2
−l

− 1
2
+iω

(0)

∫

dτ eiωτ
∫

d2nPl(n · n0) j
(0)(τ,n) (156)
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B. Ingredients of the correlator

We are now ready to plug the above (ω, l) modes into the correlator formula (119). On the

boundary side, this describes a correlator between O(ℓ3, ℓ′3) ≡ O3 and two spin-0 operators

of the form (156), i.e. j
(0)
ω,l and j

(0)
−ω,l. In coordinate space, the CFT correlator (36) for this

case reads:

〈

j(0)(ℓ1)j
(0)(ℓ2)O(ℓ3, ℓ′3)

〉

=
NG(ℓ1, ℓ2)

G(ℓ3, ℓ′3)

(

G(ℓ1, ℓ3)G(ℓ2, ℓ
′
3) +G(ℓ2, ℓ3)G(ℓ1, ℓ

′
3)
)

=
NG(ℓ1, ℓ2)

2π
cosh

τ1 − τ2
2

.

(157)

In frequency space, the CFT propagator G(ℓ1, ℓ2) becomes just the inverse of minus the

conformal Laplacian:

G(ℓ1, ℓ2) = −
1

�ℓ
−→ 1

ω2 + (l + 1
2
)2
, (158)

while the factor of cosh τ1−τ2
2

becomes a frequency shift ω → ω ± i
2
. Overall, the CFT

correlator
〈

j
(0)
ω,l j

(0)
−ω,lO3

〉

reads:

〈

j
(0)
ω,l j

(0)
−ω,lO3

〉

=
32N

2l + 1

(
∫ ∞

−∞
dτ

)

(

P
1
2
−l

− 1
2
+iω

(0)
)2

Re
1

ω(ω + i) + l(l + 1)
, (159)

where the appearance of an infinite τ integral is a standard expression of “time” translation

symmetry.

Let us now turn to the bulk side of the correlator formula (119), where the scalar bulk

fields hω,l and hω,−l are interacting with the DV field φ3 and its worldline γ3. We begin with

the Sleight-Taronna diagram
∑

s S0,0,s[VST; hω,l, h−ω,l, φ3]. Due to the singular behavior (80)

of V
(0,0,0)
ST , we must treat the cases s = 0 and s > 0 separately. The s = 0 diagram can

be evaluated using the ∆ = 1 boundary data of the modes h±ω,l and of the DV field φ
(0)
3 .

The former is given by (152), while the latter is just the coefficient of 1
R

in (60), i.e. 1/π.

Plugging these into (80), we get:

−NS0,0,0[VST; hω,l, h−ω,l, φ3] =
32N

2l + 1

(
∫ ∞

−∞
dτ

)

(

P
− 1

2
−l

− 1
2
+iω

(0)
)2

. (160)

We now turn to the Sleight-Taronna diagram with s > 0. The relevant vertex (79) reads

simply:

V
(0,0,s)
ST (∂x1 ; ∂x2 ; ∂u3) =

8
(

i
√
2
)s

(s− 1)!

[

(∂u3 · ∂x1)
s + (∂u3 · ∂x2)

s
]

. (161)
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Plugging in our scalar modes h±ω,l(x) and the DV field (60), this becomes (keeping in mind

that the participating spins s are even):

V
(0,0,s)
ST hω,l h−ω,l φ

(s)
3 =

16

πR(s− 1)!

[

h−ω,l(2k · ∂x)shω,l + hω,l(2k · ∂x)sh−ω,l

]

, (162)

where kµ = kµ(x; ℓ3, ℓ
′
3) is the null vector (59) generated by the γ3 geodesic. In our coordi-

nates (129), the derivative 2k · ∂x along kµ reads:

2k · ∂x = t · ∂x +
i

R
r · ∂x =

1

1 +R2

∂

∂τ
+ i

∂

∂R
. (163)

Since kµ is null k ·k = 0 and affine (k ·∇)k = 0, the line {xµ+2akµ|a ∈ R} is a (complexified)

lightray in both R
1,4 and EAdS4. Explicitly, this lightray takes the form:

xµ → xµ + 2akµ : (τ, R,n)→
(

τ − i arctan(R + ia) + i arctanR,R + ia,n
)

. (164)

Shifting the field hω,l(x) along this lightray, we get:

hω,l(x+ 2ak) = eiωτeω[arctan(R+ia)−arctanR] ψω,l(R + ia)Pl(n · n0) . (165)

In terms of these shifted fields, the (2k · ∂x)s derivatives in (162) can be recast as ds

das
.

Integrating the vertex (162) over EAdS4 with the measure d4x = R2dRdτd2n, we get:

−NS0,0,s[VST; hω,l, h−ω,l, φ3] =
128N

(2l + 1)(s− 1)!

(
∫ ∞

−∞
dτ

)

(166)

×
∫ ∞

0

RdRψω,l(R)
ds

das

(

cosh
[

ω(arctan(R + ia)− arctanR)
]

ψω,l(R + ia)
)

∣

∣

∣

∣

a=0

,

where ψω,l(R) is the radial dependence function (150). Summing the diagrams (166) over

spin channels s, we get essentially a Taylor series, carrying the scalar fields from a = 0 to

a = ±1 along the complex lightray (164), i.e. from xµ to xµ ± 2kµ. Explicitly, the sum of

(166) over positive even s reads:

−N
∑

even s>0

S0,0,s[VST; hω,l, h−ω,l, φ3] =
128N

2l + 1

(
∫ ∞

−∞
dτ

)

(167)

× Re

∫ ∞

0

RdRψω,l(R)
d

da

(

cosh
[

ω(arctan(R + ia)− arctanR)
]

ψω,l(R + ia)
)

∣

∣

∣

∣

a=1

.

We see here an example of a feature discussed in section 4F: the sum over spins introduces

some non-locality into the Sleight-Taronna diagram, by effectively shifting the fields from

one point xµ to another xµ ± 2kµ. However, this non-locality is contained within ∼ 1 AdS

radius, since both the real and imaginary parts of 2kµ have norms between 0 and 1.
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Let us now turn to the other bulk diagrams on the RHS of (119). The double-exchange

diagram Ss1[Π1, γ3]Ss2[Π2, γ3] will appear in our setup as a delta-function term ∼ δ(ω), since

it does not depend on the “time” difference τ1−τ2 between the boundary source points ℓ1, ℓ2.

Therefore, this diagram will not contribute at any nonzero frequency ω. This leaves only the

Vnew diagram, which must therefore account for any difference between the CFT correlator

(159) and the Sleight-Taronna diagrams (160),(167). Eliminating common factors, we can

express this relationship as:

Wnew =WCFT −W (0)
ST −

∑

even s>0

W
(s)
ST , (168)

where the known pieces are given by:

WCFT =
(

P
1
2
−l

− 1
2
+iω

(0)
)2

Re
1

ω(ω + i) + l(l + 1)
; (169)

W
(0)
ST =

(

P
− 1

2
−l

− 1
2
+iω

(0)
)2

; (170)

W
(s)
ST = 4

∫ ∞

0

RdRψω,l(R)
ds

das

(

cosh
[

ω(arctan(R + ia)− arctanR)
]

ψω,l(R + ia)
)

∣

∣

∣

∣

a=0

(for s > 0) , (171)

with the sum formula:

∑

even s>0

W
(s)
ST = 4Re

∫ ∞

0

RdRψω,l(R)

× d

da

(

cosh
[

ω(arctan(R + ia)− arctanR)
]

ψω,l(R + ia)
)

∣

∣

∣

∣

a=1

.

(172)

C. Locality analysis

Having been brought to the form (168)-(172), the bulk and boundary diagrams can

now be readily evaluated in Mathematica, for various values of the “time” frequency ω and

angular momentum number l. In particular, we can examine the behavior of the new vertex’s

contribution Wnew, and compare to the locality discussion in section 4. We begin with radial

locality. By our criterion from section 4C, this requires Wnew to be regular at ℓ1 = ℓ2.

Thus, in frequency space, we expect Wnew to decay exponentially at large frequencies. In

our present simple context of
〈

j
(0)
1 j

(0)
2 O3

〉

correlators, we can make this expectation more

detailed.
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FIG. 10: A conformal transformation on the boundary that clarifies the behavior of the
〈

j
(0)
1 j

(0)
2 O3

〉

correlator in the ℓ1 = ℓ2 limit.

Let us start in coordinate space. For the moment, let’s consider the EAdS4 boundary

as the 3-sphere {ℓµ ∈ R
1,4|ℓµℓµ = 0 ; ℓ0 = 1}. We then fix ℓ3, ℓ

′
3 at two opposite poles

(1, 0,±na), with na some 3d unit vector, and set ℓ1, ℓ2 nearly coincident at (1, 1,±ξa/2), for
some infinitesimal 3d vector ξa with norm |ξ|. The CFT correlator (157) then diverges as

G(ℓ1, ℓ2) ∼ 1/|ξ|. In Fourier space at large frequencies, this becomes (c.f. (158)):

WCFT ∼
1

Ω2
. (173)

Here, we introduce Ω as a generic notation for boundary frequencies, combining ω and l as

Ω ≈
√
ω2 + l2 at large ω and/or l.

Now, let’s consider the contributions W
(s)
ST from the Sleight-Taronna diagram in various

spin channels. To do this, it is helpful to apply a conformal transformation to the boundary

3-sphere, stretching the distance between ℓ1, ℓ2 by a factor of ∼ |ξ|−1 so as to bring them

to opposite poles (1, 0,±ξa/|ξ|), while squeezing the distance between ℓ3, ℓ
′
3 and bringing

them to (1,−1,±|ξ|na); see figure 10. After this conformal transformation, the DV fields

φ
(s)
3 behave at leading order as spin-s boundary-bulk propagators Π

(s)
3 , with prefactors (i.e.

boundary polarization tensors) of the form ∼ |ξ|s(na1 . . . nas − traces). By rotational invari-

ance, the Sleight-Taronna diagram then takes the form ∼ ξa1

|ξ| . . .
ξas

|ξ| |ξ|s(na1 . . . nas−traces) =

na1 . . . nas(ξa1. . . ξas − traces). We can now undo the conformal transformation, picking up a

factor of ∼ 1/|ξ| due to the combination of weights w.r.t. ℓ1, ℓ2, ℓ3, ℓ
′
3:

∆1 +∆2 −∆3 −∆′
3 = 1 + 1− 1

2
− 1

2
= 1 . (174)
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, 4 ≤ l ≤ 8. Slope is −1.997.
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(b) l = 0, 4 ≤ ω ≤ 9. Slope is −1.99986.
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(c) ω = 0.01, 4 ≤ l ≤ 10. Slope is −1.978.

FIG. 11: Numerical log-log plots of the relative discrepancy between the CFT correlator and the

spin-0 Sleight-Taronna contributions, at large boundary frequencies ω and/or l. As expected, the

discrepancy decays with frequency as ∼ Ω−2.

Thus, the small-ξ behavior of W
(s)
ST in the original conformal frame is ∼ (ξa1 . . . ξas −

traces)/|ξ|. For s = 0, this is divergent at ξa = 0; for general spins, the s’th derivative

with respect to ξa is divergent. In frequency space, such singular short-distance behavior

translates into power laws at large frequencies:

W
(s)
ST ∼

1

Ωs+2
. (175)

Our radial-locality expectation can now be phrased in detail as follows. At large boundary

frequencies Ω, the spin-0 Sleight-Taronna diagram W
(0)
ST should match the ∼ Ω−2 behavior

of the CFT correlator (173), leaving a ∼ Ω−4 remainder; this remainder should be matched

by the spin-2 diagram W
(2)
ST , leaving a ∼ Ω−6 remainder, which should be matched by W

(4)
ST ,

and so forth. When all the spin-channels W
(s)
ST have been taken into account, the remaining

discrepancy, associated with Wnew, should decay exponentially as ∼ e−κΩ, with some order-1
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FIG. 12: Numerical log-log plots of the relative discrepancy between the CFT correlator and the

(spin-0)+(spin-2) Sleight-Taronna contributions, at large boundary frequencies ω and/or l. As

expected, the discrepancy decays with frequency as ∼ Ω−4.

coefficient κ.

These expectations are nicely confirmed by numerics. In fact, the numerics shows that

it’s sufficient for either ω or l to be large, and that values of 3 ∼ 5 already behave as “large”.

In figure 11, we display log-log plots of the relative discrepancy
W

(0)
ST

WCFT
− 1 as a function of

frequency, showing a ∼ Ω−2 behavior, as predicted above. Similarly, in figure 12, we display

log-log plots of
W

(0)
ST +W

(2)
ST

WCFT
− 1, showing that it behaves as ∼ Ω−4. Most importantly, in

figure 13, we display log plots of
∑

s W
(s)
ST

WCFT
− 1 = − Wnew

WCFT
, showing its exponential decay. The

exponential decay is particularly clean when l grows with ω fixed at a small value, or when

ω and l grow together as ω = l + 1
2
(inspired by the boundary Laplacian formula (158)). In

other setups, the exponential decay is noisier, sometimes with superposed periodic patterns.

The exponent κ varies widely between setups, but is always of order 1.

Finally, let us turn to the issue of “time” locality. Here, our statement in section 4D was
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FIG. 13: Numerical log plots of the relative discrepancy between the CFT correlator and the all-

spin Sleight-Taronna contributions, at large boundary frequencies ω and/or l. As expected, the

discrepancy decays with frequency exponentially. This expresses the radial locality of the new bulk

vertex.
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that the CFT correlator and all bulk diagrams decay exponentially at large time separation

|τ1 − τ2|, with the exception of matching O(1) terms (139)-(140) in the CFT correlator and

the double-exchange diagram. In frequency space, the O(1) terms from (139)-(140) become

delta-function contributions ∼ δ(ω), which aren’t visible in our analysis. This leaves the

terms that should decay exponentially at large |τ1 − τ2|, which, in frequency space, means

the absence of singularities at small ω. Thus, we expect WCFT and W
(s)
ST to behave regularly

as ω approaches zero. As we can see in figure 14, this expectation is also borne out by the

numerics.

6. ALTERNATIVE APPROACH TO SLEIGHT-TARONNA DIAGRAM FOR

(0,0,BILOCAL)

At an early stage of this work, we carried out exploratory calculations of the Sleight-

Taronna contributions S0,0,s[VST; Π1,Π2, φ] to the
〈

j
(0)
1 j

(0)
2 O

〉

correlator, using a different

approach from that of the previous section. Though we didn’t get far along this path, we

report the details here for future reference. The idea is to calculate not the diagram itself,

but its boundary Laplacians �ℓ and/or �ℓ′ with respect to the endpoints of the bilocal

O(ℓ, ℓ′). This has the advantage of reducing the bulk integral to just a 1d integral over the

worldline γ, because the boundary Laplacians (74)-(76) of the DV field are delta-function-

like distributions with support on γ. However, this is true not for the DV field in the original

gauge (60), but in the recently discovered gauges (71)-(73). Because these gauges are not

traceless, we must pay the price of extending VST beyond traceless gauge, where it is no

longer given by the simple formula (79).

In this section, we describe one analytic calculation with the above technique. Using

the DV field Φ
(s)
symm in the gauge (73), we will demonstrate the vanishing of the double

Laplacian �ℓ�ℓ′S0,0,s[VST; Π1,Π2,Φsymm] for any spin s ≥ 2, in the simple case where the

scalar propagators Π1,Π2 have the same boundary source point ℓ1 = ℓ2. The reason for

using the double Laplacian instead of a single Laplacian �ℓ or �ℓ′ is its symmetry under

ℓ↔ ℓ′, which simplifies the worldline integral.
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FIG. 14: Numerical plots of the CFT correlator and bulk Sleight-Taronna contributions in various

channels, at l = 0, 5 and 0.001 ≤ ω ≤ 0.1. The regular behavior at ω → 0 expresses exponential

decay at large “time” separations, which implies the “time” locality of the new vertex.
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A. Extending V
(0,0,s)
ST beyond traceless gauge

Our first task is to extend VST beyond traceless gauge. For general spins (s1, s2, s3),

this extension is not fully known (the somewhat incomplete state of the art for general

cubic vertices in AdS is [43]; note that it uses the formalism of [8] rather than [9], i.e.

scaling weights 2−s rather than s+1 with respect to the embedding-space coordinates xµ).

However, in the special case V
(0,0,s)
ST , the extension is easy to work out. We begin by writing

the original vertex in the form:

V
(0,0,s)
ST h1h2h

(s) ∼ Jµ1...µsh(s)µ1...µs
, (176)

where Jµ1...µs is a bulk spin-s current constructed from the scalar fields h1, h2, and we hide

the coupling constants in the proportionality symbol “∼”. The fact that V
(0,0,s)
ST is gauge-

invariant within traceless gauge corresponds to the statement that Jµ1...µs is conserved in

EAdS4, up to trace terms and a gradient term:

∇µ1J
µ1...µs = ∇(µ2 J̃µ3...µs) + traces . (177)

Knowing J̃µ1...µs−2 , we can construct a corrected current Ĵµ1...µs , which is conserved up to

trace terms only:

Ĵµ1...µs = Jµ1...µs − s

2
g(µ1µ2 J̃µ3...µs) ; ∇µ1 Ĵ

µ1...µs = traces . (178)

This then defines a vertex that is gauge-invariant without restriction to traceless gauge:

V̂
(0,0,s)
ST h1h2h

(s) ∼ Ĵµ1...µsh(s)µ1...µs
= Jµ1...µsh(s)µ1...µs

− s

2
J̃µ1...µs−2h(s)µ1...µs−2ν

ν . (179)

Now, in the particular vertex formula (79), the current Jµ1...µs reads:

Jµ1...µs = P µ1
ν1
. . . P µs

νs

(

h1∂
ν1...νsh2 + h2∂

ν1...νsh1
)

, (180)

where ∂ν1...νs ≡ ∂ν1 . . . ∂νs are 5d partial derivatives with respect to xµ ∈ R
1,4, and P µ

ν are the

projectors (3) from R
1,4 onto the EAdS4 hyperboloid. When contracting with the HS field

h
(s)
µ1...µs in (176), these projectors can be omitted. However, they are important for calculating

the covariant divergence in (177). Using the definition (2) of the EAdS4 covariant derivative,

and setting x · x = −1 at the end, we calculate the divergence as:

∇µ1J
µ1...µs = P µ2

ν2 . . . P
µs

νs

(

∂ρh1∂
ν2...νs∂ρh2 − sh1∂ν2...νsh2 + (1↔ 2)

)

+ traces , (181)

67



which should be equal (up to traces) to ∇(µ2 J̃µ3...µs) = P µ2
ν2
. . . P µs

νs ∂
(ν2 J̃ν3...νs). It is now easy

to guess and verify an expression for J̃µ1...µs−2 :

J̃µ1...µs−2 = P µ1
ν1
. . . P µs−2

νs−2

s−2
∑

n=0

(−1)n
(

∂(ν1...νn∂ρh1∂
νn+1...νs−2)∂ρh2 − s∂(ν1...νnh1∂νn+1...νs−2)h2

)

.

(182)

Putting everything together and reverting to the notation of section 2 J, the corrected vertex

reads:

V̂
(0,0,s)
ST ∼ (∂u3 · ∂x1)

s + (∂u3 · ∂x2)
s

− s

2
(∂u3 · ∂u3)(∂x1 · ∂x2 − s)

s−2
∑

n=0

(−1)n(∂u3 · ∂x1)
n(∂u3 · ∂x2)

s−2−n .
(183)

B. Inserting the double Laplacian of the DV field

The currents (180),(182) are to be integrated against the double Laplacian (76)-(77) of

the DV field:

(Φ(s)
symm)µ1...µs

∼ Qµ1...µs
− 1

4
g(µ1µ2

Qµ3...µs) ; (184)

Qµ1...µp
= Tµ1...µp

(

∇ · ∇ − p(p− 1)
)

δ3(x; ℓ, ℓ′) ; (185)

Tµ1...µp
= tµ1 . . . tµp

− traces , (186)

to form the cubic diagram:

�ℓ�ℓ′S0,0,s[VST; h1, h2,Φsymm]

∼
∫

EAdS4

d4x

(

Qµ1...µs
− 1

4
g(µ1µ2

Qµ3...µs)

)

(

Jµ1...µs − s

2
g(µ1µ2 J̃µ3...µs)

)

(187)

=

∫

EAdS4

d4x

(

Qµ1...µs
Jµ1...µs +

1

2
Qµ1...µs−2

(

s

s− 1
J̃µ1...µs−2 − 1

2
Jνµ1...µs−2
ν

))

.

Using the free field equation (∂ · ∂)hi = 0 and the scaling property (x · ∂)hi = −hi for the
two scalar fields i = 1, 2, we can evaluate the trace Jνµ1...µs−2

ν as:

Jνµ1...µs−2
ν = P µ1

ν1
. . . P µs−2

νs−2
h1gσρ∂

ρσν1...νs−2h2 + (1← 2)

= − 1

x · x P
µ1
ν1
. . . P µs−2

νs−2
h1xσxρ∂

ρ∂σ∂ν1...νs−2h2 + (1← 2)

= −s(s− 1)

x · x P µ1
ν1 . . . P

µs−2
νs−2

(

h1∂
ν1...νs−2h2 + h2∂

ν1...νs−2h1
)

.

(188)
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To simplify the integral (187), we first move around the derivatives in the traceless structure

(77) as:

Qµ1...µp
=
(

∇ · ∇ − p(p+ 2)
)(

Tµ1...µp
δ3(x; ℓ, ℓ′)

)

. (189)

This follows from:

(

(∇ · ∇)tµ
)

δ3(x; ℓ, ℓ′) = −3tµδ3(x; ℓ, ℓ′) ; (∇νt
µ)∇νδ3(x; ℓ, ℓ′) = 3tµδ3(x; ℓ, ℓ′) , (190)

which in turn follows from:

∇µtν = −2t(µrν) ; ∇µrν = gµν − tµtν − rµrν ; (191)

rµδ3(x; ℓ, ℓ′) = 0 ; (r · ∇)δ3(x; ℓ, ℓ′) = −3δ3(x; ℓ, ℓ′) . (192)

We can now use (189) to integrate (187) by parts, moving the Laplacians ∇ · ∇ onto the

currents Jµ1...µs , Jνµ1...µs−2
ν , J̃µ1...µs−2 . Then the delta functions, now free of derivatives, yield

the following integral over the worldline γ(ℓ, ℓ′):

�ℓ�ℓ′S0,0,s[VST; h1, h2,Φsymm] ∼
∫ ∞

−∞
dτ

(

Tµ1...µs

(

∇ · ∇ − s(s+ 2)
)

Jµ1...µs

+
1

2
Tµ1...µs−2

(

∇ · ∇ − s(s− 2)
)

(

s

s− 1
J̃µ1...µs−2 − 1

2
Jνµ1...µs−2
ν

))

.

(193)

Now, recall that Jµ1...µs, Jνµ1...µs−2
ν , J̃µ1...µs−2 take the form (180),(182),(188) of EAdS4 pro-

jections of simple (but not tangential to EAdS4) embedding-space tensors. To evaluate

EAdS4 derivatives of such quantities, we use following identities, which hold for any R
1,4

tensor fµ1...µp
, and are straightforward to develop from the basic formula (2):

∇ρ(P
ν1
µ1
. . . P νp

µp
fν1...νp) = P ν1

µ1
. . . P νp

µp

(

P σ
ρ ∂σfν1...νp −

p

x · x gρ(ν1fν2...νp)σx
σ
)

(194)

(∇ · ∇)(P ν1
µ1
. . . P νp

µp
fν1...νp) = P ν1

µ1
. . . P νp

µp

([

∂ · ∂ − 1

x · x
(

(x · ∂)2 + 3(x · ∂)− p
)

]

fν1...νp

− 2p

x · x ∂(ν1
(

fν2...νp)ρx
ρ
)

+
p(p− 1)

(x · x)2 g(ν1ν2fν3...νs)ρσx
ρxσ
)

. (195)

With some further manipulation, we can bring (195) into the alternative form:

(∇ · ∇)(P ν1
µ1
. . . P νp

µp
fν1...νp) = P ν1

µ1
. . . P νp

µp

([

∂ · ∂ − 1

x · x
(

(x · ∂)2 + 3(x · ∂) + p
)

]

fν1...νp

− 2p

x · x x
ρ∂(ν1fν2...νp)ρ +

p(p− 1)

(x · x)2 g(ν1ν2fν3...νs)ρσx
ρxσ
)

= P ν1
µ1
. . . P νp

µp

([

∂ · ∂ − 1

x · x
(

(x · ∂)2 + x · ∂ + p
)

]

fν1...νp

− 2(p+ 1)

x · x xρ∂(ν1fν2...νpρ) +
p(p− 1)

(x · x)2 g(ν1ν2fν3...νs)ρσx
ρxσ
)

. (196)
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For Jµ1...µs and its trace, it’s convenient to apply (195). However, for J̃µ1...µs−2 , it’s more

convenient to apply (196), since by construction, a symmetrized gradient reduces it to the

divergence (181) of Jµ1...µs . Using (∂ · ∂)hi = 0 and (x · ∂)hi = −hi for the scalar fields

i = 1, 2, setting x · x = −1, and working up to trace terms, we get:

(∇ · ∇)Jµ1...µs = P µ1
ν1 . . . P

µs

νs

(

2∂ρh1∂
ν1...νs∂ρh2 − (s2 + 2)h1∂

ν1...νsh2

− 2s2∂(ν1h1∂
ν2...νs)h2

)

+ (1↔ 2) + traces ;
(197)

(∇ · ∇)Jνµ1...µs−2
ν = s(s− 1)P µ1

ν1 . . . P
µs−2
νs−2

(

2∂ρh1∂
ν1...νs−2∂ρh2

− (s2 − 4s+ 6)h1∂
ν1...νs−2h2 − 2(s− 2)2∂(ν1h1∂

ν2...νs−2)h2
)

+ (1↔ 2) + traces ;
(198)

(∇ · ∇)J̃µ1...µs−2 = 2s(s− 1)P µ1
ν1
. . . P µs−2

νs−2

(

−∂ρh1∂ν1...νs−2∂ρh2 + (s− 1)h1∂
ν1...νs−2h2

+ (1↔ 2)
)

+ P µ1
ν1
. . . P µs−2

νs−2

s−2
∑

n=0

(−1)n
(

2∂(ν1...νn∂ρσh1∂
νn+1...νs−2)∂ρσh2

+ s(s+ 2)∂(ν1...νn∂ρh1∂
νn+1...νs−2)∂ρh2

− s(s2 − 2)∂(ν1...νnh1∂
νn+1...νs−2)h2

)

+ traces .

(199)

Plugging this back into the worldline integral (193), and pulling out an overall factor of 2,

we arrive at the following expression for the diagram:

�ℓ�ℓ′S0,0,s[VST; h1, h2,Φsymm]

∼
∫ ∞

−∞
dτ

(

Tµ1...µs

[

∂νh1∂µ1...µs
∂νh2 − (s2 + s+ 1)h1∂

µ1...µsh2 − s2∂(µ1h1∂
µ2...µs)h2 + (1↔ 2)

]

− 1

4
Tµ1...µs−2

[

s(3s− 1)∂νh1∂
µ1...µs−2∂νh2 − s(s− 1)(s2 − s+ 3)h1∂

µ1...µs−2h2

− s(s− 1)(s− 2)2∂(µ1h1∂
µ2...µs−2)h2 + (1↔ 2) (200)

− 2s

s− 1

s−2
∑

n=0

(−1)n∂µ1...µn∂νρh1∂
µn+1...µs−2∂νρh2

− 4s2

s− 1

s−2
∑

n=0

(−1)n∂µ1...µn∂νh1∂
µn+1...µs−2∂νh2 + 2s2

s−2
∑

n=0

(−1)n∂µ1...µnh1∂
µn+1...µs−2h2

]

)

.

C. Evaluating the ℓ1 = ℓ2 case

We now specialize to the case where the scalar fields h1, h2 are both proportional to the

boundary-bulk propagator from the same boundary source point ℓ1 = ℓ2 ≡ L:

h1(x) = h2(x) = −
1

L · x . (201)
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The embedding-space derivatives of h1, h2 are then given by:

∂µ1...µnh1 = ∂µ1...µnh2 = n!

(

− 1

L · x

)n+1

. (202)

Plugging this into (200) and pulling out an overall factor of 2(−1)s+1, we get (note that all

terms with contracted derivatives vanish, since Lµ is null):

�ℓ�ℓ′S0,0,s ∼
∫ ∞

−∞
dτ

(

Tµ1...µs
Lµ1 . . . Lµs

(L · x)s+2

[

(s2 + s+ 1)s! + s2(s− 1)!
]

− 1

4

Tµ1...µs−2L
µ1 . . . Lµs−2

(L · x)s
[

s(s− 1)(s2 − s + 3)(s− 2)!

+ s(s− 1)(s− 2)2(s− 3)!− s2
s−2
∑

n=0

(−1)nn!(s− 2− n)!
]

)

.

(203)

Using the identity:

p
∑

n=0

(−1)nn!(p− n)! = 2(p+ 1)!

p+ 2
, (204)

which holds for all even p, we simplify (203) as (pulling out an overall factor of (s+ 1)!):

�ℓ�ℓ′S0,0,s ∼
∫ ∞

−∞
dτ

(

(s+ 1)
Tµ1...µs

Lµ1 . . . Lµs

(L · x)s+2
− s− 1

4

Tµ1...µs−2L
µ1 . . . Lµs−2

(L · x)s
)

. (205)

We thus need to evaluate quantities of the form (c.f. (8), and note that p = s, s−2 is even):

Tµ1...µp
Lµ1 . . . Lµp = p! T (p)(x, t, L) =

1

2p

p/2
∑

n=0

(

p+ 1

2n+ 1

)

(−qµνLµLν)n(t · L)p−2n . (206)

Here, xµ is a point on the γ(ℓ, ℓ′) geodesic, tµ is the unit tangent to the geodesic at xµ, and

qµν = ηµν + xµxν − tµtν is the metric of the 3d space perpendicular to both. Without loss of

generality, we can choose the bilocal’s endpoints ℓµ, ℓ′µ and the boundary source point Lµ

of the scalar fields as:

ℓµ =

(

1

2
,
1

2
, 0, 0, 0

)

; ℓ′µ =

(

1

2
,−1

2
, 0, 0, 0

)

; Lµ = (1, 0, 1, 0, 0) . (207)

This sets the geodesic at xµ = xµ(τ ; ℓ, ℓ′) = (cosh τ, sinh τ,~0), with unit tangent tµ =

(sinh τ, cosh τ,~0). We thus have:

x · L = − cosh τ ; t · L = − sinh τ ; qµνL
µLν = 1 . (208)
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This allows us to evaluate (206) as:

Tµ1...µp
Lµ1 . . . Lµp =

1

2p

p/2
∑

n=0

(

p+ 1

2n+ 1

)

(−1)n sinhp−2n τ =
1

2p
Im(sinh τ + i)p+1 . (209)

Dividing by (L · x)p+2 = coshp+2 τ and integrating over τ , we get:
∫ ∞

−∞
dτ
Tµ1...µp

Lµ1 . . . Lµp

(L · x)p+2
=

1

2p
Im

∫ ∞

−∞

dτ

cosh τ

(

tanh τ +
i

cosh τ

)p+1

=
1

2p
Im

∫ π

0

dβ (cos β + i sin β)p+1 =
1

2p

∫ π

0

dβ sin[(p+ 1)β] =
1

2p−1(p+ 1)
.

(210)

where we substituted tanh τ ≡ cos β. Plugging (210) back into (205), we see that the two

terms in (205) cancel. Thus, we managed to show that in this simple case, the diagram

�ℓ�ℓ′S0,0,s[VST; Π,Π,Φsymm] vanishes.

7. DISCUSSION

In this paper, we showed that the boundary correlator of three bilocals in HS holography

can be reproduced by physically sensible bulk structures, which extend the Sleight-Taronna

cubic vertex without sacrificing the principle of locality. We also showed that the Sleight-

Taronna vertex itself satisfies nice gauge-invariance properties outside its intended range of

applicability.

The most important direction for future work is to write down explicitly the new field-

field-worldline vertex Vnew from section 4. As we’ve seen, this requires calculating Sleight-

Taronna diagrams for two boundary-bulk propagators and one DV solution. The worldline

localization technique of section 6 may prove helpful, but it comes with the difficulty of

extending the Sleight-Taronna vertex beyond traceless gauge in one of its three “legs”.

Our paper was carefully phrased to refer to the minimal type-A bulk theory, dual to the

O(N) model on the boundary. However, we repeatedly found it convenient to talk about

e.g. the un-symmetrized bilocals O(ℓ, ℓ′) of the U(N/2) model, rather than the symmetrized

ones O+(ℓ, ℓ
′) of the O(N) model. It is thus tempting to extend the entire discussion to the

U(N/2) model, by allowing all integer spins in the bulk. In fact, most of our results and

arguments can be immediately generalized in this way (note that the calculations in sections

5-6 in any case involve only even spins, and would not be affected).

The only unknown is whether, with the inclusion of odd spins, the Sleight-Taronna ver-

tex (79) continues to reproduce the boundary correlators
〈

j
(s1)
1 j

(s2)
2 j

(s3)
3

〉

as in (81). Since
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〈

j
(s1)
1 j

(s2)
2 j

(s3)
3

〉

vanishes for odd s1 + s2 + s3, it is sensible to define V
(s1,s2,s3)
ST = 0 for this

case; in fact, in transverse-traceless gauge, the definition (79) already has this property, due

to section 3’s Lemma 2. Thus, the remaining question is whether the vertex (79) reproduces

the correlators for (even,odd,odd) combinations of spins (s1, s2, s3). We expect that the an-

swer is yes, but we haven’t worked it out one way or the other. Section 3’s gauge-invariance

results for the vertex (79) hold just as well in the (even,odd,odd) case. Section 4’s locality

arguments also survive the extension to odd spins. Specifically, if the Sleight-Taronna ver-

tex correctly describes the (even,odd,odd)
〈

j
(s1)
1 j

(s2)
2 j

(s3)
3

〉

correlator, then the statements

of section 4 simply carry through. If not, then the (even,odd,odd) correlator will still be

described by some local vertex; unlike the Sleight-Taronna vertex, this may require some

gauge corrections when generalized from transverse-traceless to general traceless gauge, but

these will again be local. With such corrections taken into account, the main statements of

section 4 vis. the locality of the new field-field-worldline vertex Vnew will continue to hold.

As noted in the Introduction, our larger ambition is to use the cubic structure explored

in this paper as a building block for constructing all the correlators of HS theory, in a way

that repackages all non-locality into the structure and interactions of DV solutions and their

geodesic “worldlines”. This idea will be explored in detail in a separate publication [27].
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