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Abstract

We discuss results obtained recently for a quantum-mechanical model

given by a neutral particle with a magnetic quadrupole moment in a radial

electric field and a scalar potential proportional to the radial variable

in cylindrical coordinates that also includes the noninertial effects of a

rotating reference frame. We show that the conjectured allowed values of

the cyclotron frequency are a mere artifact of the truncation of the power

series used to solve the radial eigenvalue equation. Our analysis proves

that the analytical expression for the eigenvalues are far from correct.

1 Introduction

In a paper published recently Fonseca and Bakke [1] discussed a neutral particle

with a magnetic quadrupole moment in a radial electric field and a scalar po-

tential proportional to the radial variable in cylindrical coordinates. They also

considered the noninertial effects of a rotating reference frame. The Schrödinger

equation for this quantum-mechanical model is separable in cylindrical coordi-

nates and the authors solved the radial eigenvalue equation by means of the
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Frobenius (power-series) method. Upon forcing the truncation of the series

they derived exact analytical polynomial expressions for the radial eigenfunc-

tions as well as an exact analytical formula for the energy levels. They concluded

that there are some permitted cyclotron frequencies determined by the angular

velocity of the rotating frame, the parameter associated to the scalar potential

and the quantum numbers. In this paper we test the validity of those results

and conclusions.

In section 2 we discuss the application of the Frobenius method to the radial

eigenvalue equation and in section 3 we summarize the main results and draw

conclusions.

2 The Frobenius method

The starting point of our discussion is the eigenvalue equation

F ′′(r) +
1

r
F ′(r) − l2

r2
F (r) − r2F (r)− νrF (r) +WF (r) = 0,

W =
4

α

(

E +
1

2
ϑl + l̟

)

, α2 = ϑ2 + 4̟ϑ,

ν =
25/2a√
mα3

, (1)

where m is the mass of the particle, E the energy, l = 0,±1,±2, . . . the rota-

tional quantum number, a a constant in the scalar potential, ϑ the cyclotron

frequency and ̟ the angular velocity of the rotating frame [1]. We can draw

some straightforward conclusions from this equation. Since the behaviour of

F (r) at r → 0 and r → ∞ is determined by the terms l2/r2 and r2, respec-

tively, we conclude that there are square integrable solutions for all values of

ν. Therefore, there is no restriction on the values of the cyclotron frequency ϑ,

contrary to what the authors stated.

There are square integrable solutions

∫ ∞

0

|F (r)|2 r dr < ∞, (2)

for particular values of W = Wi,l(ν), i = 0, 1, . . ., that are continuous functions
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of ν. Besides, from the Hellmann-Feynman theorem (HFT) [2, 3]

∂W

∂ν
= 〈r〉 > 0, (3)

we conclude that each Wi,l(ν) is an increasing function of ν.

Fonseca and Bakke [1] focused on polynomial solutions to equation (1) that

we discuss in what follows. If we look for a solution of the form

F (r) = rs exp

(

−r2

2
− νr

2

) ∞
∑

j=0

cjr
j , s = |l|, (4)

we conclude that the expansion coefficients should satisfy the three-term recur-

rence relation

cj+2 = Ajcj+1 +Bjcj , j = −1, 0, 1, . . . , c−1 = 0,

Aj =
ν (2j + 2s+ 3)

2 (j + 2) [j + 2 (s+ 1)]
,

Bj = −4W − 8j + ν2 − 8 (s+ 1)

4 (j + 2) [j + 2 (s+ 1)]
. (5)

In order to obtain a polynomial solution of order n, n = 0, 1, . . ., we require that

cn 6= 0, cn+1 = 0 and cn+2 = 0 that leads to Bn = 0. From the last equality we

obtain

W = W
(n)
l = 2(n+ s+ 1)− ν2

4
, (6)

that leads to

Bj = Bj,n =
2 (j − n)

(j + 2) [j + 2 (s+ 1)]
. (7)

We immediately realize that something is amiss because the eigenvalues W
(n)
l

do not satisfy the HFT (3).

Since cn+1 is a polynomial function of ν of degree n+1, the second condition

cn+1 = 0 leads to n+1 particular values of ν, νn,i.l, i = 1, 2, . . . , n+1. From these

roots Fonseca and Bakke [1] concluded that “only specific values of the cyclotron

frequency ϑ are permitted”. However, they did not attempt to investigate the

actual meaning of these values of the model parameter ν. For convenience, here

we organize them in decreasing order νn,i,l > νn,i+1,l. We appreciate that for

each value of n the resulting eigenvalues (6)

W
(n,i)
l = 2(n+ s+ 1)−

ν2n,i,l
4

, (8)
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are located on an inverted parabola. When n + 1 is odd there is a root ν = 0

that leads to the exact eigenvalues of the harmonic oscillator.

The truncation of the series in equation (4) leads to particular polynomial

solutions of the form

F
(n,i)
l (r) = r|l| exp

(

−r2

2
− νn,i,lr

2

) n
∑

j=0

cj,n,lr
j . (9)

They are square integrable but there are other solutions that satisfy the condi-

tion (2) that do not have polynomial factors. Since Fonseca and Bakke over-

looked the latter, they drew the wrong conclusion mentioned above.

This kind of problems is commonly called quasi-exactly solvable or condi-

tionally solvable because one obtains eigenvalues W only for particular values

of ν. They have been studied by several authors (see, for example, the review

by Turbiner [4] and the references therein). Fonseca and Bakke [1] seemed to be

unaware of this fact and appeared to believe that the only quadratically inte-

grable solutions to equation (1) are the polynomial ones (9). For this reason they

concluded, wrongly, that there are allowed values of the cyclotron frequency ϑ.

The true fact is that the allowed energies En,l are continuous functions of this

model parameter.

There is no doubt that W
(n,i)
l and F

(n,i)
l (r) are eigenvalues and eigenfunc-

tions, respectively, of the differential equation (1). A question now arises about

the connection between the eigenvalues W
(n,i)
l of such polynomial solutions and

the actual eigenvalues Wj,l(ν) mentioned above. Taking into account the HFT

(3) and the convenient ordering of the roots νn,i,l chosen above, we conclude

that W
(n,i)
l (νn,i,l) = Wi−1,l (νn,i,l); in other words, W

(n,i)
l (νn,i,l) is a particular

point on the continuous curve Wi−1,l (ν).

Figure 1 shows some selected points W
(n,i)
0 (νn,i,0), n ≤ 22, i ≤ min(n+1, 3),

connected by continuous lines that draw the curves Wj,0(ν), j = 0, 1, 2. The

inverted parabola W
(10)
0 (ν) = 22− ν2/4 connects some of the solutions W

(10,i)
0

given by equation (8). The intersections of the vertical dashed line with the

curves Wj,0(ν) are the actual eigenvalues of the quantum model with a given

value of the parameter ν. Such a vertical line passes through, at most, one value
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of W
(n,i)
0 (νn,i,0) as shown in figure 1.

In order to obtain Wj−,l(ν) for νn,j,l < ν < νn+1,j,l, we simply resort to any

suitable interpolation method. For example, from least squares we obtain

W0,0(ν) = 2 + 0.8523002844ν− 0.02975046592ν2+ 0.0008706577439ν3,

W1,0(ν) = 6 + 1.547791990ν− 0.04202730246ν2+ 0.001218822726ν3,

W2,0(ν) = 10 + 2.010156364ν− 0.04562156939ν2+ 0.001269456909ν3,

(10)

that are sufficiently accurate in the range of ν values shown in figure 1.

3 Conclusions

The eigenvalues Wi,l(ν) of the differential equation (1) are continuous func-

tions of the model parameter ν. Consequently, the energy eigenvalues En,l are

continuous functions of the cyclotron frequency ϑ that can take any physically

acceptable value. The truncation of the series in equation (4) only yields eigen-

valuesW
(n.i)
l for particular values νn,i,l. From this particular values of ν Fonseca

and Bakke [1] concluded, wrongly, that there are allowed or permitted values of

the cyclotron frequency ϑ. The eigenvalues En,l in equation (17) of the paper

by Fonseca and Bakke are meaningless because the model parameters change

with the quantum numbers n and l. More precisely, En,l and En′,l′ are energy

eigenvalues of different physical problems.
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Figure 1: EigenvaluesW
(n,i)
0 from the truncation method and actual eigenvalues

Wn,0(ν) of the differential equation (1)
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