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I present a different approach to Rayleigh-Schrödinger perturbation theory, based on Laplace
transforms and polynomial theory, yielding an iterative expression for the perturbative expansion
of the energy of the non-degenerate ground state of a quantum system, which easily lends itself to
symbolic computation. A stochastic interpretation of the various perturbative corrections naturally
leads to a re-summation scheme that is equivalent to Reptation Quantum Monte Carlo and that
actually provided the original motivation to its development in the late nineties.

I. INTRODUCTION

Perturbation theory (PT) [1] is as old as modern quan-
tum mechanics (QM) itself [2], and is in fact one of the
pillars of any elementary or advanced course in QM.
PT is instrumental to most applications of QM, other
than a few exactly solvable models, and has provided the
ground for advanced methods, such as quantum field the-
ory in particle and condensed-matter physics, or quan-
tum chemistry. In spite of its ubiquity, the use of PT is
restricted to low orders, for its complexity increases very
steeply with the order of the theory. Non-perturbative
methods, such as those based on stochastic approaches,
have therefore gained popularity due to their broader ap-
plicability.
The purpose of this paper is twofold. On the one hand,

it presents a novel approach to PT, based on Laplace
transforms and polynomial theory, that allows pertur-
bative corrections to the ground-state (GS) energy of
a quantum system to be derived to any order, with-
out ever computing any corrections to the wavefunction.
While this approach hardly broadens the scope of PT,
it does provide a systematic and mathematically elegant
approach to it, which easily lends itself to automatic al-
gebraic manipulation. On the other hand, a well estab-
lished mapping between the imaginary-time evolution of
a quantum system and the diffusive process of an auxil-
iary classical system [3] allows one to interpret the pertur-
bative corrections as cumulants of a suitably defined ran-
dom walk and suggests a re-summation scheme, which is
equivalent to Reptation Quantum Monte Carlo (RQMC)
[4, 5] and that actually provided the original motivation
to its development in the late nineties.
This paper is organized as follows: Sec. II presents a

new approach to Rayleigh-Schrödinger PT, not requir-
ing the calculation of any corrections to the wavefunc-

tion; Sec. III introduces the quantum-classical mapping
that is propedeutic to stochastic perturbation theory and
RQMC; Secs. IV and V present a stochastic interpreta-
tion of PT theory and RQMC as an effective technique
to resum all the perturbative corrections up to infinite
order; finally, Sec. VI contains my conclusions.

II. A DIFFERENT PATH TO RAYLEIGH-

SCHRÖDINGER PERTURBATION THEORY

We want to compute the GS energy, E0, of a quantum

system whose the Hamiltonian, Ĥ , can be split into an

unperturbed term, Ĥ, whose spectrum is known,

ĤΦn = EnΦn, (1)

and a perturbation, Ŵ:

Ĥ = Ĥ+ Ŵ . (2)

The purpose of perturbation theory is to express E0 as
a power series in the stregth of the perturbation, W . In
order to streamline some of the notation, I will assume
that the energy zero is chosen to coincide with the un-
perturbed ground state: E0 = 0. If the latter is not
orthogonal to the exact one, one has:

E0 ∼ −
d

dτ
logZ(τ),

Z(τ) = 〈Φ0|e
−Ĥτ |Φ0〉 =

∞∑

n=0

|〈Φ0|Ψn〉|
2e−Enτ ,

(3)

where En, and Ψn are eigenpairs of the exact Hamilto-

nian, Ĥ ,

e−Ĥτ = e−Ĥτ

(
1−

∫ τ

0

dτ1Ŵ(τ1) +

∫ τ

0

dτ2

∫ τ2

0

dτ1Ŵ(τ2)Ŵ(τ1)+

· · · (−)n
∫ τ

0

dτn

∫ τn

0

dτn−1 · · ·

∫ τ2

0

dτ1Ŵ(τn)Ŵ(τn−1) · · · Ŵ(τ1) + · · ·

)
, (4)
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its the imaginary-time propagator, Ŵ(t) = eĤτŴe−Ĥτ is the perturbation in the interaction representation, the “∼”
symbol indicates the large (imaginary-) time limit, and natural units (~ = 1) are used throughout this paper. We can
thus write a perturbative expansion for Z(τ) as:

Z(τ) = 1− λ1(τ) + λ2(τ) + · · · (−)nλn(τ) + · · · , (5)

where λ1(τ) = W00 and the n-th order term (n 6= 0) reads:

λn(τ) =

∫ τ

0

dτn

∫ τn

0

dτn−1 · · ·

∫ τ2

0

dτ1〈Φ0|Ŵ(τn)Ŵ(τn−1) · · · Ŵ(τ1)|Φ0〉 (6)

=
∑

k1···kn−1

W0kn−1
Wkn−1kn−2

· · ·Wk10

∫ τ

0

dτn

∫ τn

0

dτn−1e
−Ekn−1

(τn−τn−1) · · ·

∫ τ2

0

dτ1e
−Ek1

(τ2−τ1), (7)

and Wkl = 〈Φk|Ŵ|Φl〉. Note that the large-time be-
haviour of λn(τ) is polynomial, of order n: λn(τ) ∼
O(τn). In order to express logZ as a power series in
the strength of the perturbation, W , we define the for-
mal moments as: µn = n!λn. The logarithm of Z can
then be expressed as a power series in W as:

− logZ(τ) = κ1(τ)−
1

2
κ2(τ) · · ·+

(−)n+1

n!
κn(τ) · · · , (8)

where the formal cumulants, κn, are defined as [6]:

κ1 = µ1

κ2 = µ2 − µ2
1

κ3 = µ3 − 3µ2µ1 + 2µ3
1

· · ·

κn = µn −
n−1∑

k=1

(
n− 1

k

)
κn−kµk.

(9)

The recursive relation between moments and cumulants,
Eq. (9), is best expressed in terms of reduced cumulants,
γn = κn/n! as:

γn(τ) = λn(τ)−
n−1∑

k=1

n− k

n
γn−k(τ)λk(τ). (10)

We thus have:

E0 = ε1 + ε2 + · · · εn + · · · ,

εn ∼ (−)n+1γ̇n(τ),
(11)

where εn is the n-th order correction and the dot indi-
cates a derivative with respect to imaginary time.
In order for the limit implicit in Eq. (11) to exist, it

is necessary that the κ’s grow at most linearly with τ
as τ → ∞. I do not know how this property can be
demonstrated, other than from the tautology that the
limit must exist. In Sec. IV, where perturbation theory
will be expressed in terms of an auxiliary stochastic pro-
cess, eventually leading to RQMC, this property will be
shown to derive from the additivity of the cumulants of
sums of independent stochastic variables.

Using Eq. (10), a recursion relation can be written for
the γ̇’s in terms of the λ’s and their derivatives:

γ̇n(τ) = λ̇n(τ)−

n−1∑

k=1

n− k

n

(
γ̇n−k(τ)λk(τ) + γn−k(τ)λ̇k(τ)

)
. (12)

The left-hand side of Eq. (12) is ∼ O(1), whereas the
right-hand side features terms of orders up to ∼ O(τn−1),
which cancel out each other and would be wasteful to
compute. In order to dash off the discussion to follow,
I denote by x◦ the term of order zero, ∼ O(1), in the
asymptotic expansion of x(τ) as τ → ∞. Of course,
ẋ◦ indicates the zero-th order term of ẋ(τ) and not the
derivative of the zero-th order term, which would oth-
erwise vanish. Eqs. (10) and (12) hold verbatim for the
values of the constant terms in the asymptotic expansions
of γn(τ) and γ̇n(τ), γ

◦
n and γ̇◦

n—the latter coinciding with

the τ → ∞ limit—in terms of the λ◦’s and λ̇◦’s:

γ◦
n = λ◦

n −
n−1∑

k=1

n− k

n
γ◦
n−kλ

◦
k,

γ̇◦
n = λ̇◦

n −
n−1∑

k=1

n− k

n

(
γ̇◦
n−kλ

◦
k + γ◦

n−kλ̇
◦
k

)
.

(13)

The asymptotic (τ → ∞) behaviour of a function of
a real argument, such as λn(τ), is determined by the
analytical properties of its Laplace transform,

λ̄n(z)
.
=

∫ ∞

0

λn(τ)e
−zτdτ, (14)

near the origin, z = 0. In fact, as the Laplace trans-
form of τn is n!/zn+1, λ◦

n and λ̇◦
n are the coefficients

of order −1 and −2, respectively, of the Laurent expan-
sion of λ̄n(z) around the origin. In order to evaluate Eq.
(14), we note that the multiple integral in Eq. (7) is the

convolution: 1 ∗ e−Ekn−1
τ · · · ∗ e−Ek1

τ ∗ 1, whose Laplace
transform is: 1/(Ekn−1

+ z) · · · /(Ek1
+ z)/z2. Therefore,

λ̄n(z) =
1

z2
Gn(z), (15)
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where G1(z) = W00 and for n > 1

Gn(z) =
∑

k1···kn−1

W0kn−1
Wkn−1kn−2

· · ·Wk10

(Ekn−1
+ z) · · · (Ek1

+ z)
. (16)

We conclude that λ◦
n and λ̇◦

n are the coefficients of or-
der one and zero, respectively, in the Laurent expansion
of Gn(z) around the origin. For future reference, it is
expedient to designate the term where no ground-state
contributions to the sum in Eq. (16) occur as:

gn(z) =
∑′

k1k2···kn−1

W0kn−1
Wkn−1kn−2

· · ·Wk10

(Ekn−1
+ z) · · · (Ek1

+ z)
, (17)

where
∑′

indicates a multiple sum excluding all the

terms where at least on the indices vanishes, ki = 0.
The analytical behaviour of the various terms appear-

ing in Eq. (16) is determined by the number of times
the ground state (ki = 0) occurs in each one of them,
each time raising the order of the pole at z = 0 by
one unit. Let us depict any such term as a sequence
of n + 1 boxes, each labeled by a summation index, ki,
with the two indices at the extrema being kept equal to
zero, k0 = kn = 0:

0 k1 k2 · · · kn−1 0 .

We can now partition Eq. (16) into partial sums, each
one characterized by the number ℓ of vanishing ki indices
(ℓ = 0, · · ·n− 1). Any term of a partial sum is the ratio
between the product of ℓ + 1 g’s (Eq. 17), which is a
regular function as z → 0, and zℓ. For instance, one
term of the ℓ = 2 partial sum could look like:

0 · · · 0 · · · · · · 0 · · · 0 /z2,
︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

gn1
gn2

gn3

with n1 + n2 + n3 = n. Some of the ni’s in the prod-
uct may be equal to each other. The maximum order
nk appearing in the partial sum, i.e. the number of ar-
guments of the multi-variate polynomial representing the
sum, corresponds to the term where the ℓ initial (or final)
ki indices in Eq. (16) vanish. For instance, in the ℓ = 2
case examined above, this would be represented by the
two diagrams:

0 0 0 · · · · · · · · · · · · 0 /z2,
︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
g1 g1 gn−2

and

0 · · · · · · · · · · · · 0 0 0 /z2,
︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

gn−2 g1 g1

both corresponding to the contribution (g1)
2gn−2. In

the general case, diagrams of this kind give rise to the
contribution (g1)

ℓgn−ℓ. The most general contribution

to the ℓ-th partial sum is thus a multi-variate monomial
in the g’s of the form:

C(gn−l, jn−l) = (g1)
j1(g2)

j2 · · · (gn−ℓ)
jn−ℓ , (18)

where gn−ℓ = {g1, g2, · · · gn−ℓ} and jn−l =
{j1, j2, · · · jn−ℓ} is an array of n − ℓ non-negative

integers satisfying the constraints:

j1 + j2 + · · · jn−ℓ = ℓ+ 1

j1 + 2j2 + · · · (n− ℓ)jn−ℓ = n,
(19)

and one or more of the jk’s may vanish. The multiplicity
N(jn−l) of the C(gn−l, jn−l) monomial is equal to the
number of ways a set of ℓ + 1 elements grouped in sub-
sets of {j1, j2, · · · jn−ℓ} equal elements (some of the j’s
may vanish), can be partitioned into ℓ+1 boxes. Simple
combinatorics gives:

N(jn−ℓ) =
(ℓ + 1)!

j1!j2! · · · jn−ℓ!
. (20)

We conclude that Eq. (16) can be put into the form:

Gn(z) =

n−1∑

ℓ=0

1

zℓ

∑

j1j2···jn−ℓ

(ℓ + 1)!

j1!j2! · · · jn−ℓ!

× (g1)
j1(g2)

j2 · · · (gn−ℓ)
jn−ℓ , (21)

where the multiple sum is restricted to the j’s subject to
the constraints in Eqs. (19). This multiple sum coincides
with the definition of the ordinary Bell polynomial [7] of
order (n, ℓ + 1), Bn,ℓ+1(gn−ℓ) [8]. Eqs. (14-16) can thus
be cast into the form:

Gn(z) =
n∑

l=1

z−l+1Bnl

(
gn−l+1(z)

)
. (22)

By extracting from the Laurent expansion of Eq. (22)
the terms of order one and zero and equating them to
λ◦
n, and λ̇◦

n, respectively, as discussed before, one gets:

λ◦
n =

n∑

l=1

1

l!
B
(l)
nl

λ̇◦
n =

n∑

l=1

1

(l − 1)!
B
(l−1)
nl ,

(23)

where B
(k)
nl = dk

dzkBnl

(
gn−l+1(z)

)∣∣∣
z=0

. These deriva-

tives can be expressed as linear combinations of multi-

ple derivatives of the gn’s, g
(k)
n = dk

dzk gn(z)
∣∣∣
z=0

, using a

multi-variate extension of the Faà di Bruno formula [9],
involving again Bell’s polynomials. In practice, the co-
efficients of these linear combinations quickly become so
complex that they can only be handled through symbolic
manipulation systems, which would be more profitably
used to obtain the result by direct differentiation. In any
case, the derivatives of the gn’s can be expressed in terms
of the complete homogeneous symmetric polynomials [10]
of the inverse excitation energies, Xn = E−1

n ,
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hl(X1, · · ·Xn) =
∑

1≤k1···kn≤l

Xk1
· · ·Xkn

=
1

l!

dl

dzl

(
1

1− zX1
· · ·

1

1− zXn

)

z=0

. (24)

We have therefore:

g(l)n =
dl

dzl
gn(z)

∣∣∣∣
z=0

=
dl

dzl

∑′

k1k2···kn−1

W0kn−1
Wkn−1kn−2

· · ·Wk10

(Ekn−1
+ z) · · · (Ek1

+ z)

∣∣∣∣∣∣
z=0

= l!(−)n−1
∑′

k1k2···kn−1

W0kn−1
Wkn−1kn−2

· · ·Wk10

Ekn−1
· · · Ek1

hl

(
E−1
k1

, · · · E−1
kn−1

)
.

(25)

The box below, Eqs. (26), summarizes the formulas for the calculation of the various terms in the perturbative
expansion of the GS energy of the Hamiltonian, Eq. (2) to arbitary order: Eqs. (11), (13), and (23).

E0 = E0 + ε1 + · · · εn + · · · , γ◦
n = λ◦

n −
∑n−1

k=1
n−k
n γ◦

n−kλ
◦
k, λ◦

n =
∑n

l=1
1
l!B

(l)
nl ,

εn = (−)n+1γ̇◦
n, γ̇◦

n = λ̇◦
n −

∑n−1
k=1

n−k
n

(
γ̇◦
n−kλ

◦
k + γ◦

n−kλ̇
◦
k

)
, λ̇◦

n =
∑n

l=1
1

(l−1)!B
(l−1)
nl

(26)

These equations are easily implemented in any symbolic
manipulation package. A simple Mathematica [11] code,
named TuMiTurbi.nb, is available as Supplemental Ma-
terial / Ancillary File. The box below, Eqs. (27), reports
the first six terms in the perturbative expansion of the GS
energy, as obtained from this code. Note the difference

between gkl = (gl
)k

and g
(k)
l = dkgl

dzk . These results are in
agreement with those obtained in Ref. 12 from a different
method based on gauge invariance. TuMiTurbi.nb also
provides the explicit expressions for the perturbative cor-
rections in terms of the familiar sums over excited states,
in a slightly awkward, but perfectly recognizable, form.

ε1 = g1

ε2 = −g2

ε3 = g3 + g1g
′
2

ε4 = −g4 − g2g
′
2 − g1g

′
3 −

1

2
g21g

′′
2

ε5 = g5 + g3g
′
2 + g1 (g

′
2)

2 + g2g
′
3 + g1g

′
4

+ g1g2g
′′
2 +

1

2
g21g

′′
3 +

1

6
g31g

(3)
2

ε6 = −g6 − g4g
′
2 − g2 (g

′
2)

2
− g3g

′
3 − 2g1g

′
2g

′
3

− g2g
′
4 − g1g

′
5 −

1

2
g22g

′′
2 − g1g3g

′′
2

−
3

2
g21g

′
2g

′′
2 − g1g2g

′′
3 −

1

2
g21g

′′
4

−
1

2
g21g2g

(3)
2 −

1

6
g31g

(3)
3 −

1

24
g41g

(4)
2

(27)

III. THE CLASSICAL-QUANTUM MAPPING

In order to proceed further and establish a stochas-
tic interpretation of the perturbative series, Eq. (11),

we consider a classical system of N interacting particles,
whose coordinates are denoted by R = {r1, r2, · · ·rN} ∈
R

3N and whose dynamics is described by a random walk
satisfying the overdamped Langevin equation:

Rn+1 = Rn + ǫF(Rn) + dWn,

F = −
∂U(R)

∂R
,

(28)

where U(R) is a many-body potential, dWn is the differ-

ential of a Wiener process with variance
〈
(dWn)

2〉
= 2ǫ,

and the subscript n is a discrete-time index correspond-
ing to a discretization step ǫ. In the continuous (ǫ → 0)
limit, the probability density for the walker R, P(R, τ),
satisfies the Fokker-Planck (FP) equation [3, 4]:

∂P(R, τ)

∂τ
=

∂2
P(R, τ)

∂R2
−

∂

∂R
·
(
F(R)P(R, τ)

)
. (29)

It is easily checked that P◦(R) ∝ e−U(R) is a stationary
solution of the FP equation, Eq. (29). We will shortly
see that, under rather general conditions, this stationary
solution is unique. To this end, let us introduce two
auxiliary wavefunctions defined as:

Φ0(R) =
√
P◦(R) ∝ e−U(R)/2, (30)

Φ(R, τ) = P(R, τ)/Φ0(R). (31)

It is easy to verify that Φ(R, τ) satisfies the (imaginary-)
time-dependent Schrödinger equation:

∂Φ(R, τ)

∂τ
= −ĤΦ(R, τ), where (32)

Ĥ = −
∂2

∂R2
+ V(R), and (33)

V(R) =
1

4
F(R)2 −

1

2
∆U(R),

=
Φ′′

0 (R)

Φ0(R)
, (34)
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where Φ′′
0(R) = ∂2

∂R2Φ0(R). Eqs. (33-34) imply that
Φ0, Eq. (30), is an eigenfunction of the Hamiltonian,
Eq. (33), with zero eigenvalue. If U(R), Eq. (28), is
everywhere finite, then P

◦(R) and Φ0(R) are nodeless,
and the latter is the non-degenerate ground state of the
Hamiltonian, Eq. (33) [13]. As a consequence, all the ex-
cited states have strictly positive energies, and therefore
limτ→∞ Φ(R, τ) ∝ Φ0(R) and limτ→∞ P(R, τ) = P

◦(R),
irrespective of the initial conditions, i.e. P

◦(R) is the
unique equilibrium solution of the FP equation, Eq. (29).
The FP equation, Eq. (29), is first-order in time, re-

flecting the Markovian character of the Langevin pro-
cess, Eq. (28). This entails that its solution, P(R, τ),
is uniquely determined by the corresponding initial con-
dition, P(R, 0). Linearity in turn implies that P(R, τ)
is the convolution of P(R, 0) with a Green’s function,
Π(R,R′; τ − τ ′), which is to be interpreted as the condi-
tional probability density for the walker to be found at
position R at time τ , given that it was found at position
R′ at time τ ′:

P(R, τ) =

∫
Π(R,R′; τ)P(R′, 0)dR′. (35)

A similar relation holds for the propagation of the asso-
ciated quantum wavefunction:

Φ(R, τ) =

∫
G(R,R′; τ)Φ(R′, 0)dR′, (36)

where G(R,R′; τ) = 〈R|e−Ĥτ |R′〉 is the imaginary-time
propagator of the auxiliary quantum system. By insert-
ing Eq. (31) into Eq. (36), one gets:

Π(R,R′; τ) = Φ◦(R)G(R,R′ ; τ)/Φ◦(R′). (37)

If the system is initially at equilibrium, P(R, 0) =
P
◦(R), the time average of any function of the walker’s

coordinates, A(R),

ĀT =
1

T

∫ T

0

A
(
R(τ)

)
dτ, (38)

is a stochastic variable whose expectation is:

〈ĀT 〉RW = 〈A〉

.
=

∫
A(R)P◦(R)dR

≡ 〈Φ0|Â|Φ0〉,

(39)

and whose variance is:

var
(
ĀT

)
=

1

T 2

〈(∫ T

0

∆A(τ)dτ

)2〉

RW

=
2

T

∫ T

0

〈
∆A(τ)∆A(0)〉RW

(
1−

τ

T

)
dτ

∼
2

T

∫ ∞

0

〈
∆A(τ)∆A(0)〉RW dτ,

(40)

where

∆A(τ) = A
(
R(τ)

)
− 〈A〉, (41)

〈·〉RW indicates an equilibrium average over the random
walk, and the last relation in Eq. (40) holds in the
T → ∞ limit when

∫∞

0
〈∆A(τ)∆A(0)〉RW τdτ < +∞.

Notice the similarity between the expression for the vari-
ance for the time average of a function of the walker’s
coordinates, Eq. (40), and the Einstein-Helfand expres-
sion for transport coefficients [14–17]. Eq. (40), as well
as the related equivalence between the Green-Kubo and
Einstein-Helfand expressions for transport coefficients, is
a direct consequence of the fact that the variance of the
average of N of stochastic variables (the integral in Eq.
38) is equal to the sum of the all the elements of the
covariance matrix divided by N2, which for independent
equally distributed variables results in the familiar law of
large numbers.

If the probability density for the walker’s coordinates at τ1 = 0 is stationary, P(R, 0) = P
◦(R), the joint probability

density for the walker to be found at positions R1,R2, · · ·Rn at times τ1, τ2, · · · τn is:

Pn(Rn, τn;Rn−1τn−1; · · · ;R1, τ1) = Π(Rn,Rn−1; τn − τn−1)×

Π(Rn−1,Rn−2; τn−1 − τn−2)× · · ·Π(R2,R1; τ2 − τ1)P
◦(R1). (42)

The time correlation function of a function of the local coordinates, A(R), reads therefore:

〈∆A(τ)∆A(0)〉RW =

∫
P2(R2, τ ;R1, 0)∆A(R2)∆A(R1)dR2dR2

=

∫
Φ0(R2)Φ0(R1)G(R2,R1; τ)∆A(R2)∆A(R1)dR1dR2

=
∑

n>0

|A0n|
2e−Enτ ,

(43)
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where Φn and En indicate the eigenpair of the n-th
excited state of the Hamiltonian, Eq. (33), A0n =

〈Φ0|Â|Φn〉, and the GS energy, E0, is assumed to van-
ish. By combining Eq. (40) with Eq. (43), we arrive
at an expression for the variance of the time average of a
function of the walker’s coordinates in terms of a spectral
sum for the associated quantum system:

var
(
ĀT

)
∼

2

T

∑

n>0

|A0n|2

En
. (44)

IV. STOCHASTIC PERTURBATION THEORY

The approach to perturbation theory presented in Sec.
II applies to any Hamiltonian that can be split as in Eq.
(2). When both the complete and unperturbed Hamil-
tonians of an N -body system are sums of a kinetic and
a local, possibly non-separable, potential term, the GS
wavefunctions are nodeless [13, 18] and the unperturbed
quantum problem can be mapped onto a classical diffu-
sion one, such that the perturbative expansion can be
given a nice and insightful stochastic interpretation.
Let us denote by R = {r1, r2, · · · rN} ∈ R

3N the coor-

dinates of the system and by

Ĥ = −
1

2

∂2

∂R2
+ V (R)

Ĥ = −
1

2

∂2

∂R2
+ V(R),

W(R) = V (R) − V(R)

(45)

the complete and unperturbed Hamiltonians, respec-
tively. The eigenvalue equation, Eq. (1), gives:

V(R) = E0 +
1

2

Φ′′
0(R)

Φ0(R)
(46)

where Φ0 is the unperturbed GS wavefunction. If one
assumes E0 = 0, then

W(R) = −
1

2

Φ′′
0 (R)

Φ0(R)
+ V (R)

=
(
ĤΦ0(R)

)/
Φ0(R).

(47)

In the quantum Monte Carlo parlance, the perturbing
potential, W(R), Eq. (47), is usually dubbed the local
energy.

A stochastic interpretation of the perturbative expansion is obtained by replacing the multiple sum over intermediate
Hamiltonian eigenstates leading from Eq. (6) to (7) with a multiple integral over intermediate positions, reading:

λn(τ) =

∫ τ

0

dτn

∫ τn

0

dτn−1 · · ·

∫ τ2

0

dτ1

∫
dRndRn−1 · · · dR1Φ0(Rn)W(Rn)W(Rn−1) · · ·W(R1)

× G(Rn,Rn−1; τn − τn−1)G(Rn−1,Rn−2; τn−1 − τn−2) · · · G(R2,R1; τ2 − τ1)Φ0(R1)

=

∫ τ

0

dτn

∫ τn

0

dτn−1 · · ·

∫ τ2

0

dτ1

∫
dRndRn−1 · · · dR1W(Rn)W(Rn−1) · · ·W(R1)

× Pn(Rn, τn;Rn−1τn−1; · · · ;R1, τ1)

=

∫ τ

0

dτn

∫ τn

0

dτn−1 · · ·

∫ τ2

0

dτ1〈W(τn)W(τn−1) · · ·W(τ1)〉RW

=
1

n!

〈
S(τ)n

〉
RW

,

(48)

where S(τ) =
∫ τ

0
W(τ ′)dτ ′ can be thought of as an effective action [19]. The µ’s, µn(τ) = n!λn(τ), Eq. (6), are thus

the (raw) moments of the effective action, and the various perturbative corrections in Eq. (11) are derivatives of the
corresponding cumulants. When τ is larger than the local-energy (W) autocorrelation time, τW , S(τ) is the sum of
N ≈ τ/τW quasi-independent stochastic variables, so that its cumulants are proportional to N , and therefore to τ ,
making the large-time limit of their derivatives well defined.

V. REPTATION QUANTUM MONTE CARLO

The most basic of all the stochastic approaches to
quantum mechanics is likely variational quantum Monte
Carlo (VMC), whereby one aims to estimate the GS en-
ergy of a system as the expectation value of the Hamil-
tonian with respect to a suitably identified approximate

wave-function, Φ0(R):

E0 ≈ 〈Φ0|Ĥ |Φ0〉

.
=

∫
W(R)Φ0(R)2dR,

(49)

where W(R) is given by Eq. (47). This is conve-
niently achieved by sampling W(R) along a random walk
generated by the Langevin equation, Eq. (28), with
U(R) = −2 logΦ0(R), using Eqs. (39-40) with A = W .
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The classical-quantum mapping presented in Sec. III
permits to interpret Φ0 as the GS wavefunction of the

auxiliary Hamiltonian, Ĥ, associated with the FP equa-
tion for the Langevin random walk. Of course, if Φ0

coincided with the exact wavefunction of our quantum

system, Ĥ would coincide with the exact Hamiltonian,

Ĥ . If this is not the case, it would be reasonable to treat

the difference Ĥ − Ĥ = Ŵ by perturbation theory. Ac-
cording to Eqs. (10-11) and (48), the first few corrections
to the unperturbed (E0 = 0) energy read:

ε1 = 〈W〉RW (50)

ε2 = −

∫ ∞

0

〈
∆W(τ)∆W(0)〉RWdτ (51)

.
= −

〈
(∆W)2

〉
RW

τW , (52)

where ∆W is defined in analogy with Eq. (41) and the
local-energy auto-correlation time, τW , is actually defined
by Eqs. (51-52). The first-order correction, Eq. (50), co-
incides with the VMC estimate of the GS energy. Eq.
(52) states that the information contained in the local-
energy time series generated in a regular VMC simulation
is sufficient to evaluate the second- (and, actually, high-
er-) order correction(s) to the VMC estimate.
The stochastic interpretation of the higher-order

terms, Eqs. (5) and (48), allows one to formally sum the
perturbative series up to infinite order as the expected
value over the random walk of the exponential of the
negative of the action:

Z(τ) =
∞∑

n=0

(−)n

n!

〈
S(τ)n

〉
RW

(53)

=
〈
e−S(τ)

〉
RW

. (54)

The expression given by Eq. (3) for the GS energy reads
therefore:

E0 ∼

〈
W(τ)e−S(τ)

〉
RW〈

e−S(τ)
〉
RW

. (55)

Neglecting action fluctuations, Eq. (55) reduces to
the usual VMC expression for the energy. These fluc-
tuations could be accounted for by weighting the local
energy with e−S(τ), resulting in the pure-diffusion quan-

tum Monte Carlo scheme of Ref. 20. The exponential
dependence of the weights on the action and the exten-
sive character of the latter, however, make this scheme
unfit but for systems of very small size and not very ef-
ficient otherwise. Similar approaches, all derived from a
Feynman-Kac expression for Z function in Eq. (3), are
the variational path integral method of Ref. 21, later re-
branded as path-integral ground state [22], and RQMC
[4, 5]. In all these methods, the effects of the weights are
accounted for by sampling the space of random walks of
length τ , X(τ) = {R(ǫ),R(2ǫ), · · ·R(τ = nǫ)} according
to a Metropolis algorithm [23]. The distintive feature of

RQMC is the way Monte Carlo moves are generated by
letting the random walk (the reptile) creep back and forth
for a certain time according to the Langevin equation,
(28), and accepted or rejected according to a Metropolis
test on the variation of the effective action determined
by the move. Beside the energy, RQMC allows for an
unbiased estimate of general local observables, as well as
of their static and dynamic (in imaginary time) response
functions. The algorithm is explained in full detail else-
where [4, 5], and I feel that this a good place to stop.

VI. CONCLUSIONS

The work presented in this paper is made of two in-
dependent parts, whose main link is their relation to the
development of reptation quantum Monte Carlo in the
late nineties. Indeed, this development was motivated by
the observation that the leading correction to the vari-
ational estimate of a ground-state energy is determined
by the Kubo-like formula given by Eq. (51) and by the
difficulty to generalize it to higher orders in any useful
manner. Sometimes, insurmountable difficulties are for-
tunate, for RQMC has proven to be much more pow-
erful than any approximate perturbative schemes ever
could: besides the intrisically approximate character of
perturbation theory, the main numerical limitation to a
stochastic approach to it is the increasing numerical noise
affecting the estimate of the action moments for increas-
ing order and the ill-conditioned nature of the expression
of cumulants in terms of moments, Eqs. (9-10), due to
sign alternation. The first part of this work, Sec. II is to
a large extent unrelated from the second, but for the fact
that I have long been wondering how Eq. (3), which is
the starting point of RQMC and of many other quantum
stochastic simulation methods, could be used to stream-
line the derivaton of Raleigh-Schrödinger perturbation
theory. I hope the present paper provides a nice, though
not necessarily impactful, answer to this question.
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