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Abstract

We propose a generalized Debye-Hückel model from Poisson-Fermi theory to predict the mean activity coefficient of electrolytes
in water-methanol mixtures with arbitrary percentage of methanol from 0 to 100%. The model applies to any number of ionic
species and accounts for both short and long ion-ion, ion-water, ion-methanol, and water-methanol interactions, the size effect
of all particles, and the dielectric effect of mixed-solvent solutions. We also present a numerical algorithm with mathematical
and physical details for using the model to fit or predict experimental data. The model has only 3 empirical parameters to fit the
experimental data of NaF, NaCl, and NaBr, for example, in pure-water solutions. It then uses another 3 parameters to predict the
activities of these salts in mixed-solvent solutions for any percentage of methanol. Values of these parameters show mathematical
or physical meaning of ionic activities under variable mixing condition and salt concentration. The algorithm can automatically
determine optimal values for the 3 fitting parameters without any manual adjustments.

Keywords: activity coefficient, generalized Debye-Hückel model, Poisson-Fermi theory, water-methanol mixtures

1. Introduction

Water and alcohol are ubiquitous and complicated liquids
[1, 2, 3]. With salts, they pose many challenges to thermo-
dynamic modeling for a great variety of applications in a wide
range of systems and conditions [4, 5, 6, 7, 8, 9]. One of the
major difficulties for numerous models [9] is to deal with the
combinatorial explosion of empirical parameters up to tens of
thousands [4] to calculate activity coefficients of electrolyte so-
lutions with different compositions at variable temperature and
pressure. Even worse, many parameters do not have physical
meaning [10] or offer mathematical hint [4, 11] to use.

Generalized Debye-Hückel (DH) models [11, 12, 13, 14]
from a Poisson-Fermi (PF) theory [15, 16, 17, 18] developed
recently can ease some of these difficulties. These models use
only 3 empirical parameters having both physical and mathe-
matical properties to well fit experimental activity data of multi-
component electrolyte solutions in a range of concentrations,
temperatures, and pressures. It is shown in [11] that the gener-
alized DH model differs much from Hückel’s model [19] (and
numerous DH models extended from it since 1925) as their
approximations of Born solvation energies are inverse of each
other in terms of parameters, which explains why extended DH
models need more parameters generally without physical mean-
ing. The PF theory treats ions and water (solvent) molecules of
any volume and shape with interstitial voids, and accounts for
polarization of water, both short and long ranges of ion-ion and
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ion-water interactions and correlations, and the non-uniform di-
electric response (permittivity) of electrolyte solutions.

We propose here a generalized DH model to predict mean
activity coefficients of electrolytes in water-methanol mixtures
with any percentage (mole fraction) of methanol x in [0, 1].
The model first uses 3 parameters αH2O

j for j = 1, 2, 3 to best
fit the experimental activity data of NaF [20], NaCl [21], and
NaBr [22], for example, in pure-water solutions (i.e., x = 0)
using the method of least squares. It then uses another 3 pa-
rameters ∆α j to predict the activities in mixed solutions for any
arbitrary x , 0. The parameters αH2O

j define a factor func-
tion θ(I) of the variable ionic strength I of the solution that in
turn modifies the experimental Born radius R0

i [23, 24, 25] of
an ion i in pure solvent (i.e., I = 0) to an unknown Born ra-
dius RBorn

i = θ(I)R0
i for any I , 0. The other ∆α j are defined

by αx
j = (1 − x)αH2O

j + xαMeOH
j = αH2O

j + x∆α j for any mix-
ing x. Therefore, all these 6 parameters have clear physical
meaning in terms of Born energy. We also provide numerical
evidence that their values offer novel hints for future studies on
different solutions for which a numerical algorithm is given to
show how to implement the model with details. This predic-
tive model and the algorithm can be straightforwardly applied
to electrolyte solutions with multi-valent ions, mixed salts, vari-
able temperature, and variable pressure [11].

2. Theory and algorithm

For K species of ions in water-methanol mixed solvents, the
entropy model proposed in [17, 18] treats ions, water (denoted
by K + 1), and methanol (K + 2) as nonuniform spheres with
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interstitial voids (K + 3). The total volume V of the system is

V =

K+2∑
i=1

viNi + VK+3, (1)

where vi is the volume of each ith species particle, Ni is the total
number of all ith species particles, and VK+3 denotes the total
volume of all the voids. In bulk solutions, we have the bulk
concentrations CB

i = Ni
V and the bulk volume fraction of voids

ΓB =
VK+3

V . Dividing (1) by V , we get ΓB = 1 −
∑K+2

i=1 viCB
i .

If the system is spatially inhomogeneous with variable elec-
tric or steric fields, as in realistic systems, the constant CB

i then
changes to a function Ci(r) so does ΓB to a void volume func-
tion Γ(r) = 1 −

∑K+2
i=1 viCi(r) in the solvent domain Ωs.

It is shown in [18] that the distribution (concentration) of par-
ticles

Ci(r) = CB
i exp

(
−βiφ(r) +

vi

v0
S (r)

)
, S (r) = ln

(
Γ(r)
ΓB

)
, (2)

is of Fermi-like type, i.e., Ci(r) < 1
vi

for any arbitrary (or even
infinite) electric potential φ(r) at any r ∈ Ωs for all i = 1, · · · ,
K + 2, where βi = qi/kBT with qi being the charge on species i
particles and qK+1 = qK+2 = 0, kB is the Boltzmann constant, T
is an absolute temperature, and v0 is a unit volume. The steric
potential S (r) is an entropic measure of crowding or emptiness
of particles at r [15, 17, 18]. If φ(r) = 0, then Γ(r) = ΓB and
hence S (r) = 0. The factor vi/v0 in (2) shows that the steric
energy −vi

v0
S (r)kBT of a type i particle at r depends not only on

the steric potential S (r) but also on its volume vi similar to the
electric energy βiφ(r)kBT depending on both φ(r) and qi [18].

The activity coefficient γi of an ion of species i in electrolyte
solutions describes the deviation of chemical potential of the
ion from ideality (γi = 1). The excess chemical potential µex

i =

kBT ln γi can be calculated by [12]

µex
i =

1
2

qiφ(0) −
1
2

qiφ
0(0), (3)

where φ(r) is the electric potential generated by the ion i in the
system domain Ω = Ωi ∪ Ωsh ∪ Ωs shown in Fig. 1, Ωi is the
spherical domain occupied by the ion, Ωsh is the solvation shell
domain of the ion, Ωs is the rest of solvent domain, 0 denotes
the center of the ion, and φ0(r) is a potential function when the
solvent domain is ideal, i.e., CB

j = 0 for all j.
The potential function φ(r) can be found by solving the PF

equation [11, 12, 13, 14]

εs(l2c∇
2 − 1)∇2φ(r) =

K∑
i=1

qiCi(r) in Ωs (4)

and the Laplace equation

−∇2φ(r) = 0 in Ωi ∪Ωsh, (5)

where εs = ε0εx is the permittivity of a bulk mixed solvent in
Ωsh ∪Ωs, ε0 is the vacuum permittivity, εx is the dielectric con-
stant of the bulk solvent, lc =

√
lBlD/48 is a density-density

Figure 1: The model domain Ω is partitioned into ion domain Ωi (with radius
RBorn

i,x ), the solvation shell domain Ωsh (with radius Rsh
i,x), and the remaining

mixed solvent domain Ωs.

correlation length [26], and lB and lD are the Bjerrum and De-
bye lengths, respectively. The dielectric operator εs(l2c∇

2 − 1)
yields the permittivity of the electrolyte solution and the polar-
ization of the mixed solvent as functions of r [18].

The same derivation steps developed in [11] apply to Eqs.
(4) and (5) for an approximate and analytical solution, i.e., (i)
linearization of the fourth-order PF (same as Poisson-Bikerman
used in [11]) Eq. (4) for a general binary (K = 2) electrolyte
Cz2 Az1 in the mixed solvent with the valences of the cation Cz1+

and anion Az2− being z1 and z2, respectively, (ii) determination
of global solutions of the linear PF and Laplace equations in the
spherical domain in Fig. 1, and (iii) determination of a unique
solution of these two equations with the same set of the inter-
face and boundary conditions proposed in [11]. The analytical
solution of Eqs. (4) and (5) is

φ(r) =



qi

4πεsRBorn
i,x

+
qi

4πεsRsh
i,x

(Θ − 1) in Ωi,

qi
4πεsr

+
qi

4πεsRsh
i,x

(Θ − 1) in Ωsh,

qi
4πεsr

[
λ2

1e−
√
λ2(r−Rsh

i,x )
−λ2

2e−
√
λ1(r−Rsh

i,x )

λ2
1(
√
λ2Rsh

i,x+1)−λ2
2(
√
λ1Rsh

i,x+1)

]
in Ωs,

(6)

where r = |r|,

Θ =
λ2

1 − λ
2
2

λ2
1(
√
λ2Rsh

i,x + 1) − λ2
2(
√
λ1Rsh

i,x + 1)
, (7)

λ1 =
1 −

√
1 − (lx

c)2/(lx
D)2

2(lx
c)2 , λ2 =

1 +

√
1 − (lx

c)2/(lx
D)2

2(lx
c)2 , (8)

lx
D =

 εskBT
CB

1 ((1 − Λx)q2
1 − q1q2)

1/2

, (9)

Λx =
CB

1 (v1 − v2)2

v0ΓB + v2
1CB

1 + v2
2CB

2 + v2
3CB

3 + v2
4CB

4

, (10)

CB
3 = (1 − x)C̄B

3 with any mixing x in [0, 1], CB
4 = xC̄B

4 , C̄B
3

and C̄B
4 denote respectively the maximal bulk concentrations of

water and methanol considered in this work, and the Debye lx
D

2



Table 1. Values of model notations.
Symbol Meaning Value Unit

kB Boltzmann constant 1.380649 × 10−23 J/K
T temperature 298.15 K
e proton charge 1.6022 × 10−19 C
ε0 permittivity of vacuum 8.854187 × 10−14 F/cm
εH2O, εMeOH dielectric constants 78.45, 31.93
x mixing percentage in [0, 1]
ρ0

H2O, ρ0
0.5, ρ0

MeOH pure solvent densities 0.9971, 0.9128, 0.7866 [20] g/cm3

DNaF, DNaCl, DNaBr density gradients 41.38, 46.62, 77.13 [27, 28] g2/(cm3mol)
MNaF, MNaCl, MNaBr molar masses 41.99, 58.44, 102.894 g/mol
rNa+ , rF− , rCl− , rBr− , rH2O, rMeOH radii 0.95, 1.36, 1.81, 1.95, 1.4, 1.915 Å
O±x occupation number in Ωsh 18 [29, 30]
R0

Na+ , R0
F− , R0

Cl− , R0
Br− Born radii in H2O 1.587, 1.569, 2.199, 2.398 Å

in MeOH 1.783, 1.5, 2.02, 2.181 Å

and correlation lx
c lengths have been generalized to include all

particle volumes as shown in Λx. All formulas are in the same
form as those in [11] generalized to include mixtures.

Since the solvation free energy of an ion i varies with salt
concentrations, the Born energy

−q2
i

8πε0R0
i,x

(
1 − 1

εx

)
, R0

i,x = (1 − x)R0
i,H2O + xR0

i,MeOH,

εx = (1 − x)εH2O + xεMeOH,
(11)

in a pure mixed solvent (CB
j = 0) should be modified to vary

with CB
j ≥ 0 for j = 1, 2 [11]. Here, the constant Born radii

R0
i,H2O =

−q2
i

8πε0∆H0
i,H2O

(
1 −

1
εH2O

)
(12)

and

R0
i,MeOH =

−q2
i

8πε0∆H0
i,MeOH

(
1 −

1
εMeOH

)
(13)

in pure water and pure methanol are obtained from experimen-
tal hydration Helmholtz free energies ∆H0

i,H2O and ∆H0
i,MeOH

[23, 24, 25], respectively, as given in Table 1 with other physical
values. The effective Born radius RBorn

i,x in (6) is thus a function
of CB

j that can be modeled by the simple formula [12]

RBorn
i,x (I) = θ(I)R0

i,x, θ(I) = 1 + αx
1I

1/2
+ αx

2I + αx
3I

3/2
, (14)

where I = 1
2 Σ jCB

j z2
j is the ionic strength of the solution, I =

I/M is a dimensionless ionic strength, M is molarity, and αx
1,

αx
2, and αx

3 are parameters for modifying the Born radius R0
i,x to

fit experimental activity coefficients that change with I.
From (3) and (6), we thus obtain a generalized activity coef-

ficient

ln γx
i (I) =

q2
i

8πεskBT

 1
RBorn

i,x (I)
−

1
R0

i,x

+
Θ − 1
Rsh

i,x

 (15)

for each ion i in the mixed electrolyte solution and the mean
activity coefficient

ln γx
±(I) =

z2

z1 + z2
ln γx

+ +
z1

z1 + z2
ln γx

−, (16)

where + and − denote Cz1+ and Az2−, respectively.
We use three parameters αH2O

j for j = 1, 2, 3 to fit the exper-
imental activities of NaF [20], NaCl [21], and NaBr [22], for
example, in pure-water solutions. We then use another three
∆α j in

αx
j = αH2O

j + x∆α j (17)

to predict the activities of these salts in mixed-solvent solu-
tions for any x in [0, 1]. This equation is derived from αx

j =

(1 − x)αH2O
j + xαMeOH

j . Since the steric potential takes parti-
cle volumes and voids into account, the shell volume Vsh of the
shell domain Ωsh can be determined by the steric potential

S sh =
v0

vx
ln

O±x
VshCB

x
= ln

Vsh − vxO±x
VshΓB , (18)

where O±x is the occupation (coordination [29, 30]) number of
solvent molecules in Ωsh, vx = (1 − x)v3 + xv4, and CB

x = (1 −
x)C̄B

3 + xC̄B
4 . The shell radius Rsh

i,x is thus determined by O±x .
The following algorithm summarizes the proposed model

with more details in numerical methods and implementation,
where Steps 1 - 5 are for fitting and 6 - 8 for prediction.

3. Results and discussion

Figure 2 shows the mean activity coefficients of NaF, NaCl,
NaBr fitted (red curves) and predicted (blue curves) by (16)
with αH2O

j and ∆α j in (17) to experimental data (symbols) from
[20, 21, 22] at x = 0 (in pure water) and x = 0.2, 0.4, 0.6, 0.8, 1
(in mixture or pure methanol), respectively. The values of αH2O

j
and ∆α j for j = 1, 2, 3 are given in Table 2 and show the signif-
icant order

∣∣∣αH2O
1

∣∣∣ > ∣∣∣αH2O
2

∣∣∣ > ∣∣∣αH2O
3

∣∣∣ and |∆α1| > |∆α2| > |∆α3|,
which implies the order

∣∣∣αx
1

∣∣∣ > ∣∣∣αx
2

∣∣∣ > ∣∣∣αx
3

∣∣∣ as well from (17).
This numerical order gives mathematical hints to these param-
eters for further use of our model in different conditions or for
other electrolyte systems.

Figure 3 shows that the factor θ in the effective Born radius
θR0

i,x of ion i in (14) varies non-monotonically with the concen-
tration of NaF, NaCl, and NaBr with different curvatures due to
different sizes of anions in these salts. It also varies with the

3



Algorithm for generalized Debye-Hückel model

Input: Experimental data (γx,exp
± , CB

+) for cation + and x ∈ [0, 1] with CB
+ in molality (m).

Functions:
Solvent() returns εx (11), vx (18), CB

x (18) given x.
Born() returns R0

±,x (11) given x, ∆H0
±,3 (12), ∆H0

±,4 (13) with 3: H2O, 4: MeOH.
m2M() converts CB

+ to C+ (in molarity M) given x.
Newton() solves a nonlinear eq. f (Vsh) = 0 from (18) for Vsh that yields Rsh

±,x (15).
LSfit() returns best γ0

± (16) fitted to γ0,exp
± by least squares with best αH2O

j (17) in θ(I) (14) for j = 1, 2, 3.
Activity() returns γx

± from (16) given θ(I), R0
±,x, Rsh

±,x.
Steps:
1. [ε3, v3, C̄B

3 ] = Solvent(x = 0).
2. [R0

±,3] = Born(ε3, x = 0).

3. [C+] = m2M(CB
+, x = 0) with M =

1000mρl
x

1000 + mMl
[31], l = NaF, NaCl, or NaBr, ρl

x = ρ0
x +

Dlm
1000

[27, 28],

ρ0
x =

(x − 0.5)(x − 1)
0.5

ρ0
3 +

x(x − 1)
−0.25

ρ0
0.5 +

x(x − 0.5)
0.5

ρ0
4.

4. [Rsh
±,3] = Newton(C̄3, v3) with f (Vsh) = aVc

sh − Vsh + b, a = ΓB
(
C̄3/O±3

)−v0/v3
, b = v3O±3 , c = 1 − (v0/v3).

5. [γ0
±(I), αH2O

j ] = LSfit(γ0,exp
± , C+, R0

±,3) for j = 1, 2, 3.
5.1. Get θk that yields best γ0

±(Ik) to γ0,exp
± (Ik) by alternating variation of θ from 1 for k = 1, 2, ...,N as follows:

θk = 1, γ0
±(Ik) = 1, n = 1, while

(∣∣∣∣γ0
±(Ik) − γ0,exp

± (Ik)
∣∣∣∣ > 0.003

)
do {θk = θk + (−1)n10−4n,

[γ0
±(Ik)] = Activity(θk, R0

±,3, Rsh
±,3), n = n + 1}.

5.2. Solve Aα = b from (14) for α =

α1
α2
α3

 with A =


Ī

1
2
i Īi Ī

3
2
i

Ī
1
2
j Ī j Ī

3
2
j

Ī
1
2
k Īk Ī

3
2
k

, b =

θi − 1
θ j − 1
θk − 1

, i = 1, . . . ,N, j = i + 1, . . . ,N,

k = j + 1, . . . ,N. The total number of αs (all combinatorial i, j, and k) is Nc = N(N − 1)(N − 2)/6.

5.3. [γ0
±,i(Ik)] = Activity(θk,i, R0

±,3, Rsh
±,3) with θk,i = 1 + αi(1)I

1
2
k + αi(2)Ik + αi(3)I

3
2
k , k = 1, . . . ,N, i = 1, . . . ,Nc.

5.4. Error(i) =
∑N

k=1

(
γ0
±,i(Ik) − γ0,exp

± (Ik)
)2

, i = 1, . . . ,Nc. Set n = i with Error(i) being the minimum.
5.5. γ0

±(I) = γ0
±,n(I), αH2O

j = αn( j).
6. [εx, vx, CB

x ] = Solvent(x , 0).
7. [R0

±,x] = Born(εx, x), [Cx] = m2M(CB
+, x), [Rsh

±,x] = Newton(Cx, vx).
8. [γx

±,i(I)] = Activity(θ(I), R0
±,x, Rsh

±,x) with θ(I) in (14), αx
j in (17), ∆α j being guessed.

Output: [γx
±,i(I), αH2O

j , ∆α j, θ(I)] with x ∈ [0, 1].

percentage x (= 0 for red solid curves and 0.2, 0.4, 0.6, 0.8, 1
for others) of methanol in mixtures. Therefore, the parameters
αx

j have physical meaning in Born energy and their values from
Table 2 are in accord with experimental solvation energies of
these ions in water-methanol mixtures [32, 33], i.e., the Born
energy of these anions in H2O-MeOH mixture is larger than in
pure H2O in the same conditions, see e.g. Fig. 3 in [33].

We make some more remarks on the results, model, and al-
gorithm as follows:

(i) Our model can fit any set of experimental activity data
points as shown by the red curves in Fig. 2 with only 3 parame-
ters (αH2O

j , j = 1, 2, 3) for which their values are determined au-
tomatically (not manually) by the algorithm. It nevertheless re-
quires many precise physical values from experimental sources
as shown in Table 1 and the algorithm.

(ii) We manually adjusted the values of ∆α j in Table 2 for
prediction. In addition to the properties of significant order
and Born energy, these values are not arbitrary but can be ver-
ified with experimental data. For example, αMeOH

1 = 0.0242 +

0.027 = 0.0512 ≈ 0.0501 for NaBr by (17) at x = 1 (in pure
MeOH), where 0.0242 = αH2O

1 (in pure H2O) and 0.027 = ∆α1
are from Table 2, and 0.0501 is from fitting MeOH data (not
shown). This implies that the value 0.027 is reasonable and
verifiable.

(iii) As shown and discussed in [11, 12, 13, 14], the princi-
pal determinant of ionic activities by (15) is the effective Born
radius RBorn

i,x (I) (or the ion domain Ωi in Fig. 1) due to the sin-
gular charge qiδ(r − 0) of the ion, which is infinite at 0 and
thus critically affects γx

±. The secondary part in (15) is Rsh
i,x that

defines the shell volume of Ωsh (18) in which the electric poten-
tial function φ(r) in (6) decreases exponentially to the solvent
domain Ωs, see e.g. Fig. 6 in [11]. The tertiary part is φ(r)
in Ωs that is derived by the PF Eq. (4). Therefore, our model
describes the effects of ion and solvent sizes, ion-ion and ion-
solvent interactions, and solution permittivity in this order of 3
determinants and of 3 subdomains.

(iv) We chose and fixed the coordination number O±x = 18 in
(18) for simplicity to produce all the above results because of

4



Figure 2: Mean activity coefficients of NaF, NaCl, NaBr fitted (red curves) and predicted (blue curves) by (16) with αH2O
j and ∆α j in (17) to experimental data

(symbols) from [20, 21, 22] at x = 0 (in pure water) and x = 0.2, 0.4, 0.6, 0.8, 1 (in mixture or pure methanol), respectively.

Table 2. Values of αH2O
j and ∆α j in (17) for NaF, NaCl, and NaBr activities in Fig. 2.

NaF NaCl NaBr
j 1 2 3 1 2 3 1 2 3

αH2O
j 0.0224 0.0099 -0.0050 0.0224 -0.0113 -0.0005 0.0242 -0.0223 0.0009

∆α j 0.06 -0.01 0.005 0.068 -0.0017 -0.0002 0.027 -0.004 -0.0005

its secondary effect on γx
±. Its value can be chosen more pre-

cisely from experimental sources for different ions in different
conditions [29, 30]. It can also be changed to a more specific
form O±x = (1 − x)O±H2O + xO±MeOH with changed vx and exper-
imental O±H2O and O±MeOH, which makes (18) and Newton() in
the algorithm more complicated for implementation.

(v) The activity Eq. (16) is derived from the first principle
volume Eq. (1) which is a foundational proposition of our the-
ory that defines the steric potential in (2) in terms of voids. The
steric potential is thus a mean-field summary of all kinds of
interactions between any pair of particles in a system such as
Coulomb (long range), van der Waals (short), or Lennard-Jones
(short) interactions [18] that produce the voids and hence the
pressure of the system. Therefore, Eq. (16) does not need any
mixing and combining rules (yielding more empirical param-
eters [9]) for these short-range interactions, and can apply to
systems under variable temperature or pressure condition [11].
Furthermore, Eq. (16) accounts for variable permittivity of
electrolyte solutions with a dielectric function ε(r) = 1 in Ωi

[11], = εx in Ωsh, and =
(
εH2OC3(r) + εMeOHC4(r)

)
/
(
CB

3 + CB
4

)
in Ωs [11].

(vi) The model is usually expressed in dimensionless form
in implementation with the scaling factors s1 = e/(kBT ) and
s2 = Å

2
e2/(kBT ) for the potential φ(r) and concentration Ci(r)

variables, i.e., s1φ and s2Ci are dimensionless.
Our code of the algorithm is accessible at

https://github.com/JinnAIGroup for verification and further
development.

4. Conclusion

We proposed a generalized Debye-Hückel model for cal-
culating and studying the activity of electrolytes in water-
methanol mixtures for any number of salt types with arbitrary
percentage (mole fraction) of methanol. The model is based
on the Poisson-Fermi theory that accounts for the effects of (i)
non-uniform sizes of ions and solvents, (ii) short and long in-
teractions between ion and solvent or different ions or different
solvents by mean-field steric and electric potentials, and (iii)
non-uniform and size-dependent permittivity of the mixed so-
lution.

We also proposed an algorithm to implement the model that
can automatically and well fit any set of experimental activity
coefficients with corresponding salt concentrations using only 3
empirical parameters that show clear physical meaning in terms
of Born energy and the significant order of their values for ver-
ification and numerical hints for further applications to other
electrolyte systems. Based on these parameters, the algorithm
can also predict the activity of mixtures using another 3 pa-
rameters for any mole fraction of a solvent to another solvent.
Again, the later 3 parameters have the same physical meaning
and significant order, and are verifiable with experimental data.
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Figure 3: Variation of θ in the effective Born radius θR0
±,x of ion + or − in NaF, NaCl, NaBr with concentration and x (= 0 for red solid curves and 0.2, 0.4, 0.6, 0.8,

1 for others). These curves correspond to those in Fig. 2.

Our model and algorithm with the same parameters can
straightforwardly apply to other electrolyte systems for both
fitting and prediction under different conditions such as tem-
perature or pressure.
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starker elektrolyte. Phys. Z, 26, 93-147.

[20] Hernández-Luis, F., Vázquez, M. V., Esteso, M. A. (2003). Activity co-
efficients for NaF in methanol-water and ethanol-water mixtures at 25 C.
Journal of Molecular Liquids, 108(1-3), 283-301.

[21] Basili, A., Mussini, P. R., Mussini, T., Rondinini, S. (1996). Thermody-
namics of the cell: {NaxHg1−x |Bas96(m)|AgCl|Ag} in (methanol+ water)
solvent mixtures. The Journal of Chemical Thermodynamics, 28(8), 923-
933.

[22] Han, S., Pan, H. (1993). Thermodynamics of the sodium bromide-
methanol-water and sodium bromide-ethanol-water two ternary systems
by the measurements of electromotive force at 298.15 K. Fluid Phase
Equilibria, 83, 261-270.

[23] Fawcett, W. R. (2004). Liquids, solutions, and interfaces: From classical
macroscopic descriptions to modern microscopic details. Oxford Univer-

6



sity Press.
[24] Pliego Jr, J. R., Miguel, E. L. (2013). Absolute single-ion solvation free

energy scale in methanol determined by the lithium cluster-continuum
approach. The Journal of Physical Chemistry B, 117(17), 5129-5135.
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