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In this work, we study quantum computing algorithms for accelerating causal inference. Specif-
ically, we consider the formalism of causal hypothesis testing presented in [Nat Commun 10, 1472
(2019)]. We develop a quantum circuit implementation and use it to demonstrate that the error
probability introduced in the previous work requires modification. The practical scenario, which
follows a theoretical description, is constructed as a scalable quantum gate-based algorithm on IBM
Qiskit. We present the circuit construction of the oracle embedding the causal hypothesis and assess
the associated gate complexities. Additionally, our experiments on a simulator platform validate
the predicted speedup. We discuss applications of this framework for causal inference use cases in
bioinformatics and artificial general intelligence.

I. INTRODUCTION

Despite the huge success of machine learning (ML) al-
gorithms based on deep neural networks, these systems
are inscrutable black-box models. This hampers users’
trust in the system and obfuscates the discovery of algo-
rithmic biases arising from flawed generative processes
that are prejudicial to certain inputs (e.g., racial dis-
crimination). Explainable artificial intelligence (XAI) [1]
focuses on human understanding of the decision from
the learned solution as white-box models. These models
provide results that are understandable for domain ex-
perts, thus providing transparency, interpretability, and
explainability. XAI algorithms provide a basis for justi-
fying decisions, tracking and thereby verifying them, im-
proving the algorithms, and exploring new facts. There
has been relatively slow progress in XAI, despite realiz-
ing its importance as we increasingly automate critical
systems. Early advances in XAI were based on sym-
bolic reasoning systems and truth maintenance systems.
To achieve causal reasoning [2], rule-based learning and
logic-based inference systems were proposed. Methods
to address inherent opaque modern methods like deep
learning-based neural networks and genetic algorithms
include layer-wise relevance propagation and local inter-
pretability. There exist other ML algorithms (e.g. de-
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cision trees, Bayesian classifiers, additive models) that
generate interpretable models i.e. the model components
(e.g., the weight of a feature, a path in a decision tree, or
a specific rule) can be directly inspected to understand
the predictions. However, these models are not general
and scalable to compete with the adoption and impact of
neural networks. On the other hand, symbolic reasoning
systems were abandoned owing to the difficulty in scaling
these systems for a large number of parameters.

The capability of quantum computation allows us to
scale symbolic reasoning models by encoding the classical
rules as a superposition of quantum states or processes [3]
is a core motivation in quantum explainable AI. Quan-
tum mechanics provide enhanced ways to identify causal
links; for example, certain quantum correlations can be
used to infer classical causal relationships [4, 5]. This
could overcome the apprehension of existing classical ap-
proaches being pursued in XAI.

In this article, we will explore how we can distinguish
quantum processes by their causal structure. Specifi-
cally, we study the construction proposed in [6] towards
a quantum circuit implementation on the IBM Qiskit
quantum programming language. In doing so, we un-
cover (i) the implementation aspects of the causal oracle,
(ii) the gate and qubit complexity of the full algorithm,
and (iii) practical case error probability, which we intro-
duce in the paper that shows the dependence of the error
probability on some distance measure between the set
of processes/hypotheses being tested. While the current
technology readiness level of quantum systems prevents
us from demonstrating this causal reasoning within a
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broader application framework, we present the quantum
kernel that can be readily embedded within a software
pipeline for applications in bioinformatics and artificial
general intelligence (AGI). In particular, it will be useful
in XAI pipelines [7, 8].

The remaining article is organized as follows. In Sec-
tion [II] we briefly review the specifics of causal reasoning
and some of the well-studied techniques. A discussion on
the basic concepts and quantum advantage of causal hy-
pothesis testing is given in Section [III]. In the following
Section [IVA] we describe the problem formulation; con-
taining the main findings of the article. Here we define
a model implementation on Qiskit followed by a correc-
tion factor introduced in the error probability based on
our empirical results; which we call practical error prob-
ability. Finally, in Section [VI] we discuss some potential
use cases in bioinformatics and artificial general intelli-
gence. The corresponding quantum resources of gates
and qubits are assessed for realistic cases. Section [VII]
concludes the article.

II. OVERVIEW OF CAUSAL INFERENCE

Causal inference considers the assumptions, study de-
signs, and estimation strategies that allow researchers
to draw conclusions on the cause-effect relationships be-
tween data. In particular, it considers the outcomes that
could manifest given exposure to each of a set of dynam-
ics of a specific causal variable. Causal effects are defined
as comparisons between these potential outcomes. Stan-
dard approaches in statistics, such as regression analy-
sis, are concerned with quantifying how changes between
two variables are associated, with no directional sense.
In contrast to that, causal inference methods are used to
determine whether changes in a variable X cause changes
in another variable Y or vice-versa. If X is causally re-
lated to Y, then Y’s change can (at least partially) be
explained in terms of X’s change.

A. Challenges of performing causal inference

Causal models are based on the idea of potential out-
comes. The two major challenges is causal inference are:

• Causation does not imply association For ex-
ample, we want to compare the impact of an aca-
demic degree on the income of a middle-aged indi-
vidual. The person might have attended the aca-
demic degree or might not have. To calculate the
causal effect of having an academic degree, we need
to compare the output in both situations, which is
not possible. This dilemma is a fundamental prob-
lem of causal inference. The challenge in causal
inference is that all potential outcomes are not ob-
served, we only observe one. Another example is

described by the situation of – a black cat ran un-
der the fence and I tripped and fell over. We could
have tripped anyway. It had nothing to do with
the cause of the cat running under the fence, i.e.,
associated events do not imply causal connection.

• Correlation does not prove causality

Causal inference is the process of drawing a con-
clusion about a causal connection based on the
occurrence of an effect. Causal inference is usu-
ally a missing data problem [9] and we tend to
make assumptions to make up for the missing
causes/variables. An example is a correlation be-
tween people eating ice cream and people drown-
ings. It could indicate that eating ice cream af-
fects drowning. The actual correlation is between
the season (summer) and these otherwise unrelated
things. In this case, the missing cause is the season.

B. Classical techniques in causal inference

Causal inference is conducted via the study of systems
where the measure of one variable is suspected to affect
the measure of another. Causal inference is conducted
with regard to the scientific method. The first step of
causal inference is to formulate a falsifiable null hypothe-
sis, which is subsequently tested with statistical methods.
Frequentist statistical inference uses statistical methods
to determine the probability that the data occur under
the null hypothesis by chance. Bayesian inference is used
to determine the effect of an independent variable.
Common frameworks for causal inference include the

causal pie model (component-cause) [10], Pearl’s struc-
tural causal model (causal diagram and do-calculus) [11],
structural equation modeling, and Rubin’s causal model
(potential-outcome) [12]. [13] presents a more compre-
hensive survey of classical causal inference techniques.
The most frequently used causal models can be

grouped into two kinds: causal Bayesian networks and
structural equation models (which are distinct but closely
related). Causal graph models combine mathematics
and philosophy: the mathematical elements are Directed
Acyclic Graphs (DAGs) and probability theory (with a
focus on conditional independence); the philosophical el-
ements are assumptions about the relationship between
causation and probability [14]. An alternative approach
to causal inference based on algorithmic generative mod-
els is currently gaining popularity. [15] describes the
process of performing causal deconvolution using this
technique. This paper talks about the different gener-
ating mechanisms by which complex data is produced.
The authors introduced a universal, unsupervised, and
parameter-free model-oriented approach based upon al-
gorithmic probability that decomposes an observation
into its most likely algorithmic generative sources. This
is closely related to the quantum approaches discussed in
the next section.
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FIG. 1. All possible causal relations for 3 variables. Blocks shaded grey have causal loops (and are typically not considered).
The set of blocks shaded green indicates a case of causal hypothesis testing.

C. Quantum computation and algorithmic
generative models

The synergy between quantum computation and algo-
rithmic information has been studied extensively in [16].
Two main directions were explored, that can be applied
for causal inference.

In [3] a global/objective view is presented, which in-
volves quantum automata for algorithmic information. A
framework for causal inference based on algorithmic gen-
erative models is developed. This technique of quantum-
accelerated experimental algorithmic information the-
ory (QEAIT) can be ubiquitously applied to diverse do-
mains. Specifically for genome analysis, the problem of
identifying bit strings capable of self-replication is pre-
sented. A new quantum circuit design of a quantum
parallel universal linear bounded automata (QPULBA)
model is developed that enables a superposition of classi-
cal models/programs to be executed, and their properties
can be explored. The automaton prepares the univer-
sal distribution as a quantum superposition state which
can be queried to estimate algorithmic properties of the
causal model.

In [17] a local/subjective view is presented, which in-
volves universal reinforcement learning in quantum en-
vironments. This theoretical framework can be ap-
plied to automated scientific modeling. A universal ar-
tificial general intelligence formalism is presented that
can model quantum processes. The developed quan-
tum knowledge-seeking agent (QKSA) is an evolution-
ary general reinforcement learning model for recursive
self-improvement. It uses resource-bounded algorithmic
complexity of quantum process tomography (QPT) algo-
rithms. The cost function determining the optimal strat-
egy is implemented as a mutating gene within a quine.
The utility function for an individual agent is based on
a selected quantum distance measure between the pre-
dicted and perceived environment.

These techniques motivate our research in this arti-
cle. Unlike quantum/classical data-driven machine learn-

ing, these primitives of QEAIT and QKSA preserve the
explanatory power of the model the learning converges
to by exploring the space of programs on an automata
model. The QPULBA model (in QEAIT) and QPT algo-
rithms (in QKSA) can be generalized to a causal oracle
and causal tomography respectively.
Causal approaches for quantum machine learning

(QML) [18, 19], and quantum algorithms for causal infer-
ence [20, 21] are also a related active research direction.

III. CAUSAL HYPOTHESIS TESTING

A canonical approach in causal inference is to formu-
late different hypotheses on the cause–effect relations and
test them against each other. This technique is typically
used when there is some knowledge of the characteristic
of the phenomenon that is being tested. The complete
search space of directed graphs between events grows ex-
ponentially. An exhaustive example of 3 variable causal
relations is shown in Fig. [1]. In causal hypothesis test-
ing (CHT) a subset of these graphs is considered as the
set of hypotheses being tested against each other. For
example, in Fig. [1], we can consider, two hypotheses
(shaded in green):

• A causes B, C is independent
• A causes C, B is independent.

A. Quantum advantage in classical causal
hypothesis testing

Quantum information enables a richer spectrum of
causal relations that is not possible to access via clas-
sical statistics. Most research in this direction is towards
exploring causality in the quantum context [22–27]. Our
focus in this work is specifically using the quantum for-
mulation to provide a computational advantage with re-
spect to a classical technique on classical data.
This problem is studied extensively in [6]. The research

analyzes the task of identifying the effect of a given in-
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put variable. In the full quantum version of the problem
the variables A, B and C are considered as a quantum
system of dimension d which in return satisfies either
of the two following causal hypotheses (1) B resulted
from A through an arbitrary unitary operation and the
state of C is maximally mixed, or (2) C resulted from
A through an arbitrary unitary operation and B is max-
imally mixed. The set of allowed causal relationships
say C, between input and output, depends on the phys-
ical theory, which determines which maps can be imple-
mented by physical processes. In classical physics, cause-
effect relations are typically represented by conditional
probability distributions, while, in quantum theory, they
are described by quantum channels, i.e., completely posi-
tive trace-preserving maps transforming density matrices
of an input quantum system A into density matrices of
an output (either B or C).

Despite the fact that a cause-effect relationship can
be established utilizing any unitary operation, the error
probability that is attained remains

perr =
1

2dN
, (1)

where N represents the number of interventions between
one instance and the next.

(3)(1) (2)

FIG. 2. Here we illustrate the two fundamental ways of con-
structing parallel strategy. In (1) we initialize the quantum
system A along with a reference r in a state ψ. This setting
is repeated for N times. Meanwhile in (2) an N size input,
ψ, is provided as an input A. Similar to the previous strat-
egy in (3) we have the same N probes of the input entangled
using an additional reference r. An unknown process C (an
arbitrary unitary) induces a causal relation between the input
and the output in all settings.

The error probability in Eq.1 is d times smaller than
the classical error probability. To achieve this advantage
the authors in [6] make use of a universal quantum strat-
egy by preparing a d particle singlet state of the form

|sd⟩ =
1√
d!

∑
i1,i2,...,id

ϵi1,i2,...,id |i1⟩ , |i2⟩ , . . . , |id⟩ , (2)

where ϵi1,i2,...,id is an asymmetric tensor and the sum
ranges over all vectors on the computational basis. Then,
each of the d subsystems are fed as an input to one use of

the channel C. By repeating the experiment for t times,
and by performing Helstrom’s minimum error measure-
ment one can attain the error probability given in Eq. 1
with N = t × d. This exact strategy is illustrated in
Fig. 2(1).
Apart from the error probability, the discrimination

rate, R, is a very crucial performance quantifier for causal
hypothesis testing protocols. It can be defined as the rate
at which the two causal hypotheses can be distinguished
from each other. In Fig. 2 for the strategy (1) and (2) the
discrimination rate remains log d. But slight engineering
of the protocol (2) that adds a reference r (see protocol
(3) of Fig. 2) helps us to achieve a discrimination rate
of 2 log d, which is twice as fast as the optimal classical
strategy. The primary motive behind the introduction
of the reference r lies in the fact that it helps entangle
the N input probe states. To say in a more elaborate
manner, in the absence of the reference we saw through
strategy (2) of Fig 2 that it is optimal to partition the N
input into N

d groups and then entangle the probe with
each group. Generalizing this line of thought, we con-
sider a mechanism where the partition of the subsystems
happens according to a certain configuration i if a control
system is in the state |i⟩. Thus, when the control system
is in a superposition, the optimal input state is

|ψ⟩ = 1

n

n∑
i=1

(
|sd⟩⊗

N
d

)
i
⊗ |i⟩ , (3)

where i is labelled for different ways to partition N in-
distinguishable objects into groups of d elements, the n

is the number of such ways of partitioning, and |sd⟩⊗
N
d

are orthogonal states of the reference system represented
through a product of N

d singlet states. sd is defined
through Eq. 2. In Fig. 3 the different ways of divid-
ing N = 4 copies of the causal process probes (C), which
yields 3 different ways of entangling bi-partitions of these
probes, indexed by encoding on the reference register
(through ri, i = 1, 2, 3).

FIG. 3. Here we illustrate the different ways of partitioning a
quantum system of N = 4 size into d = 2 groups. The three
distinct configurations are superposed in the input state ψ
and can be accessed by the state of the reference r.

The above observation helps us to conclude that the
quantum correlation speeds up the causal hypothesis
testing. However, the caveat of the approach is that it
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is not practically feasible due to the resource scaling of
this encoding. The choice of a maximally mixed quan-
tum channel as an alternate hypothesis prevents the step
toward the practicality of the approach. In this work,
we tackle this issue by easing the previously proposed
general CPTP scenario in favor of constructable causal
oracles. We provide a scalable quantum algorithm that
can be implemented in a gate-based quantum computer.
This approach is described briefly in the next section.

IV. PRACTICAL IMPLEMENTATION
CONSIDERATIONS

A. The problem statement

Contrary to the general case considered in [6], which
is briefly described in the previous section, our formula-
tion is towards an implementable quantum circuit that
is demonstrated on the Qiskit quantum simulator. This
formulation is detailed in the following.

As we have already discussed the parallel strategy with
quantum correlated inputs through a reference, as shown
in Fig. 2(3), gives us a quantum advantage in the de-
tection of cause and effect. Hence, we provide step-
wise modification to this optimal structure to finally
implement it in a quantum computer. In our imple-
mentation, we consider the input variables (causes) to
be denoted by the set C = {c0, c1, . . . , c|C|−1}, while
the output variables (effects) are denoted by the set
E = {e0, e1, . . . , e|E|−1}. Furthermore, we consider an
equal number of input and output variables to imple-
ment a to preserve unitarity, i.e., |C| = |E| = k. We
maintain the simplification in [6], that all variables are
of equal length,

d = |ci| = |ej |, (4)

where ci ∈ C and ej ∈ E. Thus, each variable has 2d

states. Furthermore, we consider that each effect is a
permutation of only one cause, i.e., the map from C to
E is a bijective function, one-to-one correspondence, or
invertible function. To make our implementation more
general, we consider a scenario where the access to in-
terventions (i.e., C) on the causes and the effects are not
equal.

As a proof-of-concept, we implement a causal hypoth-
esis testing with control over 1 cause C = {c0} and mea-
surement capability over 2 potential effects E = {e0, e1}.
These hypotheses are mutually exclusive, i.e.,

• Hypothesis 0: e0 ← Uc0, e1 is independent of c0,

• Hypothesis 1: e1 ← Uc0, e0 is independent of c0,

where U is a unitary map between the cause and effect.
Describing all the necessary ingredients for causal hy-
pothesis testing, we now head towards practical imple-
mentation.

B. The implementation

Here we take the parallel strategy as described in
Fig. 2(3) and discuss the real-world implementation of
its subroutines. To design a quantum circuit, all vari-
ables that are potentially inspected as causes need to be
assigned a quantum information placeholder. There are
a total of

k = max{|C|, |E|}, (5)

placeholders are required for encoding cause of size |C|
and effect of size |E|. Throughout the paper, we consider,
k = 2 sets of qubit registers that are used, namely system
A and system B.

1. Preparation of |ψ⟩

The very first component of the causal hypothesis test-
ing strategy is the initial state, |ψ⟩, along with the refer-
ence r. We saw in Eq. 3 that the state is in a superposi-
tion of different partitions of the input and the partition
depends on d. Each state in the superposed control input
can be accessed by the state of a control system, which is
called the reference r. As each partition forms a singlet
state of the form Eq. 2, we make use of the bell unitary
consisting of a Hadamard (H) and CNOT gate to represent
the singlet.

Ubell
=

H

To describe in a simpler manner, the wires in Fig. 3
that correlating with different inputs is represented by
the the Ubell. We illustrate one of the partitions in Fig. 4

Ubell

Ubell

=

FIG. 4. Here we illustrate the practical way to implement one
of the partitions of the correlated input with the help of the
reference r.

where it can be seen that we consider two qubits to rep-
resent the reference (i.e. the control system), this is be-
cause, for N = 4 and d = 2, there are three possible



6

partitions and to trigger each configuration we need at
most 3 linear combinations of the control in the form 00,
01, 10. This can be achieved using at least two qubits
initialized with H ⊗ H. The full circuit for all the combi-
nations is illustrated through Uper in Fig. 7.
For n-qubits, the total possible such linearly indepen-

dent pair combinations are r =
n!

(n/2)!× 2n/2
, where

n = N × |C| × d. (6)

Since we have control over only 1 cause the n = 4 ×
1 × 1 = 4, and r = 4!/(2! × 22) = 3. Meanwhile, the
number of qubits in the reference to encode these states
is Nref = ⌈log2 r⌉ and in this case Nref = ⌈log2 3⌉ = 2.

2. Preparation of C

Recalling that C induces a causal relationship between
the input and output and in quantum, it is defined as a
quantum channel that maps the input density matrices
to an output. To be consistent with the Hypothesis 0
and Hypothesis 1, described in section IVA we choose
U = I for the Hypothesis 0 and a U = SWAP operation
for Hypothesis 0. The unitary that preserves the essence
of the Hypothesis 1 is given by

UH1
orc = SWAP(Ai, Bi)

⊗N ⊗ I(Ai)
⊗N ⊗ I(Bi)

⊗N , (7)

and shown in Fig. 5.

System A

System B

FIG. 5. Illustration of Eq. 7 for system A (the first 4 qubits)
and B (the last 4 qubits) of size N = 4.

Now to merge the I and the SWAP Hypotheses in s sin-
gle unitary and to gain better control over the applied
hypothesis, we modify Eq. 7 by introducing an ancillary
qubit initialized with RX(θctrl). The ancilla qubit works
as the control of the SWAP that for θctrl = 0 behaves as
I and for θctrl = π gives complete SWAP operation. The
illustration of the hypotheses is provided in Fig. 6 and
given by Eq. 8.

U
H0/1
orc (θctrl) =

[
CSWAP(qanc, Ai, Bi)

⊗N
][
RX(qanc, θctrl)⊗ I(Ai)

⊗N ⊗ I(Bi)
⊗N

]
, (8)

System A

System B

Ancilla RX(θctrl)

FIG. 6. Here we illustrate the Hypothesis presented in Eq. 8
for system A (the first 4 qubits) and B (the last 4 qubits) of
size N = 4.

3. Initial choice of system A, B

We have already mentioned that we use k = 2 sets of
qubit registers to encode the cause and effects through
systems A and B. As our work primarily focuses on how
different hypotheses affect the error probability perr, we

restrict ourselves to the all-zero, i.e., |0⟩⊗N
initialization.

But it should be noted that the causes and effects need
not be the vacuum states but can be any arbitrary quan-
tum state. To introduce this degree of freedom, we pro-
pose two unitaries UA

in and UB
in that randomly initialize

the systems A and B.

4. Measuring the outcome

In the original work, Helstorm’s minimum error mea-
surement [28] is used to obtain the advantage over the
classical causal inference as shown in Eq. 1. To calculate
the distinguishing probability in computational basis, we
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add the probabilities of basis states that are unique to
one of the qubits of effects (systems A and B).

The overall quantum circuit to perform the causal hy-
pothesis testing is provided in Fig. 7 where (1) UA

in and
UB
in defines the initial choice of system A, B, (2) UB

per

prepares |ψ⟩ (see Eq. 3), (3) The Uorc presents the hy-
pothesis in Eq. 8 and finally (3) MA

Z and MB
Z are the

computational base measurement to get the error prob-
ability perr.

C. Resource estimation

The qubit requirement of this model grows as:

N × k × d+ ⌈log2
(

n!
n
2 !× 2

n
2

)
⌉ (9)

The model is illustrated through an implementable quan-
tum circuit in Fig. [7]. An elaborated discussion of the
different components of the quantum circuit can be found
in the next section.

Recalling that in the previous work, one of the innova-
tions introduced was to entangle the inputs for the par-
allel strategy instead of initializing with a tensor prod-
uct state, which reduces the exponential measurement
resource requirement by correlating the basis. However,
the cost of implementing the entangled initialization was
not analyzed.

Through our model implementation, we are able to
show that the operations required to implement the UB

per

grow faster than exponentially with the dimension of the
subsystem (NA or NB) as illustrated in Fig. [8] but linear
in respect to the linearly independent states, i.e., r.

D. Practical error probability

While the number of controllable causes |C| and the
encoding length of the causes d depends on the problem
formulation, the number of queries, i.e., N and thereby r,
is a free parameter. It can be chosen based on the avail-
able quantum circuit resources of the number of qubits in
the quantum processor, the decoherence time, and gate
error probability, such that the pragmatic error remains
low. It is shown in ref. [6] that using the correlated in-
put scheme presented in Fig. 2(3) we can reach an error
probability

perr =
r

2dN

(
1−

√
1− r−2

)
r>>1−−−−→ 1

4rdN
, (10)

where r is the number of linearly independent states. It
is suggested that the Eq.(10) gives the limiting case er-
ror probability because, in a more general case, the error
probability of causal hypothesis testing should be depen-
dent on the two specific hypotheses.
For example, the unitary oracle as given in Eq. 8 for

the Hypothesis 1 at θctrl = 0 becomes UH1
orc (0) = I =

UH0
orc (0), in that case, the two hypothesis becomes identi-

cal and the error probability perr = 1 which can be clearly
seen in Fig. 9 and 10. And as the Hypothesis 1 deviates
from the Hypothesis 0, which can be achieved by fine-
tuning θctrl, we see the error probability gradually de-
creases from 1. At θctrl = π when Hypothesis 1 = SWAP
the error probability obtains the limit reached by Eq. 10
(represented by the black horizontal line in Fig. 9). A
brief discussion of Fig. 9 and 10 is provided in Section V.
So there is a clear indication that the distance between

the oracles plays a crucial role in defining the error prob-
ability. Hence, to incorporate this dependence on the rel-
ative distinguishability of the hypotheses, we introduce a
correction factor proportional to the process distance (∆)
between the two oracles. This arises a modified version
of Eq.(10) that takes the form:
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ability with respect to θctrl, when θorc = 0.0 (blue line) and
θorc, when θctrl = π/2 (red line). The black line refers to the
error probability proposed in Eq. 10.

ppracerr = 1−∆
[
UH0
orc , U

H1
orc

]
(1− perr)

r>>1−−−−→ 1−∆
[
UH0
orc , U

H1
orc

](
1− 1

4rdN

)
(11)

There are many choices for the distance ∆ function
between the hypotheses and need to be chosen based on
the experimental and theoretical specifications of the ap-
plication such as

1. Trace distance which is defined by

∆ =
1

2
Tr|ρorc − ρalterorc |, (12)

where ρ represents the Choi representation of the
unitary.

2. Bures distance which defined as

∆ = 2

(
1−

√
F (ρorc, ρalterorc )

)
, (13)

where F quantifies the process fidelity between the
Choi representation of oracles.

3. Hilbert-Schmidt distance which is defined by

∆ = Tr
[(
ρorc − ρalterorc

)2]
. (14)

But the numerical results show that the error probability
after simulating the circuit in Fig. 10 i.e. practical case
error probability, P prac

err , coincides with Hilbert-Schmidt
distance.
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FIG. 11. Illustration variation of different distance measures
with respect to the oracle angle θctrl.

V. NUMERICAL RESULTS

To obtain numerical results, we consider IBM’s open-
source quantum computer simulator Qiskit was used to
simulate the above-mentioned implementation. At first,
we choose the oracle unitary as given in Eq. 8 where qanc
is an ancilla qubit that allows us to control the strength
of the Hypothesis 1. And the strength is dependent on
parameter θctrl. To obtain the specific hypothesis cases of
I and SWAP, the above parameters are set to UH0

orc (0) and
UH1
orc (π) respectively. The dependence of the error prob-

ability of distinguishing two hypotheses with respect to
the relative difference is enquired by varying the alternate
hypothesis to

U
H0/1
orc =


UH0
orc (0),

UH1
orc (θctrl).

(15)

For the sake of better understanding, we compare the
theoretical and practical case error probability, which is

introduced in Eq. 11. For the theoretical scenario, we
numerically calculate the Eq. 11 by utilizing the Hilbert-
Schmidt distance between two hypotheses with respect
to θctrl. Meanwhile, for the practical scenario utilize the
introduced causal hypothesis testing circuit in Fig. 7 and
get the error probability directly from the measurement
outcomes.

In Fig. 9 we illustrate the theoretical scenario to evalu-
ate the error probability. The black horizontal line refers
to the results corresponding to the limiting case error
probability in ref. [6]. We find that when the θctrl = 0, the
RX gate that is controlling the SWAP oracle is not acti-
vated. This makes the alternate hypothesis (Hypothesis
1) I. As our default hypothesis is already I, we can not
distinguish between the two hypotheses by any method.
This gives theoretical case error probability (i.e. ptheoerr )
1.0. In the same way when θctrl = π the SWAP oracle
is activated by the RX control and we find the minimal
probability of distinguishing between SWAP and I, over-
lapping with the results from ref. [6], in Eq. 10. It is
logical to examine the variation of process distance with
respect to the oracle parameter θctrl. In Fig. [11] we illus-
trate the distance between the null hypothesis UH0

orc (0, 0)
and the alternate hypothesis UH1

orc (π, θctrl) for a class of
distance measure.

For the sake of experiments, we restrict ourselves to
the observation of Trace distance, Bures distance, and
the Hilbert-Schmidt distance. It can be seen that the
characteristics of Trace and Hilbert-Schmidt are similar
since both of them fundamentally depend on the differ-
ence in the Choi representation of the oracles, whereas
Bures distance depends on the process distance.

In the next experiment, we modify the unitary pre-
sented in Eq. 8 to test the dependence on the error
probability with other intermediary hypotheses. We
generate these intermediary hypotheses using a set of
parameterized CSWAP gates generated by the decompo-
sition implemented as 3 iSWAP with 3 interleaved SX gates
on alternating qubits. The general form of the oracle is
given in Eq. 16.

U
H0/1
orc (θctrl, θorc) =

[
CSWAP(θorc, qanc, Ai, Bi)

⊗N
][
RX(qanc, θctrl)⊗ I(Ai)

⊗N ⊗ I(Bi)
⊗N

]
, (16)

To generate the Fig.10 we make use of the parameter-
ized controlled SWAP as the generator alternative hypoth-
esis.

For this experiment, we used the quantum circuit and
performed a state vector simulation. In Fig. 10, the red
line shows the variation of the practical error probability
with the SWAP gate. The difference with Fig. 9 is due to
the practical case being implemented using the sum of
probabilities of distinct states. Meanwhile, the blue line
shows the variation with respect to the parameterized

CSWAP for the ancilla-control set to π/2. As expected, for
the oracle angle of π/2, the CSWAP is the same as a SWAP.

We observe that the results for the theoretical case and
the numerically simulated practical case error probabil-
ity are distinct (see the red lines in Fig. 9 and Fig. 10).
This is because of two factors: (i) the perr was intro-
duced purely theoretically where the authors evaluated
it for a maximally mixed alternate hypothesis. In a prac-
tical case (numerical simulation of the quantum circuit)
it is not feasible to construct a maximally mixed ora-
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cle. This leads us to introduce the realistic case error
probability. This modification is reflected through the
introduction of the distance between the oracles under
consideration i.e. ∆

[
Ualter
orc , Uorc

]
. (ii) the maximum dis-

tinguishing measurement as suggested in the original for-
mulation, requires knowledge of the hypothesis and the
oracles, which cannot be known apriori. While the the-
oretical process distance can be experimentally achieved
via quantum process tomography, in the second exper-
iment, we show the practical case error probability for
Z-axis measurements without pre-rotations.

Thus, these experiments demonstrate that: (i) the
quantum circuit we proposed in Fig. 7 can indeed be
utilized for causal hypothesis testing, and (ii) the success
probability of distinguishing two hypotheses is dependent
on the process distance between the two oracles.

VI. APPLICATION FRAMEWORK

With the quantum kernel presented above, in this sec-
tion, we discuss an application framework in the context
of two consequential applications.

A. Bioinformatics

Applications of causal inference are widespread in
bioinformatics. Specifically, inferring a causal network
is practiced in medical diagnostics and genomics.

For example, causal discovery in Alzheimer’s patho-
physiology is studied in ref. [29] with 9 variables (13 with
longitudinal data). Similarly, for detecting causal regula-
tory interactions between genes, tools like Scribe-py [30]
are currently used. Exemplary use cases of (i) transcrip-
tion expression dynamics hierarchy of C. elegans’ early
embryogenesis and (ii) core regulatory network responsi-
ble for myelopoiesis are used for this research, with the
latter graph consisting of 10 nodes.

The current generation of quantum processors sup-
ports 100s of qubits and is expected to scale to 1000s in a
few years. However, the challenge is the limitation of the
decoherence time and gate errors, which bounds the run-
time of the algorithm that can be effectively executed.
For a causal graph in the order of 10 causes/effects, a
causal specificity bits of d = 1 and with N = 100, the
estimation presented in Eq.(9) is 6262 qubits. Keeping
in mind the potential of near-term devices, pragmatic in-
dustrial cases of causal tomography will remain outside
the reach of quantum computing in the near term.

B. Artificial General Intelligence

In the long term, quantum accelerated causal inference
will be beneficial for artificial general intelligence. Quan-

tum accelerated AGI is still in its infancy. In ref. [31],
the authors proposed the AIXI-q reinforcement learning
agent empowered with quantum counting. Meanwhile,
ref. [3] proposed an exhaustive enumeration of all causal
oracles (or, alternatively, all bounded-size programs of a
Turing machine). These techniques can develop synergies
with the quantum accelerated causal tomography circuit
as developed in this article.
In theoretical physics, automated science tools, specif-

ically in the context of causal set theory, will also find
the causal tomography framework of crucial use.

VII. CONCLUSION

In this article, we extend the previously introduced
(see ref. [6]) causal hypothesis testing formulation for the
practical scenario. This led us to develop a scalable quan-
tum gate-based algorithm which can be implemented in
the available near-term quantum devices. Through the
algorithm formulation, we empirically show that the lim-
iting case error probability that is represented in ref. [6]
requires modification. In our work, this modification is
done by introducing process distance between the causal
hypotheses, to the formulation of error probability. We
term this modified version of error probability as practical
case error probability which is stricter than the limiting
case. Additionally, our implementation enables an esti-
mation of the pragmatic gate complexity of the causal
tomography entangled pair indexing.
Furthermore, the proposed algorithm is implemented

using the open-source quantum programming and simu-
lation platform qiskit. As in ref. [6] it is shown that
the quantum advantage holds for generalized probabilis-
tic theory so the practical case that we present here is
optimal in any scenario.
Our motivation for this project is driven by the increas-

ing focus on causal inference in machine learning. Be-
sides monitoring the information flow in future quantum
communication networks, as discussed in ref.[6], causal
tomography is crucial for understanding the bounds of
general intelligence and for bioinformatics use cases. In
our future work, we aim to apply our developed quan-
tum accelerated causal tomography framework for these
applications.
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